A REVIEW STUDY ON THE EFFECT OF ORAL CURCUMIN ON BREAST CANCER WITH THE REFERENCE OF CLINICAL AND BIOCHEMICAL MARKERS
DOI:
https://doi.org/10.29121/granthaalayah.v13.i3.2025.6008Keywords:
Clinical Parameter, Breast Cancer, Inflammation, Apoptosis, CarcinogenesisAbstract [English]
As one of the most common cancers in the world, breast cancer requires ongoing studies into efficient treatment approaches. The polyphenol curcumin, which comes from Curcuma longa, has attracted a lot of attention because of its possible anti-cancer effects. This review assesses the impact of oral curcumin on biochemical markers and clinical factors related to breast cancer. To evaluate curcumin's effects on tumour growth, oxidative stress, inflammatory markers, and patient survival outcomes, we look at preclinical and clinical research. Breast cancer is a complex illness that is impacted by environmental, hormonal, and hereditary variables. Currently available therapeutic options include radiation, chemotherapy, surgery, and targeted medicines; nevertheless, these methods frequently have serious adverse effects. Curcumin is a prospective adjuvant therapy for the treatment of breast cancer because of its anti-inflammatory, antioxidant, and anti-proliferative qualities, which have been studied. The effectiveness of oral curcumin in modifying the biochemical and clinical indicators linked to breast cancer is examined in this review. In order to enhance patient outcomes, new adjunct medicines must be investigated because breast cancer continues to rank among the world's leading causes of cancer-related mortality. The bioactive polyphenol curcumin, which comes from Curcuma longa, has drawn a lot of interest because of its anti-inflammatory, antioxidant, and anticancer qualities. This study evaluates clinical characteristics and biochemical markers in preclinical and clinical research to investigate the impact of oral curcumin supplementation on breast cancer. There is evidence that curcumin inhibits metastasis, reduces angiogenesis, and induces apoptosis via modulating important molecular pathways such as PI3K/Akt, NF-κB, and MAPK signaling. Curcumin has also been shown to reduce oxidative stress markers, tumor biomarkers like CA 15-3 and CEA, and inflammatory cytokines like IL-6 and TNF-α. There are still issues with its absorption and the best ways to dose it, despite clinical trials showing encouraging outcomes in terms of enhancing patient quality of life and slowing tumor growth. Subsequent investigations ought to concentrate on augmenting curcumin's medicinal effectiveness via sophisticated formulations and combination treatments.
Downloads
References
Aceto, N., Sausgruber, N., Brinkhaus, H., Gaidatzis, D., Martiny-Baron, G., Mazzarol, G., et al. (2012). Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nature Medicine, 18 (4), 529. https://doi.org/10.1038/nm.2645 DOI: https://doi.org/10.1038/nm.2645
Aggarwal, B. B. (2008). Prostate cancer and curcumin: Add spice to your life. Cancer Biology & Therapy, 7 (9), 1436–1440. https://doi.org/10.4161/cbt.7.9.6659 DOI: https://doi.org/10.4161/cbt.7.9.6659
Akram, M., Shahab-Uddin, A. A., Usmanghani, K., Hannan, A., Mohiuddin, E., & Asif, M. (2010). Curcuma longa and curcumin: A review article. Romanian Journal of Biology – Plant Biology, 55 (2), 65–70.
Aktas, C., Kanter, M., Erboga, M., & Ozturk, S. (2012). Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicology and Industrial Health, 28 (2), 122–130. https://doi.org/10.1177/0748233711407242 DOI: https://doi.org/10.1177/0748233711407242
Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics, 4 (6), 807–818. https://doi.org/10.1021/mp700113r DOI: https://doi.org/10.1021/mp700113r
Anderson, W. F., Chatterjee, N., Ershler, W. B., & Brawley, O. W. (2002). Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Research and Treatment, 76 (1), 27–36. https://doi.org/10.1023/a:1020299707510 DOI: https://doi.org/10.1023/A:1020299707510
Arablou, T., & Kolahdouz-Mohammadi, R. (2018). Curcumin and endometriosis: Review on potential roles and molecular mechanisms. Biomedicine & Pharmacotherapy, 97 (1), 91–97. https://doi.org/10.1016/j.biopha.2017.11.063 DOI: https://doi.org/10.1016/j.biopha.2017.10.119
Bharti, A. C., Donato, N., Singh, S., & Aggarwal, B. B. (2003). Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor–κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood, 101 (3), 1053–1062. https://doi.org/10.1182/blood-2002-05-1320 DOI: https://doi.org/10.1182/blood-2002-05-1320
Bhavanishankar, T., Shantha, N., Ramesh, H., Murthy, I., & Murthy, S. (1980). Toxicity studies on turmeric (Curcuma longa): Acute toxicity studies in rats, guinea pigs, and monkeys. Indian Journal of Experimental Biology, 18 (1), 73–75.
