DEVELOPMENT OF ANDREWS-GARVAN-LIANG’S SELF-CONJUGATE S-PARTITIONS

Sabuj Das*
* Senior Lecturer, Department of Mathematics, Raozan University College, BANGLADESH
*Correspondence Author: sabujdas.ctg@gmail.com

Abstract:
In 2013, Andrews, Garvan and Liang defined Self-conjugate S-partitions. In 2011, Andrews stated the definition of spt(n). This paper shows how to find the Self-conjugate S-partitions of 4 and 5 respectively, and proves the Corollary-1 that is ‘The number of Self-conjugate S-partitions counted according to the weight w is congruent to the total number of smallest parts in all the partitions of n modulo 2’. This paper shows how to generate the generating functions for $M_{sc}(n)$ in different ways. This paper shows how to find the number of partitions of n with an odd number of smallest parts and a total number of even (respectively odd) parts, and shows how to find the number of partitions of n in odd parts without gaps, and also shows how to find the number of partitions of n in odd parts without gaps, and also shows how to generate the generating functions for $(A_e(n) - A_c(n))$ and $(L_1(n) - L_3(n))$ respectively. This paper shows how to prove the further three Corollaries with the help of examples, and shows how to prove the three Theorems by easy algebraic method.

Keywords:
Crank, congruent to involution, product notations, Self-conjugate, spt(n), weight.

1. INTRODUCTION

We give some related definitions of $P(n)$, Self-conjugate S-partitions, $M_{sc}(n)$, $A_e(n)$, $A_o(n)$, $L_1(n)$, $L_3(n)$, $(x)_\infty$, $(x;x^2)_\infty$, $(x^2;x^2)_\infty$, and spt(n). We give two tables of the Self-conjugate S-partitions of 4 and 5 respectively and introduce Corollary-1 in terms of $M_{sc}(n)$ and spt(n). We discuss the various generating functions for $M_{sc}(n)$, $(A_o(n) - A_c(n))$ and $(L_1(n) - L_3(n))$ and give some tables of the partitions of n with an odd number of smallest parts and of the partitions of n in odd parts without gaps. We discuss the number of Self-conjugate S-partitions counted according the weight w, and give further three Corollaries in terms of $(A_o(n) - A_c(n))$, $(L_1(n) - L_3(n))$ and $M_{sc}(n)$. Finally we prove the three Theorems with the help of various generating functions.

2. SOME RELATED DEFINITIONS

$P(n)$[7]:The number of partitions of n like 4, 3+1, 2+2, 2+1+1, 1+1+1+1. $\therefore P(4) = 5$

Self-conjugate S-partitions [3,5]:
Let D denote the set of partitions into distinct parts and P denote the set of partitions. The set of vector partitions V is defined the Cartesian product

V = D × P × P. If S is the subset of V,

\[S = \{ \pi = (\pi_1, \pi_2, \pi_3) \in V : 1 \leq (\pi_j) < \infty \text{ and } s(\pi_j) \leq \min\{s(\pi_2), s(\pi_3)\} \}. \]

Here \(s(\pi) \) is the smallest part in the partition with the convention that \(s(\phi) = \infty \) for the empty partition. We call the vector partitions in S simply S-partitions for \(\pi = (\pi_1, \pi_2, \pi_3) \in s \), we define the weight \(w(\pi) = (-1)^{#(\pi_1)} \), the Crank \((\pi) = \#(\pi_2) - \#(\pi_3) \) and \(|\pi| = |\pi_1| + |\pi_2| + |\pi_3| \). When \(|\pi_1| \) is the sum of the parts of \(\pi_1 \) and \# \(\pi_j \) denotes the number of parts of \(\pi_j \).

The map \(T : S \rightarrow S \) given by,

\[T(\pi) = T(\pi_1, \pi_2, \pi_3) = T(\pi_1, \pi_3, \pi_2) \]

is natural involution. An S-partition \(\pi = (\pi_1, \pi_3, \pi_2) \) is a fixed point of \(T \) if and only if \(\pi_2 = \pi_3 \). We call these fixed points “Self-conjugate S-partitions”.

