• Antonio Marcos de Oliveira Siqueira Universidade Federal de Viçosa, Programa de Pós-Graduação em Engenharia Química (PPGENQ), Viçosa, Minas Gerais, Brazil
  • Gabi Antoine Altabash American University of Beirut, Beirut, Lebanon
  • Rayan Fadi Barhouche American University of Beirut, Beirut, Lebanon
  • Gabriel Siqueira Silva Universidade Federal de Viçosa, Florestal/MG, Brazil
  • Fábio Gonçalves Villela Universidade Federal de Viçosa, Viçosa/MG, Brazil



Solar Energy, Solar Thermal, Parabolic Trough Collector, Concentrating Solar Power (CSP)

Abstract [English]

Various data reveals the potential of concentrated solar technologies for the electricity production. With global growing energy demand and green-house gas emission, concentrating solar power is considered as one of the promising options and has invited wide attention. In this work, a model for a 30 MW parabolic trough solar power plant system was developed for 31 different locations in Brazil, using TRNSYS simulation software, and TESS and STEC libraries. The power system consists of a parabolic trough solar collector loop connected to a power block by a series of heat exchangers. The solar collector loop consists of a field of parabolic trough collectors, stratified thermal storage tank, pump and heat exchangers to drive the power block and uses Therminol VP1 as heat transfer fluid. The results show that the cities of Recife (PE), Fortaleza (CE), Belterra (PA), Salvador (BA) and Petrolina (PE) stand out for their high monthly values of direct normal irradiation and, resulting the highest production of energy by the same configuration of Solar Central Power Plant.


Download data is not yet available.


Lippke, F. (1995). Simulation of the Part-Load Behaviour of a 30 MWe SEGS Plant. Report No. SAND95-1293, SNL, Alburquerque, NM, USA.

Jones, S.A., Pitz-Paal, R., Schwarzboezl, P., Blair, N. and Cable, R. (2001). TRNSYS Modeling of the SEGS VI Parabolic Trough Solar Electric Generating System, in Solar engineering 2001: proceedings of the International Solar Energy Conference: a part of FORUM 2001: Solar energy: the power to choose: April 21-25, 2001, Washington. American Society of Mechanical Engineers, 2001, p. 405.

Stuetzle T. (2002). Automatic Control of the 30 MWe SEGS VI Parabolic Trough Plant. Master of Science Thesis. University of Wisconsin-Madison.

Forristall R. (2003). Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. National Renewable Energy Laboratory NREL/TP-550-34169. DOI:

Patnode, A. (2006). Simulation and Performance Evaluation of Parabolic Trough Solar Power Plants. Master of Science Thesis. University of Wisconsin-Madison.

Qu, M. (2014). Model Based Design and Performance Analysis of Solar Absorption Cooling and Heating System. Thesis. School of Architecture, Carnegie Mellon University. Pittsburgh, Pennsylvania (USA).

Azizian, K., Yaghoubi, M. and Kenray, A. (2002). Design Experiences of the First Solar Parabolic Thermal Power Plant for Various Regions in Iran, Iranian Journal of Energy, Vol. 6, No. 12.

Azizian, K., Yaghoubi, M. andKenray, A. (2011). Design analysis for expansion of Shiraz solar power plant to 500 kW power generation capacity, Proceedings of World Renewable Energy congress, Linkoping, Sweden, May 2011. DOI:

Padilla, R.V. (2013). Simplified Methodology for Designing Parabolic Trough Solar Power Plants, Thesis. University of South Florida.

Desai, N.B., Bandyopadhyaya, S., Nayaka, J.K. Banerjeea, R. Kedare, S.B. (2013). Simulation of 1MWe Solar Thermal Power Plant. 2013 ISES Solar World Congress. Energy Procedia, Volume 57, 2014, Pages 507–516.

Uçkun. C. (2013). Modeling and simulations of direct steam generation in concentrating solar power plants using parabolic trough collectors. Thesis. The Graduate School of Natural and Applied Science. Middle East Technical University.

Bakos, G.C. Parsa, D. (2013). Technoeconomic assessment of an integrated solar combined cycle power plant in Greece using line-focus parabolic trough collectors. Renewable Energy 60 (2013) 598-603.

