GEOCHEMICAL FACIES OF THE TURONIAN GONGILA FORMATION, BORNU (CHAD) BASIN, NIGERIA: IMPLICATION FOR PROVENANCE, PALEOCLIMATE AND PALEOWEATHERING CONDITIONS

Authors

  • B. Shettima Department of Geology, University of Maiduguri, Nigeria
  • F. D. Adams Department of Geology, University of Maiduguri, Nigeria
  • A. I. Haruna Department of Applied Geology, ATBU Bauchi, Nigeria
  • A. I. Goro Department of Geology, Federal University of Technology Minna, Nigeria
  • M. Bukar Department of Geology, University of Maiduguri, Nigeria

DOI:

https://doi.org/10.29121/granthaalayah.v6.i4.2018.1637

Keywords:

Chad Basin, Geochemistry, Mineralogy, Gongila Formation

Abstract [English]

Geochemical evaluation of the Gongila Formation of Bornu (Chad) Basin indicated mineralogical compositions of quartz, feldspar, anatase, gypsum, smectite and kaolinite from XRD analysis. Corresponding major oxides from XRF analysis indicated the dominance of SiO2 with an average of 54.91 wt % followed by Al2O3 with 15.92 wt %. CaO, NaO, K2O, MgO, MnO, Fe2O3 TiO2 and P2O5 occurred with average compositions of 1.87%, 1.02%, 2.15%, 1.17%, 0.06%, 3.04%, 0.03% and 1.52 % respectively. Alteration indexes derivations from these oxides consisting of Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA) and Chemical Index of Weathering (CIW) accounted for a dominantly moderate weathering condition for the formation. Discriminant plots of Fe2O3+MgO versus TiO2 indicated a tectonically passive source area composed of generally intermediate igneous rocks, affirmed by Al2O3 versus TiO2 bivariate model with skewed plot along the granite line. The dominance of smectite suggests prevalence of arid to semi-arid paleoclimatic conditions during the deposition of shales of the Gongila Formation. Intermittent phases of superposed tropical climate are also depicted by the subordinate kaolinite mineralization.

Downloads

Download data is not yet available.

References

Cullers, R.L., 2002. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA: Chemical Geology, 191, 305-327. DOI: https://doi.org/10.1016/S0009-2541(02)00133-X

Spalletti, L.A., Limarino, C.O., Pinol, F.C., 2012. Petrology and geochemistry of Carboniferous siliciclastics from the Argentine Frontal Cordillera: A test of methods for interpreting provenance and tectonic Setting: Journal of South America Earth Science, 36, 32-54. DOI: https://doi.org/10.1016/j.jsames.2011.11.002

DaPeng, L., YueLong, C., Zhong, W., Yu, L., Jian, Z., 2012, Paleozoic sedimentary record of the Xing-Meng Orogenic Belt, Inner Mongolia: implications for the provenances and tectonic evolution of the Central Asian Orogenic Belt: Chinese Science Bulletin, 57, 776-785. DOI: https://doi.org/10.1007/s11434-011-4867-3

Fu, X., Wang, J., Zeng, Y., Tan, F. and Feng, X., 2010. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China: International Journal of Coal Geology, 81, 191-199. DOI: https://doi.org/10.1016/j.coal.2009.12.006

Etemad-Saeed, N., Hosseini-Barzi, M., Armstrong-Altrin, J.S., 2011. Petrography and geochemistry of clastic sedimentary rocks as evidence for provenance of the Lower Cambrian Lalun Formation, Posht-ebadam block, Central Iran: Journal of African Earth Sciences, 61, 142-159. DOI: https://doi.org/10.1016/j.jafrearsci.2011.06.003

Deconinck, J.F., Amedro, F., Baudin, F., Godet, A., Pellenard, P., Robaszynski, F., Zimmerlin, I., 2005. Late Cretaceous palaeoenvironments expressed by the clay mineralogy of Cenomanian - Campanian chalks from the east of the Paris Basin: Cretaceous Research, 26, 171-179. DOI: https://doi.org/10.1016/j.cretres.2004.10.002

Dera, G., Pellenard, P., Neige, P., Deconinck, J.F., Pucéat, E., Dommergues, J.L., 2009. Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons: Palaeogeography Palaeoclimatology Palaeoecology, 271, 39-51. DOI: https://doi.org/10.1016/j.palaeo.2008.09.010

Carter, J. D., Barber, W., Tait, E.A and Jones, G.P. (1963). The geology of parts of Adamawa, Bauchi and Borno provinces in north-eastern Nigeria. Bulletin Geological Survey Nigeria. 30, 1-99.