The number of Self-conjugate S-partitions counted according to the weight \(w \) is denoted by \(M_{sc}(n) \), So that,

\[M_{sc}(n) = \sum w(\pi) \]

\[\pi \in S, \quad |\pi| = n \]

\[T(\pi) = \pi \]

\(M_{sc}(n) \): The number of self-conjugate s-partitions counted according to the weight \(w \) is denoted by \(M_{sc}(n) \), So that

\[M_{sc}(n) = \sum w(\pi) \]

\[\pi \in S, \quad |\pi| = n \]

\[T(\pi) = \pi \]

\(A_e(n) \): The number of partitions of \(n \) with an odd number of smallest parts and a total number of even parts.

\(A_o(n) \): The number of partitions of \(n \) with an odd number of smallest parts, and a total number of odd parts.

\(L_1(n) \): The number of partitions of \(n \) in odd parts with no gaps, and the largest part is congruent to 1 mod 4.

\(L_3(n) \): The number of partitions of \(n \) in odd parts with no gaps, and the largest part is congruent to 3 mod 4.
Product notations [6]:

\((x)_{\infty} = (1-x)(1-x^2)(1-x^3)\ldots\)

\((x;x^2)_{\infty} = (1-x)(1-x^3)(1-x^5)\ldots\)

\((x^2;x^2)_{\infty} = (1-x^2)(1-x^4)(1-x^6)\ldots\)

\((-x;x)_{\infty} = (1+x)(1+x^2)(1+x^3)\ldots\)

\(\text{spt}(n) : \text{spt}(n) \) The total numbers of appearances of the smallest parts in all the partitions of \(n\) like,

\[
\begin{array}{c|c}
\text{n} & \text{spt(n)} \\
1 & 1 \\
2 & 3 \\
3 & 5 \\
4 & 10 \\
\end{array}
\]

3. THERE ARE TWO TABLES OF THE SELF-CONJUGATE S-PARTITIONS

OF 4 AND 5: We get;

\[\text{Table-1}\]

<table>
<thead>
<tr>
<th>Self-conjugate S-partition of 4</th>
<th>Weight (w(\pi))</th>
<th>Crank (\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_1 = (4,\phi,\phi))</td>
<td>+ 1</td>
<td>0</td>
</tr>
<tr>
<td>(\pi_2 = (3+1,\phi,\phi))</td>
<td>- 1</td>
<td>0</td>
</tr>
<tr>
<td>(\sum w(\pi) = 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\therefore M_\infty(4) = 0\). Here we have used \(\phi\) to indicate the empty partition. Again;

\[\text{Table-2}\]

<table>
<thead>
<tr>
<th>Self-conjugate S-partition of 5</th>
<th>Weight (w(\pi))</th>
<th>Crank (\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_1 = (5,\phi,\phi))</td>
<td>+ 1</td>
<td>0</td>
</tr>
<tr>
<td>(\pi_2 = (1,2,2))</td>
<td>+ 1</td>
<td>0</td>
</tr>
<tr>
<td>(\pi_3 = (1,1+1,1+1))</td>
<td>+ 1</td>
<td>0</td>
</tr>
<tr>
<td>(\pi_4 = (1+4,\phi,\phi))</td>
<td>- 1</td>
<td>0</td>
</tr>
</tbody>
</table>
\[\pi_5 = (2 + 3, \phi, \phi) \]
\[\pi_6 = (2 + 1, 1,1) \]
\[\sum w(\pi) = 0 \]

\[M_{\text{sc}}(5) = \sum_{i=1}^6 w(\pi_i) = 1 + 1 + 1 = 0. \]

Corollary-1 \(M_{\text{sc}}(n) \equiv spt(n)(\text{mod } 2) \)

Proof: From above table we get;
\[M_{\text{sc}}(1) = 1, M_{\text{sc}}(2) = 1, M_{\text{sc}}(3) = 1, \ldots \]
\[M_{\text{sc}}(3) = 1 \equiv 1(\text{mod } 2), spt(3) = 5 \equiv 1(\text{mod } 2) \]
\[M_{\text{sc}}(4) = 0 \equiv 0(\text{mod } 2), spt(4) = 10 \equiv 0(\text{mod } 2) \]

We can conclude that,
\[M_{\text{sc}}(n) \equiv spt(n)(\text{mod } 2). \] Hence the Corollary.

