ACTIVE POWER LOSS REDUCTION BY FLOWER POLLINATION ALGORITHM

Authors

  • Dr.K.Lenin Professor, Department of EEE, Prasad V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007, India

DOI:

https://doi.org/10.29121/granthaalayah.v5.i12.2017.497

Keywords:

Flower Pollination, Optimization, Optimal Reactive Power, Transmission Loss

Abstract [English]

This paper presents Flower Pollination (FP) algorithm for solving the optimal reactive power problem. Minimization of real power loss is taken as key intent. Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. The biological evolution point of view, the objective of the flower pollination is the survival of the fittest and the optimal reproduction of plants in terms of numbers as well as the largely fittest. In order to evaluate the performance of the proposed Flower Pollination (FP) algorithm, it has been tested on IEEE 57 bus system and compared to other standard reported algorithms. Simulation results show that FP algorithm is better than other algorithms in reducing the real power loss and voltage profiles are within the limits.

Downloads

Download data is not yet available.

References

O.Alsac, and B. Scott, “Optimal load flow with steady state security”, IEEE Transaction. PAS -1973, pp. 745-751. DOI: https://doi.org/10.1109/TPAS.1974.293972

Lee K Y ,Paru Y M , Oritz J L –A united approach to optimal real and reactive power dispatch , IEEE Transactions on power Apparatus and systems 1985: PAS-104 : 1147-1153 DOI: https://doi.org/10.1109/TPAS.1985.323466

A.Monticelli , M .V.F Pereira ,and S. Granville , “Security constrained optimal power flow with post contingency corrective rescheduling” , IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.,1987. DOI: https://doi.org/10.1109/TPWRS.1987.4335095

DeebN, Shahidehpur S.M, Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on power system 1990: 5(2) : 428-435 DOI: https://doi.org/10.1109/59.54549

E. Hobson ,’Network consrained reactive power control using linear programming, ‘ IEEE Transactions on power systems PAS -99 (4) ,pp 868=877, 1980 DOI: https://doi.org/10.1109/TPAS.1980.319715

K.Y Lee, Y.M Park, and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches”, IEE Proc; 131C,(3), pp.85-93. DOI: https://doi.org/10.1049/ip-c.1984.0012

M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming”, Electr.PowerSyst.Res, Vol.26, pp.1-10, 1993. DOI: https://doi.org/10.1016/0378-7796(93)90063-K

C.A. Canizares, A.C.Z.de Souza and V.H. Quintana, “Comparison of performance indices for detection of proximity to voltage collapse,’’ vol. 11. no.3, pp.1441-1450, Aug 1996.

S.R.Paranjothi, andK.Anburaja, “Optimal power flow using refined genetic algorithm”, Electr.PowerCompon.Syst, Vol. 30, 1055-1063, 2002. DOI: https://doi.org/10.1080/15325000290085343

D. Devaraj, and B. Yeganarayana, “Genetic algorithm based optimal power flow for security enhancement”, IEE proc-Generation.Transmission and. Distribution; 152, 6 November 2005. DOI: https://doi.org/10.1049/ip-gtd:20045234

Berizzi, C. Bovo, M. Merlo, and M. Delfanti, “A ga approach to compare orpf objective functions including secondary voltage regulation,” Electric Power Systems Research, vol. 84, no. 1, pp. 187 – 194, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.11.014

C.-F. Yang, G. G. Lai, C.-H. Lee, C.-T. Su, and G. W. Chang, “Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement,” International Journal of Electrical Power and Energy Systems, vol. 37, no. 1, pp. 50 – 57, 2012. DOI: https://doi.org/10.1016/j.ijepes.2011.12.003

P. Roy, S. Ghoshal, and S. Thakur, “Optimal var control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization,” International Journal of Electrical Power and Energy Systems, vol. 43, no. 1, pp. 830 – 838, 2012. DOI: https://doi.org/10.1016/j.ijepes.2012.05.032

B. Venkatesh, G. Sadasivam, and M. Khan, “A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy lp technique,” IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 844 – 851, may 2000. DOI: https://doi.org/10.1109/59.867183

W. Yan, S. Lu, and D. Yu, “A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 913 – 918, may 2004. DOI: https://doi.org/10.1109/TPWRS.2004.826716

W. Yan, F. Liu, C. Chung, and K. Wong, “A hybrid genetic algorithminterior point method for optimal reactive power flow,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1163 –1169, aug. 2006.

J. Yu, W. Yan, W. Li, C. Chung, and K. Wong, “An unfixed piecewiseoptimal reactive power-flow model and its algorithm for ac-dc systems,” IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 170 –176, feb. 2008. DOI: https://doi.org/10.1109/TPWRS.2007.907387

F. Capitanescu, “Assessing reactive power reserves with respect to operating constraints and voltage stability,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2224–2234, nov. 2011.