Choi, H. Y., Lim, J., & Hong, J. H. (2010). Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer and Prostatic Diseases, 13 (4), 343–349. https://doi.org/10.1038/pcan.2010.26 DOI: https://doi.org/10.1038/pcan.2010.26
Cort, A., Timur, M., Ozdemir, E., Kucuksayan, E., & Ozben, T. (2012). Synergistic anticancer activity of curcumin and bleomycin: An in vitro study using human malignant testicular germ cells. Molecular Medicine Reports, 5 (6), 1481–1486. https://doi.org/10.3892/mmr.2012.848 DOI: https://doi.org/10.3892/mmr.2012.848
Dorai, T., Gehani, N., & Katz, A. (2000). Therapeutic potential of curcumin in human prostate cancer—I. Curcumin induces apoptosis in both androgen-dependent and androgen-independent prostate cancer cells. Prostate Cancer and Prostatic Diseases, 3 (2), 84–93. https://doi.org/10.1038/sj.pcan.4500399 DOI: https://doi.org/10.1038/sj.pcan.4500399
Farombi, E. O., Abarikwu, S. O., Adedara, I. A., & Oyeyemi, M. O. (2007). Curcumin and kolaviron ameliorate di-n-butylphthalate-induced testicular damage in rats. Basic & Clinical Pharmacology & Toxicology, 100 (1), 43–48. https://doi.org/10.1111/j.1742-7843.2007.00005.x DOI: https://doi.org/10.1111/j.1742-7843.2007.00005.x
García-Aranda, M., & Redondo, M. (2017). Protein kinase targets in breast cancer. International Journal of Molecular Sciences, 18 (12), 2543. https://doi.org/10.3390/ijms18122543 DOI: https://doi.org/10.3390/ijms18122543
Hallman, K., Aleck, K., Dwyer, B., Lloyd, V., Quigley, M., & Sitto, N. (2017). The effects of turmeric (curcumin) on tumor suppressor protein (p53) and estrogen receptor (ERα) in breast cancer cells. Breast Cancer (London, England), 9, 153. https://doi.org/10.2147/BCTT.S125783 DOI: https://doi.org/10.2147/BCTT.S125783
Heinlein, C. A., & Chang, C. (2004). Androgen receptor in prostate cancer. Endocrine Reviews, 25 (2), 276–308. https://doi.org/10.1210/er.2002-0032 DOI: https://doi.org/10.1210/er.2002-0032
Jason, C. Y., & Formenti, S. C. (2018). Integration of radiation and immunotherapy in breast cancer: Treatment implications. The Breast, 38 (1), 66–74. https://doi.org/10.1016/j.breast.2017.12.005 DOI: https://doi.org/10.1016/j.breast.2017.12.005
Jobin, C., Bradham, C. A., Russo, M. P., Juma, B., Narula, A. S., Brenner, D. A., et al. (1999). Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity. Journal of Immunology, 163 (6), 3474–3483. DOI: https://doi.org/10.4049/jimmunol.163.6.3474
Karunagaran, D., Rashmi, R., & Kumar, T. (2005). Induction of apoptosis by curcumin and its implications for cancer therapy. Current Cancer Drug Targets, 5 (2), 117–129. https://doi.org/10.2174/1568009053202081 DOI: https://doi.org/10.2174/1568009053202081
Lai, H.-W., Chien, S.-Y., Kuo, S.-J., Tseng, L.-M., Lin, H.-Y., Chi, C.-W., et al. (2012). The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: An in vitro and in vivo comparison study with herceptin. Evidence-Based Complementary and Alternative Medicine, 1 (1), 1. https://doi.org/10.1155/2012/486568 DOI: https://doi.org/10.1155/2012/486568
Li, J., Xiang, S., Zhang, Q., Wu, J., Tang, Q., Zhou, J., et al. (2015). Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C. Journal of Experimental & Clinical Cancer Research, 34 (1), 1–11. https://doi.org/10.1186/s13046-015-0168-z DOI: https://doi.org/10.1186/s13046-015-0168-z
Mirzaei, H., Shakeri, A., Rashidi, B., Jalili, A., Banikazemi, Z., & Sahebkar, A. (2017). Phytosomal curcumin: A review of pharmacokinetic, experimental, and clinical studies. Biomedicine & Pharmacotherapy, 85 (1), 102–112. https://doi.org/10.1016/j.biopha.2016.11.098 DOI: https://doi.org/10.1016/j.biopha.2016.11.098
Mohebbati, R., Anaeigoudari, A., & Khazdair, M. (2017). The effects of Curcuma longa and curcumin on reproductive systems. Endocrine Regulations, 51 (4), 220–228. https://doi.org/10.1515/enr-2017-0024 DOI: https://doi.org/10.1515/enr-2017-0024
National Toxicology Program (1993). NTP toxicology and carcinogenesis studies of turmeric oleoresin (CAS No 8024-37-1) (major component 79%-85% curcumin, CAS No 458-37-7) in F344/N rats and B6C3F1 mice (feed studies). National Toxicology Program Technical Report Series, 427 (1), 1–275.