4. **NOW WE DESCRIBE THE GENERATING FUNCTIONS**

The generation functions for \(M_{\text{sc}}(n) \) are given by

\[\sum_{n=1}^\infty \frac{x^n(x^{n+1};x)_\infty}{(x^{2n};x^2)_\infty} = \frac{x(x^2;x)_\infty}{(x^2;x^2)_\infty} + \frac{x^2(x^3;x)_\infty}{(x^4;x^4)_\infty} + \frac{x^3(x^4;x)_\infty}{(x^6;x^6)_\infty} \]

\[= (x - x^4 - x^6 - \ldots) + (x^2 - x^5 - x^7 - \ldots) + (x^3 - x^7 + x^4 + x^5 + \ldots) \]

\[= (x + x^2 + x^3 + 0.x^4 + 0.x^5 + \ldots) \]

\[= M_{\text{sc}}(1)x + M_{\text{sc}}(2)x^2 + M_{\text{sc}}(3)x^3 + M_{\text{sc}}(4)x^4 + M_{\text{sc}}(5)x^5 + \ldots \]

\[= \sum_{n=1}^\infty M_{\text{sc}}(n)x^n. \quad \therefore \sum_{n=1}^\infty M_{\text{sc}}(n)x^n = \sum_{n=1}^\infty \frac{x^n(x^{n+1};x)_\infty}{(x^{2n};x^2)_\infty}. \]

Again, we get;

\[\frac{1}{(1-x)} \sum_{n=1}^\infty \frac{x^n(-x;x)_\infty}{(1-x^n)} \]

\[= \frac{1}{(1+x)(1+x^2)\ldots} \left\{ \frac{x}{1-x} + \frac{x^2(1+x)}{1-x^2} + \frac{x^3(1+x)(1+x^2)}{1-x^3} + \ldots \right\} \]

\[= (1-x-x^3+x^4-x^5+x^7+\ldots)(x+x^3+x^4+x^5+x^6+\ldots+x^2+x^3+x^4+\ldots) \]

\[= (1-x-x^3+x^4-x^5)(x+2x^2+3x^3+4x^4+5x^5+\ldots) \]

\[= x+x^2+x^3+0.x^4+0.x^5+\ldots \]

\[= M_{\text{sc}}(1)x + M_{\text{sc}}(2)x^2 + M_{\text{sc}}(3)x^3 + M_{\text{sc}}(4)x^4 + M_{\text{sc}}(5)x^5 + \ldots \]
\[= \sum_{n=1}^{\infty} M_{sc} (n)x^n. \]
\[
\therefore \sum_{n=1}^{\infty} M_{sc} (n)x^n = \frac{1}{(-x;x)_\infty} \sum_{n=1}^{\infty} \frac{x^n(-x;x)_{n-1}}{(1-x^n)}. \]

Again we get;
\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{(x;x^2)_n} = \frac{x}{(1-x)(1-x^3)} + \ldots. \]
\[= x\left(1 + x + x^2 + x^3 + x^4 + x^5\right) - x^4(1 + x + x^2 + \ldots)(1 + x^3 + \ldots) \]
\[= x + x^2 + x^3 + 0.x^4 + 0.x^5 + \ldots. \]
\[= M_{sc}(1)x + M_{sc}(2)x^2 + M_{sc}(3)x^3 + M_{sc}(4)x^4 + M_{sc}(5)x^5 + \ldots. \]
\[= \sum_{n=1}^{\infty} M_{sc} (n)x^n. \therefore \sum_{n=1}^{\infty} M_{sc} (n)x^n = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{(x;x^2)_n} \]

Also we get;
\[\sum_{n=0}^{\infty} \frac{1}{(x^2;x^2)_n} \{(x)_{2n} - (x)_\infty\} \]
\[= \left\{1 - (1-x)(1-x^2) \ldots \right\} + \frac{\left\{(1-x)(1-x^2) - (1-x)(1-x^2) \ldots \right\}}{1 - x^2} \]
\[+ \frac{\left\{(1-x)(1-x^2)(1-x^3)(1-x^4) - (1-x)(1-x^2)(1-x^3) \ldots \right\}}{(1-x^2)(1-x^4)} + \ldots \]
\[= x + x^2 + x^3 + 0.x^4 + 0.x^5 + \ldots. \]
\[= M_{sc}(1)x + M_{sc}(2)x^2 + M_{sc}(3)x^3 + M_{sc}(4)x^4 + M_{sc}(5)x^5 + \ldots. \]
\[= \sum_{n=1}^{\infty} M_{sc} (n)x^n. \therefore \sum_{n=1}^{\infty} M_{sc} (n)x^n = \sum_{n=0}^{\infty} \frac{1}{(x^2;x^2)_n} \{(x)_{2n} - (x)_\infty\}. \]

