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ABSTRACT 
Using the Ostrogradsky-Gauss theorem to construct the laws of 

conservation and replacement of the integral over the surface by the 
integral over the volume, we neglect the integral term outside, i.e. neglect 
the circulation on the sides of the elementary volume (in the two-
dimensional case, this is clearly visible). Circulation means the presence of 
rotation, which in turn means the presence of a moment of force (angular 
momentum). As a result, we have a symmetric stress tensor, a symmetric 
velocity tensor, etc. Static pressure, as follows from kinetic theory, there is 
a zero-order quantity; the terms associated with dissipative effects are 
first-order quantities. It does not follow from the Boltzmann equation and 
from the phenomenological theory that the pressure in the Euler equation 
is equal to one third of the sum of the pressures on the corresponding 
coordinate axes. The inaccuracy of determining the velocities in the stress 
tensor in the stress tensor does not strongly affect the results at low speeds.  
All these issues are discussed in the work. As example in this paper   
suggests task of flowing liquid at little distance of two parallel plates.

  
1. INTRODUCTION 
 
The aim of the work is to study the consequences of using the Ostrogradsky-Gauss theorem in continuum 

mechanics in deriving conservation laws and numerically solving received equations. Conservation laws were 
obtained experimentally and therefore were originally written in integral form. Differential laws are obtained in two 
ways: using the finite volume method for an elementary volume and using the Ostrogradsky Gauss theorem   by 
replacing the surface integral   to the volume integral, that is, taking the integral by parts with further use of the 
theorems on the conditions Integral turning in zero. Usually the derivation of conservation laws is analyzed using 
the Ostrogradsky-Gauss theorem for a fixed volume without moving. The theorem is a consequence of the application 
of the integration in parts at the spatial case. In reality, in mechanics and physics gas and liquid move and not only 
progressively, but also rotate. Discarding the term means ignoring the velocity circulation over the surface of the 
selected volume.   When studying vortices, the whole theory is based on the action of the law of conservation of 
moments [1], [2] partially the moment is used when considering stresses in beams.  When taking into account the 
motion of a gas, the extra-integral term is difficult to introduce into the differential equation. Therefore, to account 
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for all components of the motion, it is proposed to use an integral formulation. The classical Boltzmann equation 
does not fulfill the law of conservation of momentum. From the definition of pressure, both from the classical 
Boltzmann equation and from the modified one, it does not follow that hydrostatic pressure is one third of the sum 
of the pressures at the coordinate surfaces. The equations of motion obtained from the Boltzmann equation 
correspond to the zero the order for the Euler equations and the first order for the Navier-Stokes equations. 
Hydrostatic pressure is a zero-order value, but the theory remains the same when determining different pressures 
at each  surface, i.e. 𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧 The use of one pressure is possible under equilibrium conditions (Pascal's law), but for 
nonequilibrium conditions the fact is not obvious. This is highlighted in the textbook [1]. Back in 1970, in the 
textbook  it was said, “First of all, we note that along with the distribution  of volume and surface forces, for the sake 
of generality, we should also consider the volume and surface distributions of pairs of forces (moments),  on the 
possibility of which in continuous media is currently indicated ”.  In the theory of elasticity, when considering the 
relationship between the components of the strain tensor and the stress tensor, the experimental fact is used that 
the components 𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦 , 𝜎𝜎𝑧𝑧 (stresses) normal to the side  of  elementary  element are proportional to the sum of the 
stresses of the other components and they all differ. The introduced components are the result of the action of 
moments of force. The prevailing theory is connected with the fact that the derivation of conservation laws in the 
theory of elasticity excludes the contribution of the distributed moment to the equilibrium of forces. As a result, the 
law of equilibrium of forces and moments of forces are considered separately. 

In solving specific problems, the contribution of the distributed moment is often studied, but the symmetry 
condition of the stress tensor remains. The existing classical theory is constructed so that the main role is played by 
pressure forces. This is probably why, at low speeds, results coincidences with experiment are obtained. However, 
calculations even for a potential flow lead to the formation of a vortex sheet. For Euler's equations, this means that 
Pascal's law in the non-equilibrium case does not work and it is necessary to consider separately not pressure 𝑝𝑝,    
but 𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧. An example of the importance of separating the individual components is the study of the processes of 
wave propagation in a rotating fluid [3] with the introduction of a item related to rotation. in pressure gradient. 
Sometimes, when solving problems in the theory of elasticity, the first invariants are used, but this can be done if the 
tensor is symmetric. When considering the vortex motion, the tensor is asymmetric [4]. The equilibrium condition 
is fulfilled if there are no internal and external forces, however, any surface forces can be converted by changing 
variables into internal forces and deformations occur. When studying and writing down conservation laws, it is 
important to distinguish between equilibrium and no equilibrium cases. 

