APPLICATIONS OF EDGE COLORING OF GRAPHS WITH RAINBOW NUMBERS PHENOMENA

Dr. B. Ramireddy ¹, U. Mohan Chand ², A. Sri Krishna Chaitanya ³, Dr. B. R. Srinivas ⁴
¹ Professor & H.O.D, Hindu College, Guntur, (A.P), INDIA.
² Associate Professor of Mathematics & H.O.D, Rice Krishna Sai Prakasam Group of Institutions, Ongole, (A.P), INDIA
³ Associate Professor of Mathematics & H.O.D, Chebrolu Engineering College, Chebrolu, Guntur Dist. (A.P), INDIA
⁴ Associate Professor of Mathematics, St. Mary’s Group of Institutions, Chebrolu, Guntur Dist. (A.P), INDIA

ABSTRACT

This paper studies the Rainbow Ramsey Number for a non-empty graph and the main results are 1. The Rainbow Ramsey Number of a graph F with out isolated vertices is defined if and only if F is a forest. 2. The Rainbow Ramsey Number of two graphs F₁ and F₂ with out isolated vertices is defined if and only if F₁ is a star or F₂ is a forest.

Mathematics Subject Classification 2000: 05CXX, 05C55, 05DXX, 05D10, 04XX, 04A10

Keywords:
Rainbow Ramsey Number, forest, isolated vertices, star.

1. INTRODUCTION

Basically in an edge-colored graph G that if there is a sub graph F of G all of whose edges are colored the same, then F is referred to as a monochromatic F. On the other hand, if all edges of F are colored differently, then F is referred to as a rainbow F.

2. DEFINITION

For a nonempty graph F, the Rainbow Ramsey Number RR (F) of F as the smallest positive integer n such that if each edge of the complete graph Kₙ is colored from any set of colors, then either a monochromatic F or a rainbow F is produced.
Let \(\{v_1, v_2, \ldots, v_n\} \) be the vertex set of a complete graph \(K_n \). An edge coloring of \(K_n \) using positive integers for colors is called a **minimum coloring** if two edges \(v_i v_j \) and \(v_k v_l \) are colored the same if and only if
\[
\min \{i, j\} = \min \{k, l\}
\]
while an edge coloring of \(K_n \) is called a **maximum coloring** if two edges \(u_i u_j \) and \(u_k u_l \) are colored the same if and only if
\[
\max \{i, j\} = \max \{k, l\}
\]

2.1. **Definition:** A graph with out cycles is a forest.

2.2. **Theorem:** Let \(F \) be a graph without isolated vertices. The **Rainbow Ramsey number** \(RR(F) \) is defined if and only if \(F \) is a forest.

Let \(F \) be a graph of order \(p \geq 2 \). First we show that \(RR(F) \) is defined only if \(F \) is a forest. Suppose that \(F \) is not a forest. Thus \(F \) contains a cycle \(C \), of length \(k \geq 3 \) say. Let \(n \) be an integer with \(n \geq p \) and let \(\{v_1, v_2, \ldots, v_n\} \) be the vertex set of a complete graph \(K_n \). Define an edge coloring \(c \) of \(K_n \) by \(c(v_i v_j) = i \) if \(i < j \). Hence \(c \) is a minimum edge coloring of \(K_n \). If \(k \) is the minimum positive integer such that \(v_k \) belongs to \(C \), then two edges of \(C \) are colored \(k \), implying that there is no rainbow \(F \) in \(K_n \). Since any other edge in \(C \) is not colored \(k \), it follows that \(F \) is not monochromatic either. Thus \(RR(F) \) is not defined.