Shettima, B. Adams, F.D. and Joseph, M.V., 2017. Mineralogy and geochemistry of mudstones of the Bama Ridge (Upper Chad Formation) Bornu Basin, North-Eastern Nigeria, International Research Journal of Advanced Engineering and Science, Volume 2, Issue 1, 153 - 159

Burke, K. C. (1976). The Chad basin: an active intra-continental basin. Tectonophysics, 36: 197 –205.

Nwajide, C.S., 2013. Geology of Nigeria’s sedimentary basins. CCS Bookshop Ltd, Lagos, 86p.

Guiraud, M., 1990. Tectono-sedimenatry framework of the early Cretaceous continental Bima Formation (Upper Benue Trough N.E. Nigeria). J. Afr. Earth Sci. 10, 341-353. DOI: https://doi.org/10.1016/0899-5362(90)90065-M

Shettima, B., Abubakar, M.B., Kuku, A. and Haruna, A.I., 2018, Facies Analysis, Depositional Environments and Paleoclimate of the Cretaceous Bima Formation in the Gongola Sub - Basin, Northern Benue Trough, NE Nigeria. Journal of African Earth Sciences, 137, 193-207. DOI: https://doi.org/10.1016/j.jafrearsci.2017.10.001

Popoff, M., Wiedmann, J. and De Klazz, I., 1986. The Upper Cretaceous Gongila and Pindiga Formations, Northeastern Nigeria.Subdivisions, age stratigraphic correlations and paleogeographic implications. Ecologea Geol. Helv.,79, 343-363.

Dike, E.F.C. (2002). Sedimentation and tectonic evolution of the Upper Benue Trough and Bornu Basin, Northeastern Nigeria. Nigerian Mining Geosciences Society 38th Annual and International Conference, Port Harcourt 2002 (NMGS/ELF award wining paper) Abstr. Vol., 45p

Shettima, B, Kyari, A.M., Goni H. and Usman, L.A., 2009.. Facies and facies Architecture, Provenance and depositional environment of the Bama-Maiduguri Ridge Complex, Bornu Basin, northeastern Nigeria. 45th Nigerian Mining and Geosciences Society (NMGS) Annual International Conference Owerri, Abstract Vol, 54p.

Condie, K.C., Boryta, M.D., Liu, J. and Quian, X., 1992. The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulitic belt in the North China Craton: Precambrian Research, 59(3-4), 207-223. DOI: https://doi.org/10.1016/0301-9268(92)90057-U

Cox, R., Lowe, D.R., Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States: Geochimica et Cosmochimica Acta, 59, 2919-2940. DOI: https://doi.org/10.1016/0016-7037(95)00185-9

Bhatia, M.R. 1983. Plate Tectonics and Geochemical Composition of Sandstones. Journal of Geology, 91, 611-627.

Bhatia M.R. and Crook K.A.W. 1986. Trace elements characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral, Petrol., 92, 181-193.

Roser, B.P. and Korsch, R.J., 1986. Determination of Tectonic Settings of Sandstone-Mudstone Suits Using SiO2 Content and K2O/Na2O Ratio. Journal of Geology, 94, 635-650. DOI: https://doi.org/10.1086/629071

Zaborski, P., Ugodulunwa, F., Idornigie, A., Nnabo, P. and Ibe, K. 1997. Stratigraphy and Structure of the Cretaceous Gongola Basin, Northeastern Nigeria. Bulletin Centre Research Production Elf Aquitaine, 22, 153-185.

Roser, B.P. and Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major element data: Chemical Geology, 67, 119-139. DOI: https://doi.org/10.1016/0009-2541(88)90010-1

Nesbitt, H.W. and Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, 299, 715-717. DOI: https://doi.org/10.1038/299715a0

Wronkiewicz, D.J. and Condie, K.C., 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance: Geochimica DOI: https://doi.org/10.1016/0016-7037(87)90293-6

Fedo, C.M., Nesbitt, H.W. and Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance: Geology, 23, 921-924. DOI: https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

Harnois, L., 1988. The CIW Index: A New Chemical Index of Weathering. Sedimentary Geology, 55, 319-322.et Cosmochimica Acta, 51, 2401-2416. DOI: https://doi.org/10.1016/0037-0738(88)90137-6

Gallet, S., Jahn, B., Lanoë, B.V.V., Dia, A. and Rossello, E., 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust: Earth and Planetary Science Letters, 156, 157-172. DOI: https://doi.org/10.1016/S0012-821X(97)00218-5