The partitions of 5 with an odd number of smallest parts are in the table

<table>
<thead>
<tr>
<th>Partition ((\pi) of 5)</th>
<th># ((\pi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4+1</td>
<td>2</td>
</tr>
<tr>
<td>3+2</td>
<td>2</td>
</tr>
<tr>
<td>2+2+1</td>
<td>3</td>
</tr>
<tr>
<td>2+1+1+1</td>
<td>4</td>
</tr>
<tr>
<td>1+1+1+1+1</td>
<td>5</td>
</tr>
</tbody>
</table>

We see that \(A_5(5)=3\), and \(A_6(5)=3\). \therefore \(A_5(5) - A_6(5)=0\).

The partitions of 6 with an odd number of smallest parts are in the table

<table>
<thead>
<tr>
<th>Partition ((\pi) of 6)</th>
<th># ((\pi))</th>
</tr>
</thead>
</table>

We see that \(A_0(6)=3, \ A_e(6)=3. \quad \therefore A_0(6) - A_e(6)=0, \)

Similar, we get;
\[A_0(1)- A_e(1)=1- 0=1 \]
\[A_0(2)- A_e(2)=1- 0=1 \]
\[A_0(3)- A_e(3)=1- 0=1 \]
\[A_0(4)- A_e(4)=1-0=1 \]

The generating function for \(\left(A_0(n) - A_e(n)\right) \) is given by
\[
\sum_{n=1}^{\infty} \frac{x^n}{(1-x^2n)(-x^{n+1};x)_{\infty}} = \frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^3}{1-x^6} + \ldots
\]
\[= x + x^2 + x^3 + 0.x^4 + 0.x^5 + 0.x^6 + \ldots \]
\[= \{A_0(1) - A_e(1)\}x + \{A_0(2) - A_e(2)\}x^2 + \{A_0(3) - A_e(3)\}x^3 + \ldots \]
\[= \sum_{n=1}^{\infty} \{A_0(n) - A_e(n)\}x^n. \]

Corollary-2: \(A_0(n) - A_e(n) = M_{sc}(n) \)

Proof: We get, the generating function for \((A_0(n) - A_e(n)) \) is
\[
\sum_{n=1}^{\infty} \left(A_0(n) - A_e(n)\right) x^n = \sum_{n=1}^{\infty} \left(\frac{x^n}{1-x^{2n}} \cdot \frac{1}{(-x^{n+1};x)_{\infty}} \right)
\]
\[= \frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^3}{1-x^6} + \ldots
\]
\[= \frac{x}{1-x(1+x)} + \frac{x^2}{(1-x^2)(1+x)(1+x^2)} + \frac{x^3}{(1-x^3)(1+x)(1+x^2)} + \ldots
\]
\[= \frac{1}{(1+x)(1+x^2)(1+x^3)} \left\{ \frac{x}{1-x^2} + \frac{x^2(1+x)}{1-x^2} + \frac{x^3(1+x)(1+x^2)}{1-x^3} + \ldots \right\}
\]
\[= \frac{1}{(-x;x)_{\infty}} \sum_{n=1}^{\infty} \frac{x^n(-x;x)_{n-1}}{1-x^n} = \sum_{n=1}^{\infty} M_{sc}(n)x^n
\]

Equation the co-efficient of \(x^n \) from both sides we get;
\[A_0(n) - A_e(n) = M_{sc}(n). \] Hence the Corollary .