For the converse, suppose that \(F \) is a forest of order \(p \geq 2 \). By known fact there exists and integer \(n \geq p \) such that for any edge coloring of \(K_n \) with positive integers, there is a complete subgraph \(G \) of order \(p \) in \(K_n \) that is either monochromatic or rainbow or has minimum or maximum coloring. If \(G \) is monochromatic or rainbow, then \(K_n \) contains a monochromatic or rainbow \(F \). Hence we may assume that the edge coloring of \(G \) is minimum or maximum, say the former. We show in this case that \(G \) contains a rainbow \(F \). If \(F \) is not a tree, then we can add edges to \(F \) to produce a tree \(T \) of order \(p \). Let \(V(G) = \{v_{i_1}, v_{i_2}, \ldots, v_{i_p}\} \), where \(i_1 < i_2 < \ldots < i_p \). Select some vertex \(v = v_{i_p} \) of \(T \) and label the vertices of \(T \) in the order \(v = v_{i_p}, v_{i_{p-1}}, \ldots, v_{i_2}, v_{i_1} \) of non decreasing distance from \(v \); that is,
\[
d(v_{i_j}, v) \geq d(v_{i_{j+1}}, v)
\]
for every integer \(j \) with \(1 \leq j \leq p - 1 \). Hence there exists exactly on edge of \(T \) having color \(i_j \) for each \(j \) with \(1 \leq j \leq p - 1 \). Thus \(T \) and hence \(F \) is rainbow. The rainbow Ramsey number \(RR(F) \) is therefore defined.

2.3. **Example:** For each integer \(k \geq 2 \), \(RR(K_{1,k}) = (k - 1)^2 + 2 \).

Proof

We first show that \(RR(K_{1,k}) \geq (k - 1)^2 + 2 \). Let \(n = (k - 1)^2 + 1 \). We consider two cases.
Case 1. k is odd. Then n is odd. Factor K_n into $n^{1/2} = (k-1)^{1/2}$ Hamiltonian cycles each. Partition these cycles into $k-1$ sets $S_i (1 \leq i \leq k-1)$ of $k^{1/2}$ Hamiltonian cycles each. Color each edge of each cycle in S_i with color i. Then there is neither a monochromatic $K_{1,k}$ nor a rainbow $K_{1,k}$.

Case 2. k is even. Then n is even. Factor K_n into $n-1 = (k-1)^2$ 1-factors. Partition these 1-factors into $k-1$ sets $S_i (1 \leq i \leq k-1)$ of $k-1$ 1-factors. Color each edge of each 1-factor in S_i color with i. Then there is neither a monochromatic $K_{1,k}$ nor a rainbow $K_{1,k}$.

Therefore, $RR(K_{1,k}) \geq (k-1)^2 + 2$. It remains to show that $RR(K_{1,k}) \leq (k-1)^2 + 2$. Let $N = (k-1)^2 + 2$ and let there be given an edge coloring of K_N from any set of colors. Suppose that no monochromatic $K_{1,k}$ results. Let v be a vertex of K_N. Since $\deg v = N-1$ and there is no monochromatic $K_{1,k}$, at most k edges incident with v can be colored the same. Thus there are at least $\lceil N/k-1 \rceil = k$ edges incident with v that are colored differently, producing a rainbow $K_{1,k}$.

More generally, for two nonempty graphs F_1 and F_2, the rainbow Ramsey number $RR(F_1,F_2)$ is defined as the smallest positive integer n such that if each edge of K_n is colored from any set of colors, then there is either a monochromatic F_1 or a rainbow F_2 defined for every pair F_1, F_2 of non empty graphs.

3. DEFINITION

If the partite sets u & w of a complete bi partite graph contain s & t vertices. Then this graph is denoted by $K_{s,t}$, the graph $K_{1,t}$ is called star.

3.1. Theorem: Let F_1 and F_2 be two graphs without isolated vertices. The rainbow Ramsey number $RR(F_1,F_2)$ is defined if and only if F_1 is a star or F_2 is a forest.

Proof. First, we show that $RR(F_1,F_2)$ exists only if F_1 is a star or F_2 is a forest. Suppose that F_1 is not a star and F_2 is not a forest. Let G be a complete graph of some order n such that $V(G) = \{v_1,v_2,\ldots,v_n\}$ and such that both F_1 and F_2 are subgraphs of G. Define an $(n-1)$-edge coloring on G such that the edge $v_i v_j$ is assigned the color i if $i < j$. Hence this coloring is a minimum edge coloring of G.

Let G_1 be any copy of F_1 in G and let a be the minimum integer such that v_a is a vertex of G_1. Then every edge incident with v_a is colored a. since G_1 is not a star, some edge of G_1 is not incident with v_a and is therefore not colored a. Hence G_1 is not monochromatic. Next, let G_2 be any copy of F_2 in G. Since G_2 is not a forest, G_2 contains a cycle C. Let b be the minimum integer such that v_b is a vertex of G_2 belonging to C. Since the two edges of C incident with v_b are colored b (and G_2 contains at least two edges colored b), G_2 is not a rainbow subgraph of G. Hence $RR(F_1,F_2)$ is not defined.