Z. Hu, X. Wang, and G. Taylor, “Stochastic optimal reactive power dispatch: Formulation and solution method,” International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, pp. 615 – 621, 2010. DOI: https://doi.org/10.1016/j.ijepes.2009.11.018

Kargarian, M. Raoofat, and M. Mohammadi, “Probabilistic reactive power procurement in hybrid electricity markets with uncertain loads,” Electric Power Systems Research, vol. 82, no. 1, pp. 68 – 80, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.08.019

D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Tech. Rep. TR06, Erciyes Univ. Press, Erciyes, 2005.

D. Karaboga and B. Basturk, “A powerful and efficient algorithm fornumerical function optimization: Artificial bee colony(ABC)algorithm,” Journal of Global Optimization , Vol. 39, No. 3, pp. 459-471, 2007. DOI: https://doi.org/10.1007/s10898-007-9149-x

D. Karaboga and B. Basturk, “On the performance of artificial beecolony (ABC) algorithm,” Applied Soft computing, Vol. 8, pp. 687-697, 2008. DOI: https://doi.org/10.1016/j.asoc.2007.05.007

D. Karaboga and B. Akay, “A comparative study of artificial Beecolony algorithm,” Applied Mathematics and Computation, Vol. 214,No. 1, pp. 108-132, 2009. DOI: https://doi.org/10.1016/j.amc.2009.03.090

D. Whitley, “A genetic Algorithm tutorial,” Statistics and Computing, Vol. 4, pp. 65-85, 1994. DOI: https://doi.org/10.1007/BF00175354

D. Karaboga and B. Akay, “An artificial bee colony (abc) algorithm ontraining artificial neural network 15th IEEE Signal Processing andCommunications Applications, pp.1-4, 2007. DOI: https://doi.org/10.1109/SIU.2007.4298679

S. K. Udgata, S. L. Sabat and S. Mini, “Sensor deployment in irregularterrain using artificial bee colony algorithm,” IEEE Congress on Nature& Biologically Inspired Computing, pp. 1309-1314, 2009.

B. Akay and D. Karaboga, “Artificial bee colony algorithm for largescaleproblems and engineering design optimization,” Journal ofIntelligent Manufacturing, Vol. 23, No. 4, pp. 1001-1014, 2010.

B. Alatas, “Chaotic bee colony algorithm for global numericaloptimization,” Expert Systems with Applications, Vol. 37, pp. 5682-5687, 2010.

G. Zhu and S. Kwong, “Gbest-guided artificial bee colony algorithm fornumerical function optimization,” Applied Mathematics andComputation , Vol. 217, pp. 3166-3173, 2010.

A. Banharnsakun, T. Achalakul and B. Sirinaovakul, “The best-so-farselection in artificial bee colony algorithm,” Applied Soft Computing,Vol. 11, No. 2, pp. 2888-2901, 2011.

D. Karaboga and B. Gorkemli, “A combinatorial artificial bee colonyalgorithm for traveling salesman problem,” International Symposium onInnovation in Intelligent Systems and Applications (INISTA) , pp. 50-53, 2011. DOI: https://doi.org/10.1109/INISTA.2011.5946125

W. Gao and S. Liu, “A modified artificial bee colony algorithm, “Computers & Operations Research, Vol. 39. pp. 687-697, 2012. DOI: https://doi.org/10.1016/j.cor.2011.06.007

Yang, X. S. (2012), Flower pollination algorithm for global optimization, in: Unconventional Computation and Natural Computation, LectureNotes in Computer Science, Vol. 7445, pp. 240–249.

Oily Fossils provide clues to the evolution of flowers, ScienceDaily,5April2001.http://www.sciencedaily.com/releases/2001/04/010403071438.htm

Glover, B. J., (2007). Understanding Flowers and Flowering: An Integrated Approach, Oxford University Press, Oxford, UK. DOI: https://doi.org/10.1093/acprof:oso/9780198565970.001.0001

Waser, N.M., Flower constancy: definition, cause and measurement. The American Naturalist, 127(5), 1986, pp. 596-603. DOI: https://doi.org/10.1086/284507

Chaohua Dai, Weirong Chen, Yunfang Zhu, and Xuexia Zhang, “Seeker optimization algorithm for optimal reactive power dispatch,” IEEE Trans. Power Systems, Vol. 24, No. 3, August 2009, pp. 1218-1231. DOI: https://doi.org/10.1109/TPWRS.2009.2021226

J. R. Gomes and 0. R. Saavedra, “Optimal reactive power dispatch using evolutionary computation: Extended algorithms,” IEE Proc.-Gener. Transm. Distrib.. Vol. 146, No. 6. Nov. 1999. DOI: https://doi.org/10.1049/ip-gtd:19990683

Downloads

Published

2017-12-31

How to Cite

Lenin, K. (2017). ACTIVE POWER LOSS REDUCTION BY FLOWER POLLINATION ALGORITHM. International Journal of Research -GRANTHAALAYAH, 5(12), 223–231. https://doi.org/10.29121/granthaalayah.v5.i12.2017.497

Most read articles by the same author(s)

<< < 2 3 4 5 6 7