The partitions of 5 in odd parts with no gaps are in the table

\[
\begin{align*}
\text{Table-5} \\
\text{Partition (\(\pi\)) of 5} & \quad \text{Largest part} \\
3+1+1 & \quad 3 \\
1+1+1+1+1 & \quad 1
\end{align*}
\]

We see that \(L_1(5) = 1, \) \(L_3(5) = 1. \) \(\therefore L_1(5) - L_3(5) = 1 - 1 = 0. \)

The partitions of 6 in odd parts with no gaps are in the table

\[
\begin{align*}
\text{Table-6} \\
\text{Partition (\(\pi\)) of 6} & \quad \text{Largest part} \\
3+1+1+1 & \quad 3 \\
1+1+1+1+1 & \quad 1
\end{align*}
\]

We set that \(L_1(6) = 1, \) \(L_3(6) = 1. \) \(\therefore L_1(6) - L_3(6) = 1 - 1 = 0. \)

Similarly we get;

\[
\begin{align*}
L_1(1) - L_3(1) & = 1 - 0 = 1 \\
L_1(2) - L_3(2) & = 1 - 0 = 1 \\
L_1(3) - L_3(3) & = 1 - 0 = 1 \\
L_1(4) - L_3(4) & = 1 - 1 = 0
\end{align*}
\]

The generating function for \((L_1(n) - L_3(n)) \) is given by

\[
\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{(1-x)(1-x^3)} = x - \frac{x^4}{1-x} + \ldots
\]

\[
n = x + x^2 + x^3 + x^4 + x^5 + \ldots - x^4 (1 + x + x^2 + \ldots)(1 + x^3 + \ldots) + \ldots
\]

\[
= x + x^2 + x^3 + 0.x^4 + 0.x^5 + 0.x^6 - x^7 + \ldots
\]

\[
= \{L_1(1) - L_3(1)\}x + \{L_1(2) - L_3(2)\}x^2 + \{L_1(3) - L_3(3)\}x^3 + \ldots
\]

\[
= \sum_{n=1}^{\infty} L_1(n) - L_3(n)x^n.
\]

\textbf{Corollary-3} \(A_0(n) - A_e(n) = L_1(n) - L_3(n) = M_{sc}(n) \)

Proof: From above we get; \(A_0(1) - A_e(1) = 1 = L_1(1) - L_3(1) \) and \(M_{sc}(1) = 1\)

\(A_0(2) - A_e(2) = 1 = L_1(2) - L_3(2) \) and \(M_{sc}(2) = 1 \)

\(A_0(3) - A_e(3) = 1 = L_1(3) - L_3(3) \) and \(M_{sc}(3) = 1 \)

We can conclude that,

\(A_0(n) - A_e(n) = L_1(n) - L_3(n) = M_{sc}(n). \) Hence the Corollary .
Corollary-4 \(A_0(n) - A_e(n) = L_1(n) - L_3(n) \equiv \text{spt}(n) \pmod{2} \)
\(A_0(1) - A_e(1) = L_1(1) - L_3(1) = 1 \equiv 1 \pmod{2} \) and \(\text{spt}(1) = 1 \equiv 1 \pmod{2} \)
\(A_0(4) - A_e(4) = L_1(4) - L_3(4) = 0 \equiv 0 \pmod{2} \) and \(\text{spt}(4) = 10 \equiv 1 \pmod{2} \)
\(A_0(6) - A_e(6) = L_1(6) - L_3(6) = 0 \equiv 0 \pmod{2} \) and \(\text{spt}(6) = 26 \equiv 0 \pmod{2} \)

We can conclude that,
\(A_0(n) - A_e(n) = L_1(n) - L_3(n) \equiv \text{spt}(n) \pmod{2} \). Hence the Corollary.

Theorem 1: \(\sum_{n=1}^{\infty} \frac{x^n}{1-x^{2n}} = \frac{1}{(-x; x)_{\infty}} \sum_{n=1}^{\infty} \frac{x^n (-x; x)_{n-1}}{(1-x^n)} \)

Proof: Left hand side = \(\sum_{n=1}^{\infty} \frac{x^n}{1-x^{2n}} \cdot \frac{1}{(-x^{n+1}; x)_{\infty}} \)

\begin{align*}
= \frac{x}{(1-x^2)} &+ \frac{x^2(1+x)}{(1-x^2)(1+x^3)} + \frac{x^3(1+x)(1+x^2)}{(1-x^2)(1+x^3)(1+x^4)} + \cdots \\
= \frac{1}{(1-x)(1+x)(1+x^2)} &+ \frac{x^2(1+x)}{(1-x^2)(1+x^3)} + \frac{x^3(1+x)(1+x^2)}{(1-x^2)(1+x^3)(1+x^4)} + \cdots \\
= \frac{1}{(1-x)(1+x)(1+x^2)(1+x^3)} \left[\frac{x}{1-x} + \frac{x^2(1+x)}{1-x^2} + \frac{x^3(1+x)(1+x^2)}{1-x^3} + \cdots \right] \\
= \frac{1}{(-x; x)_{\infty}} \sum_{n=1}^{\infty} \frac{x^n (-x; x)_{n-1}}{1-x^n} = \text{Right hand side. Hence the Theorem.} \\
\end{align*}