We now verify the converse. Let F_1 and F_2 be two graphs without isolated vertices such that either F_1 is a star or F_2 is a forest. We show that there exists a positive integer n such that for every edge coloring of K_n, either a monochromatic F_1 or a rainbow F_2 results. Suppose that the order of F_1 is $s+1$ and the order of F_2 is
t + 1 for positive integers s and t. Hence $F_1 = K_{1,s}$. We now consider two cases, depending on whether F_1 is a star or F_2 is a forest. It is convenient to begin with the case where F_2 is a forest.

Case 1. F_2 is a forest. If F_2 is not a tree, then we may add edges to F_2 so that a tree G_2 results. If F_2 is a tree, then let $G_2 = F_2$. Furthermore, if F_1 is not complete, then we may add edges to F_1 so that a complete graph $G_1 = K_{s+1}$ results. If F_1 is complete, then let $G_1 = F_1$. Hence $G_1 = K_{s+1}$ and G_2 is a tree of order $t + 1$. We now show that $RR(G_1,G_2)$ is defined by establishing the existence of a positive integer n such that any edge coloring of K_n from any set of colors results in either a monochromatic G_1 or a rainbow G_2. This, in turn, implies the existence of monochromatic F_1 or a rainbow F_2. We now consider two cases, depending on whether G_2 is a star.

Sub case 1.1. G_2 is a star of order $t + 1$, that is, $G_2 = K_{1,t}$. Therefore, in this subcase, $G_1 = K_{s+1}$ and $G_2 = K_{1,t}$. (This subcase will aid us later in the project) In this subcase, let

$$n = \sum_{i=0}^{(s-1)(t-1)+1} (t-1)^i$$

and let an edge coloring of K_n be given from any set of colors. If K_n contains a vertex incident with t or more edges assigned distinct colors, then K_n contains a rainbow G_2. Hence we may assume that every vertex of K_n is incident with at most $t-1$ edges assigned distinct colors. Let v_1 be a vertex of K_n. Since the degree of v_1 in K_n is $n-1$, there are at least

$$\frac{n-1}{t-1} = \sum_{i=0}^{(s-1)(t-1)} (t-1)^i$$

edges incident with u_1 that are assigned the same color, say color c_1.

Let S_1 be the set of vertices joined to v_1 by edges colored c_1 and let $v_2 \in S_1$. There are at least

$$\frac{|S_1| - 1}{t-1} \geq \sum_{i=0}^{(s-1)(t-1)-1} (t-1)^i$$

edges of the same color, say color c_2, joining v_2 and vertices of S_1, where possibly $c_2 = c_1$. Let S_2 be the set of vertices in S_1 joined to v_2 by edges colored c_2. Continuing in this manner, we construct sets $S_1, S_2, \ldots, S_{(s-1)(t-1)}$ and vertices $v_1, v_2, \ldots, v_{(s-1)(t-1)+1}$ such that $2 \leq i \leq (s-1)(t-1)+1$, the vertex v_i belongs to S_{i-1} and is joined to at least

$$\frac{|S_1| - 1}{t-1} \geq \sum_{i=0}^{(s-1)(t-1)-1} (t-1)^i$$

vertices of S_{i-1} by edges colored c_i. Finally, in the set $S_{(s-1)(t-1)}$, the vertex
v_{(s-1) (t-1)+1} is joined to a vertex v_{(s-1)(t-1)+2} in S_{(s-1)(t-1)} by an edge colored c_{(s-1)(t-1)+1}. Thus we have a sequence
\[U_1, U_2, \ldots, V_{(s-1)(t-1)+2} \]
of vertices such that every edge \(v_i, v_j \) for \(1 \leq i < j \leq (s-1) (t-1) + 2 \) is colored \(c_i \) and where the colors \(c_1, c_2, \ldots, c_{(s-1)(t-1)+1} \) are not necessarily distinct. In the complete subgraph \(H \) of order \((s-1) (t-1) + 2 \) induced by the vertices listed in (11.3), the vertex \(v_{(s-1)(t-1)+2} \) is incident with at most \(t-1 \) edges having distinct colors. Hence there is a set of at least
\[\left[\frac{(s-1)(t-1) + 1}{t-1} \right] = s \]
Vertices in \(H \) joined to \(v_{(s-1)(t-1)+2} \) by edges of the same color. Let \(v_{i_1}, v_{i_2}, \ldots, v_{i_s} \) be \(s \) of these vertices, where \(i_1 < i_2 < \ldots < i_s \). Then \(c_{i_1} = c_{i_2} = \ldots = c_{i_s} \), and the complete subgraph of order \(s+1 \) induced by
\{ \(v_{i_1}, v_{i_2}, \ldots, v_{i_s}, v_{(s-1)(t-1)+2} \) \}
is monochromatic.