At equilibrium in the mechanics of a continuous medium, equilibrium means the homogeneity of the 
distribution of all macro parameters. However, any additional external influence leads to the emergence of certain 
disturbances and creates a distributed moment, which creates additional force and gives asymmetric pressure 
values. Writing separately the law of equilibrium for forces and separately for the moments of forces without taking 
into account the mutual influence, and the moment creates additional force, we come to the conclusion about the 
symmetry of the stress tensor. In previous works, taking into account the angular momentum law nonsymmetrical 
stress tensor is received. The method for calculation of nonsymmetrical part was suggested.  The equations for gas 
were found from the modified Boltzmann equation and the phenomenological theory. For a rigid body the equations 
were used of the phenomenological theory, but changed their interpretation. For rarefied gas the second term in 
collision integral of the Boltzmann equation is taken into account to calculate the self- diffusion and thermo-diffusion 
that was foretell by S. Wallander. The Hilbert paradox was solved. We discussed the problems that can be appearing 
for consideration the angular momentum variation in an elementary volume near the surface and into boundary 
layer. Conditions of the existence A.N. Kolmogorov inertia interval are established. Conjugated conditions at surface 
without the Knudsen layer are written to count friction and heat flow to the surface. Conditions of influence of 
angular momentum are discussed. The examples were given.  The numerical examples of solving the simplest 
problems of the theory of elasticity, a boundary layer, and kinetic theory were given [5], [6], [7].  The inclusion of 
velocity circulation in potential flows means the inclusion of rotational velocity components. 

The work discusses the listed issues and, if possible, gives answers to some of them. 
 

2. EQUATIONS 
 
 One of the options for deriving symmetry conditions for pressure tensor: 
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We have angular momentum 
 
∫𝝎𝝎𝝆𝝆(𝒙𝒙𝟐𝟐𝒇𝒇𝟑𝟑 −  𝒙𝒙𝟑𝟑𝒇𝒇𝟐𝟐)𝒅𝒅𝒅𝒅 =  𝑴𝑴𝒙𝒙 
 
However, moment creates additional force and the symmetry of the stress tensor is broken. 
Taking into account the equilibrium equation, we obtain 
 
∫𝝎𝝎[𝒙𝒙𝟐𝟐(𝝏𝝏𝝈𝝈𝒊𝒊𝒊𝒊

𝝏𝝏𝒙𝒙𝒊𝒊
  + 𝝆𝝆𝒇𝒇𝟑𝟑) + 𝝈𝝈𝟐𝟐𝟐𝟐 − 𝒙𝒙𝟑𝟑(

𝝏𝝏𝝈𝝈𝒋𝒋𝒋𝒋
𝝏𝝏𝒙𝒙𝒋𝒋

 +  𝝆𝝆𝒇𝒇𝟐𝟐) − 𝝈𝝈𝟑𝟑𝟑𝟑]𝒅𝒅𝒅𝒅 = 𝟎𝟎. 

 
 In classical case: 
 

0 = 𝜌𝜌𝑓𝑓1 + �
𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

 +  
𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

 +
𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

�, 

 
0 = 𝜌𝜌𝑓𝑓2 + �

𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

 +  
𝜕𝜕𝜎𝜎𝑦𝑦
𝜕𝜕𝜕𝜕

 +
𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

�,                                                                  
 
  0 = 𝜌𝜌𝑓𝑓3 +  �𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧

𝜕𝜕𝜕𝜕
 +  

𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

 + 𝜕𝜕𝜎𝜎𝑧𝑧
𝜕𝜕𝜕𝜕
� 

 In our case 
 
 𝜌𝜌( 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 
+ 𝑢𝑢 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+  𝜈𝜈   𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕  
+ 𝑤𝑤 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 ) =  𝜌𝜌𝑓𝑓1  + 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
  + 
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝜌𝜌 𝑓𝑓𝑀𝑀𝑥𝑥
 

 

 𝜌𝜌( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝜈𝜈   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  

+ 𝑤𝑤 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 ) = 𝜌𝜌𝑓𝑓2 +  
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

  + 
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

   + 𝜌𝜌 𝑓𝑓𝑀𝑀𝑦𝑦
                                                     

  

 𝜌𝜌( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝜈𝜈   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  

+ 𝑤𝑤 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 ) =  𝜌𝜌𝑓𝑓3 +   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  + 
𝜕𝜕𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