Theorem 2: \(\frac{1}{(-x; x)_{\infty}} \sum_{n=1}^{\infty} \frac{x^n (-x; x)_{n-1}}{(1-x^n)} = \sum_{n=0}^{\infty} \frac{1}{(x^2; x^2)_{n}} \{((x)_{2n} - (x)_{x})\} \)

Proof: We get;
\begin{align*}
= \frac{1}{(1-x^{2})(1-x^{4})} &+ \frac{x^2(1+x)}{(1-x)(1-x^2)(1-x^4)} + \frac{x^3(1-x^2)(1-x^4)}{(1-x)(1-x^2)(1-x^4)(1-x^6)} + \cdots \\
= \frac{1}{(1-x)(1-x^2)(1-x^4)} &+ \frac{x^2}{(1-x)(1-x^2)(1-x^4)} + \frac{x^3}{(1-x)(1-x^2)(1-x^4)(1-x^6)} + \cdots \\
\end{align*}
\[\sum_{n=1}^{\infty} \frac{x^n}{(x)^n(x^2; x^2)} = \sum_{n=0}^{\infty} \frac{x^n}{(x^2; x^2)} \sum_{k=0}^{\infty} \frac{x^{2nk}}{(x^{2n}; x^2)} \]

\[[1], P.19\]

\[= \sum_{k=0}^{\infty} \frac{1}{(x^2; x^2)_k} \sum_{n=1}^{\infty} \frac{x^n}{(x)^n} = \sum_{k=0}^{\infty} \frac{1}{(x^2; x^2)_k} \left(\frac{x^{2k+1}}{(1-x)} + \frac{x^{2(2k+1)}}{(1-x)(1-x^2)} + \ldots \right)\]

\[= \sum_{k=0}^{\infty} \frac{1}{(x^2; x^2)_k} \left[x^{2k+1} + x^{2k+2} + x^{2k+3} + \ldots \right] = \sum_{k=0}^{\infty} \frac{1}{(x^2; x^2)_k} \left[x^{2k+1} + x^{2k+2} + x^{2k+3} + \ldots - 1 \right] = \sum_{k=0}^{\infty} \frac{1}{(x^2; x^2)_k} \left[\frac{1}{1-x^{2k+1}} \frac{1}{1-x^{2k+2}} \ldots - 1 \right]

Multiplying both sides by \((x)^\infty\) we have:

\[\frac{(x)^\infty}{(x^2; x^2)^\infty} \sum_{n=1}^{\infty} \frac{x^n}{(-x; x)_{n-1}} = \sum_{k=0}^{\infty} \frac{1}{(x^2; x^2)_k} \left[\frac{(x)^\infty}{(1-x^{2k+1})} \frac{(x)^\infty}{(1-x^{2k+2})} - \frac{(x)^\infty}{(1-x^n)^n} \right] = \sum_{k=0}^{\infty} \frac{1}{(x^2; x^2)_k} \left[(x)_{2k} - (x)^\infty \right]

\[\text{Since} \quad \frac{(x)^\infty}{(x^2; x^2)^\infty} = \frac{(1-x)(1-x^2)(1-x^3)(1-x^4)\ldots}{(1-x^2)(1-x^4)(1-x^6)\ldots} = \frac{1}{(1-x)(1-x^2)(1-x^3)\ldots} = \frac{1}{(-x; x)^\infty}\]