Subcase 1.2 \(G_2 \) is a tree of order \(t+1 \) that is not necessarily a star. Recall that \(G_1 = K_{s+1} \). We proceed by induction on the positive integer \(t \). If \(t = 1 \) or \(t = 2 \), then \(G_2 \) is a star and the base case of the induction follows by subcase 1.1. Suppose that \(RR(G_1, G_2) \) exists for \(G_1 = K_{s+1} \) and for every tree \(G_2 \) of order \(t + 1 \) where \(t \geq 2 \). Let \(T \) be a tree of order \(t + 2 \). We show that \(RR(G_1, T) \) exists. Let \(v \) be an end-vertex of \(T \) and let \(v \) be the vertex of \(T \) that is adjacent to \(v \). Let \(T' = T - v \). Since \(T' \) is a tree of order \(t + 1 \), it follows by the induction hypothesis that \(RR(G_1, T') \) exists, say \(RR(G_1, T') = p \). Hence for any edge coloring of \(K_p \) from any set of colors, there is either a monochromatic \(G_1 = K_{s+1} \) or a rainbow \(T' \). From sub case 1.1, we know that \(RR(G_1, K_{1,t+1}) \) exists. Suppose that \(RR(G_1, K_{1,t+1}) = q \) and let \(n = pq \) in this subcase.

Let there be given an edge coloring of \(K_n \) using any number of colors. Consider a partition of the vertex set of \(K_n \) into \(q \) mutually disjoint sets of \(p \) vertices each. By the induction hypothesis, the complete subgraph induced by each set of \(p \) vertices contains either a monochromatic \(K_{s+1} \) or rainbow \(T' \). If a monochromatic \(K_{s+1} \) occurs in any of these complete subgraph \(K_p \), then subcase 1.2 is verified. Hence we may assume that there are \(q \) pair wise mutually rainbow copies.

\[T_1, T_2, \ldots, T_q \]
of \(T' \), where \(u_i \) is the vertex in \(T_i \) \((1 \leq i \leq q)\) corresponding to the vertex \(u \) in \(T \).
Let \(H \) be the complete subgraph of order \(q \) induced by \(\{ u_1, u_2, \ldots, u_q \} \). Since \(RR(K_{s+1}, K_{1,t+1}) = q \), it follows that either \(H \) contains a monochromatic \(K_{s+1} \) or a rainbow \(K_{1,t+1} \). If \(H \) contains a monochromatic \(K_{s+1} \), then once again, the proof of subcase 1.2 is complete. So we may assume that \(H \) contains a rainbow \(K_{1,t+1} \). Let \(u_j \) be the center of a rainbow star \(K_{1,t+1} \) in \(H \). At least one of the \(t + 1 \) colors of the edges of \(K_{1,t+1} \) is different from the colors of the \(t \) edges of \(T_j \). Adding the edge having this color at \(u_j \) in \(T_j \) produces a rainbow copy of \(T \).
Case 2. \(F_1\) is a star. Denote \(F_1\) by \(G_1\) as well and so \(G_1 = K_{1,s}\). If \(F_2\) is complete, then let \(G_2 = F_2\). If \(F_2\) is not complete, then we may add edges to \(F_2\) so that a complete graph \(G_2 = K_{t+1}\) results. We verify that \(RR(G_1, G_2)\) exists by establishing the existence of a positive integer \(n\) such that for any edge coloring of \(K_n\) from any set of colors, either a monochromatic \(G_1\) or a rainbow \(G_2\) results. This then shows that \(K_n\) will have a monochromatic \(F_1\) or a rainbow \(F_2\). For positive integers \(p\) and \(r\) with \(r < p\), let

\[
p^r = \frac{p!}{(p-r)^{r!}} = p(p-1) \cdots (p-r+1).
\]

Now let \(n\) be an integer such that \(s-1\) divides \(n-1\) and

\[
n \geq 3 + \frac{(s-1)(t+2)^4}{8}
\]

Then \(n-1 = (s-1)q\) for some positive integer \(q\). Let there be given an edge coloring of \(K_n\) from any set of colors and suppose that no monochromatic \(G_1 = K_{1,s}\) occurs. We show that there is a rainbow \(G_2 = K_{t+1}\). Observe that the total number of different copies of \(K_{t+1}\) in \(K_n\) is implying the existence of at least one rainbow \(K_{t+1}\).