Nejati-Koshki, K., Akbarzadeh, A., & Pourhassan-Moghaddam, M. (2014). Curcumin inhibits leptin gene expression and secretion in breast cancer cells by estrogen receptors. Cancer Cell International, 14 (1), 1–7. https://doi.org/10.1186/1475-2867-14-66 DOI: https://doi.org/10.1186/1475-2867-14-66
Piccolella, M., Crippa, V., Messi, E., Tetel, M. J., & Poletti, A. (2014). Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells. Pharmacological Research, 79 (1), 13–20. https://doi.org/10.1016/j.phrs.2013.10.002 DOI: https://doi.org/10.1016/j.phrs.2013.10.002
Ravindran, J., Prasad, S., & Aggarwal, B. B. (2009). Curcumin and cancer cells: How many ways can curry kill tumor cells selectively? The AAPS Journal, 11 (3), 495–510. https://doi.org/10.1208/s12248-009-9128-x DOI: https://doi.org/10.1208/s12248-009-9128-x
Richter, E., Srivastava, S., & Dobi, A. (2007). Androgen receptor and prostate cancer. Prostate Cancer and Prostatic Diseases, 10 (2), 114–118. https://doi.org/10.1038/sj.pcan.4500936 DOI: https://doi.org/10.1038/sj.pcan.4500936
Sahoo, D. K., Roy, A., & Chainy, G. B. (2008). Protective effects of vitamin E and curcumin on L-thyroxine-induced rat testicular oxidative stress. Chemical Biology Interactions, 176 (2–3), 121–128. https://doi.org/10.1016/j.cbi.2008.07.009 DOI: https://doi.org/10.1016/j.cbi.2008.07.009
Sharma, R. A., Euden, S. A., Platton, S. L., Cooke, D. N., Shafayat, A., Hewitt, H. R., et al. (2004). Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clinical Cancer Research, 10 (20), 6847–6854. https://doi.org/10.1158/1078-0432.CCR-04-0744 DOI: https://doi.org/10.1158/1078-0432.CCR-04-0744
Sharma, R., Gescher, A., & Steward, W. (2005). Curcumin: The story so far. European Journal of Cancer, 41 (13), 1955–1968. https://doi.org/10.1016/j.ejca.2005.05.009 DOI: https://doi.org/10.1016/j.ejca.2005.05.009
Sharma, V., Kumar, L., Mohanty, S. K., Maikhuri, J. P., Rajender, S., & Gupta, G. (2016). Sensitization of androgen-refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor–synergistic action of quercetin and curcumin. Molecular and Cellular Endocrinology, 431 (1), 12–23. https://doi.org/10.1016/j.mce.2016.04.024 DOI: https://doi.org/10.1016/j.mce.2016.04.024
Shehzad, A., Qureshi, M., Anwar, M. N., & Lee, Y. S. (2017). Multifunctional curcumin mediates multitherapeutic effects. Journal of Food Science, 82 (9), 2006–2015. https://doi.org/10.1111/1750-3841.13793 DOI: https://doi.org/10.1111/1750-3841.13793
Sikora, E., Bielak-Żmijewska, A., Magalska, A., Piwocka, K., Mosieniak, G., Kalinowska, M., et al. (2006). Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Molecular Cancer Therapeutics, 5 (4), 927–934. https://doi.org/10.1158/1535-7163.MCT-05-0360 DOI: https://doi.org/10.1158/1535-7163.MCT-05-0360
Singh, S., & Aggarwal, B. B. (1995). Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). Journal of Biological Chemistry, 270 (42), 24995–25000. https://doi.org/10.1074/jbc.270.42.24995 DOI: https://doi.org/10.1074/jbc.270.42.24995
Song, X., Zhang, M., Dai, E., & Luo, Y. (2019). Molecular targets of curcumin in breast cancer. Molecular Medicine Reports, 19 (1), 23–29. https://doi.org/10.3892/mmr.2018.9665 DOI: https://doi.org/10.3892/mmr.2018.9665
Soni, K., & Kutian, R. (1992). Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian Journal of Physiology & Pharmacology, 36 (4), 273–275.