Dayem, A.M.A., Metwallya, M.M., Alghamdi A.S. and Marzoukb, E.M. (2014). Numerical Simulation and Experimental Validation of Integrated Solar Combined Power Plant Energy Procedia 50 (2014) 290 – 305.

Channiwala S.A. and Ekbote A. (2015). A Generalized Model to Estimate Field Size for Solar-Only Parabolic Trough Plant. SASEC2015 Third Southern African Solar Energy Conference. 11 – 13 May 2015. Kruger National Park, South Africa.

Chaanaoui, M., Vaudreuil, S., Bounahmidi, T. (2016). Benchmark of Concentrating Solar Power Plants: Historical, Current and Future Technical and Economic Development, Procedia Computer Science, Volume 83, Pages 782-789, ISSN 1877-0509, DOI:

Luo, N., Yu, G., Hou, H. J., Yang, Y. P. (2015). Dynamic Modeling and Simulation of Parabolic Trough Solar System, Energy Procedia, Volume 69, Pages 1344-1348, ISSN 1876-6102, DOI:

Messai, A., Benkedda, Y., Bouaichaoui, S., Benzerga, M. (2013). Feasibility Study of Parabolic Trough Solar Power Plant under Algerian Climate, Energy Procedia, Volume 42, Pages 73-82, ISSN 1876-6102, DOI:

Casella, F., Casati, E., Colonna, P. (2014). Optimal Operation of Solar Tower Plants with Thermal Storage for System Design, IFAC Proceedings Volumes, Volume 47, Issue 3, Pages 4972-4978, ISSN 1474-6670, ISBN 9783902823625, DOI:

Al-Maliki, W. A. K., Alobaid, F., Kez, V., Epple, B., (2016). Modelling and dynamic simulation of a parabolic trough power plant, Journal of Process Control, Volume 39, Pages 123-138, ISSN 0959-1524, DOI:

Rohani, S., Fluri, T. P., Dinter, F., Nitz, P., (2017). Modelling and simulation of parabolic trough plants based on real operating data, Solar Energy, Volume 158, Pages 845-860, ISSN 0038-092X, DOI:

Praveen, R. P., Baseer, M. A. Awan, A. B., and Zubair, M. (2018). Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region, Energies, 11(4), 741; DOI:

Mohammad, S. T., Al-Kayiem, H. H., Assadi, M. K., Sabir, O., Khlief, A. K. (2018). An integrated program of a stand-alone parabolic trough solar thermal power plant: Code description and test, Case Studies in Thermal Engineering, Volume 12, Pages 26-37, ISSN 2214-157X, DOI:

Benramdane, M., Abboudi, S., Ghernaout, M. (2019). Contribution to the simulation and parametric analysis of the operation of a solar concentration thermal installation. International Journal of Heat and Technology, Vol. 37, No. 2, pp. 446-456. DOI:

Wang, A., Han, X., Liu, M., Yan, J., Liu, J. (2019). Thermodynamic and economic analyses of a parabolic trough concentrating solar power plant under off-design conditions, Applied Thermal Engineering, Volume 156, Pages 340-350, ISSN 1359-4311, DOI:

Aqachmar, Z., Allouhi, A., Jamil, A., Gagouch, B., Kousksou, T. (2019). Parabolic trough solar thermal power plant Noor I in Morocco, Energy, Volume 178, Pages 572-584, ISSN 0360-5442, DOI:

Remund, J. (2008). Quality of Meteonorm Version 6.0. Proceedings of 10th World Renewable Energy Conference, Glasgow UK.

Wagner, M., Gilman, P. (2011). Technical Manual for the SAM Physical Trough Model. NREL/TP-550-51825. DOI:




How to Cite

de Oliveira Siqueira, A. M., Altabash, G. A., Barhouche, R. F., Silva, G. S., & Villela, F. G. (2019). SIMULATION STUDY OF PARABOLIC TROUGH SOLAR POWER PLANTS IN BRAZIL. International Journal of Research -GRANTHAALAYAH, 7(8), 17–28.