First consider the number of copies of \(K_{t+1}\) containing adjacent edges \(uv\) and \(uw\) that are colored the same. There are \(n\) possible choice for the vertex \(u\). Suppose that there are \(a_i\) edges incident with \(u\) that are colored \(i\) for \(1 \leq i \leq k\). Then

\[
\sum_{i=1}^{k} a_i = n - 1,
\]

Where, by assumption, \(1 \leq a_i \leq s - 1\) for each \(i\). For each color \(i(1 \leq i \leq k)\), the number of different choices for \(v\) and \(w\) where \(uv\) and \(uw\) are colored \(i\) is \(\binom{a_i}{2}\). Hence the number of different choices for \(u\) and \(w\) where \(uv\) and \(uw\) are colored the same is

\[
\sum_{i=1}^{k} \binom{a_i}{2}
\]

since the maximum value of this sum occurs when each \(a_i\) is as large as possible, the largest value of this sum is when each \(a_i\) is \(s - 1\) and when \(k = q\), that is, there are at most

\[
\sum_{i=1}^{q} \binom{s-1}{2} = q \binom{s-1}{2}
\]
choices for \(v\) and \(w\) such that \(uv\) and \(uw\) are colored the same. Since there are \(\binom{n-3}{t-2}\) choices for the remaining \(t-2\) vertices of \(K_{t+1}\), it follows that there are at most
\[
n_q \left(\frac{s-1}{2} \right) \binom{n-3}{t-2}
\]
copies of \(K_{t+1}\) containing two adjacent edges that are colored the same.

We now consider copies of \(K_{t+1}\) in which there are two nonadjacent edges, say \(e = xy\) and \(f = wz\), colored the same. There are \(\binom{n}{2}\) choices for \(e\) and \(n - 2\) choices for one vertex, say \(w\), that is incident with \(f\). The vertex \(w\) is incident with at most \(s - 1\) edges having the same color as \(e\) and not adjacent to \(e\). Since there are four ways of counting such a pair of edges in this way (namely \(e\) and either \(w\) or \(z\), or \(f\) and either \(x\) or \(y\)), there are at most
\[
\frac{\binom{n}{2}(n-2)(s-1)}{4} = \frac{n(n-1)(n-2)(s-1)}{8}
\]
Ways to choose nonadjacent edges of the same color and \(\binom{n-t}{i-3}\) ways to choose the remaining \(t-3\) vertices of \(K_{t+1}\). Hence there are at most
\[
\frac{n(n-1)(n-2)(s-1)}{8} \binom{n-4}{t-3}
\]
Copies of \(K_{t+1}\) containing two nonadjacent edges that are colored the same. Therefore, the number of non-rainbow copies of \(K_{t+1}\) is at most
\[
n_q \left(\frac{s-1}{2} \right) \binom{n-3}{t-2} + \frac{n(n-1)(n-2)(s-1)}{8} \binom{n-4}{t-3}
\]
\[
= \frac{n}{t+1} \left[\frac{(s-2)(t+1)^{(3)}}{2(n-2)} + \frac{(s-1)(t+1)^{(4)}}{8(n-3)} \right]
\]
\[
< \frac{n}{t+1} \left[\frac{(s-1)(t+1)^{(3)}}{2(n-3)} + \frac{(s-1)(t+1)^{(4)}}{8(n-3)} \right]
\]
\[
= \frac{n}{t+1} \left[\frac{(s-1)(t+1)^{(3)}(t+2)}{8(n-3)} \right]
\]
\[
= \frac{n(t+1)}{8(n-3)} \leq \frac{n}{t+1},
\]
Where the final inequality follows from known theorem, the rainbow Ramsey number is defined if and only if F is a forest hence there is a rainbow K_{t+1} in K_n.

4. REFERENCES