Újvári, G., Varga, A. and Balogh-Brunstad, Z.S., 2008, Origin, weathering, and geochemical composition of loess in southwestern Hungary: Quaternary Research, 69, 421-437. DOI: https://doi.org/10.1016/j.yqres.2008.02.001

Fadipe, O.A., Carey, P.F., Akinlua, A. and Adekola, S.A., 2011. Provenance, diagenesis and reservoir quality of the Lower Cretaceous sandstone of the Orange Basin, South Africa: South African Journal of Geology, 114, 433-448. DOI: https://doi.org/10.2113/gssajg.114.3-4.433

Srivastava, A.K., Randive, K.R. and Khare, N., 2013. Mineralogical and geochemical studies of glacial sediments from Schirmacher Oasis, East Antarctica: Quaternary International, 292, 205-216. DOI: https://doi.org/10.1016/j.quaint.2012.07.028

Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L., 1984. The “North American Shale Composite”: Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta , 48, 2469-2482. DOI: https://doi.org/10.1016/0016-7037(84)90298-9

Taylor, S.R. and McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution: Oxford, Blackwell, 349 pp.

Westermann, S., Duchamp-Alphonse, S., Fiet, N., Fleitmann, D., Matera, V., Adatte, T. and Follmi, K.B., 2013, Paleoenvironmental changes during the Valanginian: New insights from variations in phosphorous contents and bulk-and clay mineralogies in the western Tethys: Paleogeography Paleoclimatology Paleoecology, 392, 196-208 DOI: https://doi.org/10.1016/j.palaeo.2013.09.017

Chamley, H., 1989, Clay Sedimentology: Springer Verlag, Berlin Heidelberg New York, 623 pp.0 DOI: https://doi.org/10.1007/978-3-642-85916-8

Kübler, B., Jaboyedoff, M., 2000. Illite Cristallinity: Comptes Rendus de l'Académie des Sciences, Paris, 331, 75-89. DOI: https://doi.org/10.1016/S1251-8050(00)01395-1

McLennan, S.M., 1993. Weathering and global denudation: The Journal of Geology, 101, 295-303. DOI: https://doi.org/10.1086/648222

Godet, A., Bodin, S., Adatte, T. and Föllmi, K., 2008, Platform-induced clay-mineral fractionation along northern Tethyan basin-platform transect: implications for the interpretation of Early Cretaceous climate change (Late Hauterivian-Early Aptian): Cretaceous Research, 29, 830-847. DOI: https://doi.org/10.1016/j.cretres.2008.05.028

Duchamp-Alphonse, S., Fiet, N., Adatte, T., Pagel, M., 2011. Climate and sea-level variations long the northwestern Tethyan margin during the Valanginian C-isotope excursion: mineralogical evidence from the Vocontian Basin (SE France): Palaeogeography Palaeoclimatology Palaeoecology, 302, 243-254. DOI: https://doi.org/10.1016/j.palaeo.2011.01.015

Weaver, C.E., 1989. Clays, Muds, and Shales: Amsterdam, Elsevier, 819 pp.

Fürsich, F.T., Singh, I.B., Joachimski, M., Krumm, S., Schlirf, M. and Schlirf, S., 2005. Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): an integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data: Palaeogeography Palaeoclimatology Palaeoecology, 217, 289-309. DOI: https://doi.org/10.1016/j.palaeo.2004.11.026

Ruffell, A.H., McKinley, J.M. and Worden, R.H., 2002. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe: Philosophical Transactions of the Royal Society, 360, 675-693. DOI: https://doi.org/10.1098/rsta.2001.0961

Tardy, Y., 1993. Petrologie des Laterite et des Sols Tropicaux. Paris, Masson, 143p.

Raucsik, B. and Varga, A., 2008. Climate-environmental controls on clay mineralogy of the Hettangian-Bajocian successions of the Mecsek Mountains, Hungary: An evidence for extreme continental weathering during the early Toarcian oceanic anoxic event: Palaeogeography Palaeoclimatology Palaeoecology, 265, 1-13. DOI: https://doi.org/10.1016/j.palaeo.2008.02.004

Downloads

Published

2018-04-30

How to Cite

Shettima, B., Adams, F. D., Haruna, A. I., Goro, A. I., & Bukar, M. (2018). GEOCHEMICAL FACIES OF THE TURONIAN GONGILA FORMATION, BORNU (CHAD) BASIN, NIGERIA: IMPLICATION FOR PROVENANCE, PALEOCLIMATE AND PALEOWEATHERING CONDITIONS. International Journal of Research -GRANTHAALAYAH, 6(4), 144–156. https://doi.org/10.29121/granthaalayah.v6.i4.2018.1637