Strimpakos, A. S., & Sharma, R. A. (2008). Curcumin: Preventive and therapeutic properties in laboratory studies and clinical trials. Antioxidants & Redox Signaling, 10 (3), 511–546. https://doi.org/10.1089/ars.2007.1769 DOI: https://doi.org/10.1089/ars.2007.1769
Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences, 98 (19), 10869–10874. https://doi.org/10.1073/pnas.191367098 DOI: https://doi.org/10.1073/pnas.191367098
Tsui, K. H., Feng, T. H., Lin, C. M., Chang, P. L., & Juang, H. H. (2008). Curcumin blocks the activation of androgen and interleukin-6 on prostate-specific antigen expression in human prostatic carcinoma cells. Journal of Andrology, 29 (6), 661–668. https://doi.org/10.2164/jandrol.108.004911 DOI: https://doi.org/10.2164/jandrol.108.004911
Verma, S. P., Salamone, E., & Goldin, B. (1997). Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochemical and Biophysical Research Communications, 233 (3), 692–696. https://doi.org/10.1006/bbrc.1997.6527 DOI: https://doi.org/10.1006/bbrc.1997.6527
Wahlström, B., & Blennow, G. (1978). A study on the fate of curcumin in the rat. Acta Pharmacologica et Toxicologica, 43 (2), 86–92. https://doi.org/10.1111/j.1600-0773.1978.tb02240.x DOI: https://doi.org/10.1111/j.1600-0773.1978.tb02240.x
Wang, R., Sun, Y., Li, L., Niu, Y., Lin, W., Lin, C., et al. (2017). Preclinical study using Malat1 small interfering RNA or androgen receptor splicing variant 7 degradation enhancer ASC-J9® to suppress enzalutamide-resistant prostate cancer progression. European Urology, 72 (5), 835–844. https://doi.org/10.1016/j.eururo.2017.04.005 DOI: https://doi.org/10.1016/j.eururo.2017.04.005
ahebkar, A. (2014). Curcuminoids for the management of hypertriglyceridaemia. Nature Reviews Cardiology, 11 (2), 123. https://doi.org/10.1038/nrcardio.2013.140-c1 DOI: https://doi.org/10.1038/nrcardio.2013.140-c1
alsalam, S., Agastian, P., Arasu, M. V., Al-Dhabi, N. A., Ghilan, A.-K. M., Kaviyarasu, K., et al. (2018). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in vitro antibacterial, antifungal, antioxidant, and anticancer properties. Journal of Photochemistry and Photobiology B: Biology. https://doi.org/10.1016/j.jphotobiol.2018.12.010 DOI: https://doi.org/10.1016/j.jphotobiol.2018.12.010
alsalam, S., Agastian, P., Esmail, G. A., Ghilan, A.-K. M., Al-Dhabi, N. A., & Arasu, M. V. (2019). Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. Journal of Photochemistry and Photobiology B: Biology, 201, 111670. https://doi.org/10.1016/j.jphotobiol.2019.111670 DOI: https://doi.org/10.1016/j.jphotobiol.2019.111670
anerjee, S., Singh, S. K., Chowdhury, I., Lillard Jr., J. W., & Singh, R. (2017). Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer. Frontiers in Bioscience, 9, 235. https://doi.org/10.2741/e798 DOI: https://doi.org/10.2741/e798
ggarwal, B. B., Surh, Y.-J., & Shishodia, S. (2007). The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science Business Media, 1 (1), 1. https://doi.org/10.1007/978-0-387-46401-5 DOI: https://doi.org/10.1007/978-0-387-46401-5
iftci, O., Tanyildizi, S., & Godekmerdan, A. (2010). Protective effect of curcumin on immune system and body weight gain on rats intoxicated with 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD). Immunopharmacology and Immunotoxicology, 32 (1), 99–104. https://doi.org/10.3109/08923970903164318 DOI: https://doi.org/10.3109/08923970903164318
illian, P. H., Kronski, E., Michalik, K. M., Barbieri, O., Astigiano, S., & Sommerhoff, C. P. (2012). Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and-2. Carcinogenesis, 33 (12), 2507–2519. https://doi.org/10.1093/carcin/bgs312 DOI: https://doi.org/10.1093/carcin/bgs312
iwari, A. K., Sodani, K., Dai, C.-L., Ashby, C. R., & Chen, Z.-S. (2011). Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Current Pharmaceutical Biotechnology, 12 (4), 570–594. https://doi.org/10.2174/138920111795164048 DOI: https://doi.org/10.2174/138920111795164048
ragg, G. M., & Newman, D. J. (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology, 100 (1–2), 72–79. https://doi.org/10.1016/j.jep.2005.05.011 DOI: https://doi.org/10.1016/j.jep.2005.05.011
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Priya Pandey, Shaily Tyagi, Mukesh Pandey

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.