And

\[\frac{1}{(-x; x)^\infty} = \frac{(1-x)(1-x^2)(1-x^3)(1-x^4)\ldots}{(1-x^2)(1-x^4)(1-x^6)\ldots} + \ldots = \frac{1}{(-x; x)^\infty}
\]

\[= 1 + (1-x)(1-x^2) + (1-x)(1-x^2)(1-x^3)(1-x^4) + \ldots = \sum_{k=0}^{\infty} (x)_{2k}\]

\[\sum_{n=1}^{\infty} \frac{x^n}{(-x; x)_{n-1}} = \sum_{n=0}^{\infty} \frac{1}{(x^2; x^2)_n} \left[(x)^{2n} - (x)^\infty \right].\]

\[\therefore \text{Left hand side} = \sum_{n=0}^{\infty} \frac{1}{(x^2; x^2)_n} \left[(x)^{2n} - (x)^\infty \right] = \text{Right hand side. Hence the Theorem.}\]

Theorem 3: \[\sum_{n=0}^{\infty} \frac{1}{(x^2; x^2)_n} \left[(x)^{2n} - (x)^\infty \right] = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}x^{2n}}{(x; x^2)_n}\]

Proof: Left hand side = \[\sum_{n=0}^{\infty} \frac{1}{(x^2; x^2)_n} \left[(x; x)_{2n} - (x; x)^\infty \right]
\]

\[= \sum_{n=0}^{\infty} \frac{1}{(x^2; x^2)_n} \left[(x; x)_{2n} - (x; x)^\infty \right] = \sum_{n=0}^{\infty} \left[(x; x)^n - (x; x)^\infty \right] \]
[Since \(\frac{(1-x)(1-x^2)(1-x^3)(1-x^4)}{(1-x^2)(1-x^4)} \)....

\(= \frac{(1-x)(1-x^2)}{(1-x^2)(1-x^4)} \)....

\(= \sum_{n=0}^{\infty} \left[(x; x^2)_n - (x; x^2)_{\infty} + (x; x^2)_n - \frac{(x; x)_{\infty}}{(x^2; x^2)_n} \right] \]

\(= \sum_{n=0}^{\infty} \left[[(x; x^2)_n - (x; x^2)_{\infty}] + [(x; x^2)_n - \frac{(x; x)_{\infty}}{(x^2; x^2)_n}] \right] \]

\(= -\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{(x^2; x^2)_n} + \sum_{n=1}^{\infty} \frac{x^n}{1-x^{2n}} + \sum_{n=0}^{\infty} \left\{ \frac{(x; x)_{\infty}}{(x^2; x^2)_{\infty}} - \frac{(x; x)_{\infty}}{(x^2; x^2)_n} \right\} \) [4]

with \(x \to x^2 \), \(a \to 0 \) and \(t = x \)

\(= -\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{(x; x^2)_n} + \sum_{n=1}^{\infty} \frac{x^n}{1-x^{2n}} + \sum_{n=0}^{\infty} \left\{ \frac{1}{(x^2; x^2)_{\infty}} - \frac{1}{(x^2; x^2)_n} \right\} \)

\(= -\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(x; x^2)_n} + \sum_{n=1}^{\infty} \frac{x^n}{1-x^{2n}} + \sum_{n=0}^{\infty} \frac{1}{(x^2; x^2)_{\infty}} \sum_{n=1}^{\infty} \frac{x^{2n}}{1-x^{2n}} \) [4]

with \(x \to x^2 \), \(a = b = c = 0 \)

\(= -\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(x; x^2)_n} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n-1}}{(x; x^2)_n} \) = Right hand side. Hence the Theorem.

5. CONCLUSION
We have shown all Self-conjugate S-partitions of 4 and 5 respectively, and have satisfied the Corollary-1 \(M_{sc}(n) \equiv spt(n)(\text{mod} 2) \) for any positive integral value of \(n \). We have shown the partitions of \(n \) with an odd number of smallest parts for \(n = 5 \) and 6, and also have found the partitions of \(n \) in odd parts with no gaps for any positive integral value of \(n \). We have introduced further three Corollaries in terms of \(M_{sc}(n) \) and \(spt(n) \) respectively and have proved three Theorems of Self-conjugate S-partitions with the help of various generating functions.

6. ACKNOWLEDGMENT
It is a great pleasure to express my sincerest gratitude to my respected Professor Md. Fazlee Hossain, Department of Mathematics, University of Chittagong, Bangladesh. I will remain ever grateful to my respected Late Professor Dr. Jamal Nazrul Islam, JNIRCMPS, University of Chittagong, Bangladesh.
7. REFERENCES

[4] G E Andrews J. Jimenez-Urroz, and K.Ono, q-series identities and values of certain L-