  +𝜌𝜌 𝑓𝑓𝑀𝑀𝑧𝑧
 

 

  𝑦𝑦 ( 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

 +  
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑓𝑓3) −  𝑧𝑧( 
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+  
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦

 𝜕𝜕𝜕𝜕
+ 

𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+  𝜌𝜌𝑓𝑓2) + 𝜎𝜎𝑧𝑧𝑧𝑧 −  𝜎𝜎𝑧𝑧𝑧𝑧 + 𝑀𝑀𝑥𝑥 = 0 

 

   𝑥𝑥 ( 
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 
𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

 + 𝜌𝜌𝑓𝑓2 ) −  𝑦𝑦( 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

 +
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
 𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑓𝑓1) + 𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝑥𝑥𝑥𝑥 +  𝑀𝑀𝑦𝑦 = 0        

                 

   𝑥𝑥 ( 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑓𝑓1) − 𝑧𝑧 ( 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

 +   
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
 𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+  𝜌𝜌𝑓𝑓2) +  𝜎𝜎𝑧𝑧𝑧𝑧 − 𝜎𝜎𝑥𝑥𝑥𝑥 +  𝑀𝑀𝑧𝑧 = 0 

 
3. THE INFLUENCE OF THE MOMENT IN THE PROBLEM OF FLUID MOTION BETWEEN TWO CLOSELY 

SPACED PARALLEL PLATES  
 
  Consider the flow of a very viscous fluid between two parallel plates, the distance h between which we will 

consider very small. Reynolds number is small, external forces are absent. Initial statement of the problem 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝜇𝜇 ( 𝜕𝜕
2 𝑣𝑣𝑥𝑥
𝜕𝜕𝑥𝑥2

 +   𝜕𝜕
2 𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

 + 𝜕𝜕
2 𝑣𝑣𝑥𝑥
𝜕𝜕𝑧𝑧2

 ) ,  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝜇𝜇 ( 𝜕𝜕
2 𝑣𝑣𝑒𝑒
𝜕𝜕𝑥𝑥2

 +   
𝜕𝜕2 𝑣𝑣𝑦𝑦
𝜕𝜕𝑦𝑦2

 + 
𝜕𝜕2 𝑣𝑣𝑦𝑦
𝜕𝜕𝑧𝑧2

 ) ,  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝜇𝜇 ( 𝜕𝜕
2 𝑧𝑧
𝜕𝜕𝑥𝑥2

 +   𝜕𝜕
2 𝑣𝑣𝑧𝑧
𝜕𝜕𝑦𝑦2

 +𝜕𝜕
2 𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧2

 ) . 
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The axes 𝑂𝑂𝑂𝑂,𝑂𝑂𝑂𝑂  lie in one of the boundary planes, the axis Oz is directed perpendicular to these planes and the 
equations of the boundary planes z = 0, z = h. It is assumed that the velocity is directed parallel to the boundary 
planes, so that 

 
𝑣𝑣𝑧𝑧 = 0. 

 
Due to the small distance between the plates, the order of the derivative 𝜕𝜕𝑣𝑣𝑧𝑧

𝜕𝜕𝜕𝜕
  is large compared to the 

derivatives 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

  and  𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

. The order of the derivatives 𝜕𝜕
2 𝑣𝑣𝑥𝑥
𝜕𝜕𝑧𝑧2

   is large compared to the orders of the derivatives  𝜕𝜕
2 𝑣𝑣𝑥𝑥
𝜕𝜕𝑥𝑥2

 

and   𝜕𝜕
2 𝑣𝑣𝑥𝑥

   𝜕𝜕𝑦𝑦2
 . Then the equations take the form. 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝜇𝜇  𝜕𝜕
2 𝑣𝑣𝑥𝑥
𝜕𝜕𝑧𝑧2

,    𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝜇𝜇 
𝜕𝜕2 𝑣𝑣𝑦𝑦
𝜕𝜕𝑧𝑧2

 ,     𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,   𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

  +  𝜕𝜕𝑣𝑣н
𝜕𝜕н

 = 0. 
    
We show the influence of the moment in this problem. 
We take into account that the Euler equations provide the main order. In classical theory the pressure is selected 

in the center of the cell and is the same for all coordinate axes and is equal to p.  Suppose that the moment acts and 
creates a small additional force. 

 
 𝑝𝑝 �1 = 𝑝𝑝+ ∊ 𝑓𝑓1,      𝑝𝑝 �2 = 𝑝𝑝+ ∊ 𝑓𝑓2,     The result of the additional force will be new velocity 
 
  𝑣𝑣�𝑥𝑥  = 𝑣𝑣𝑥𝑥 + ∊𝑉𝑉1 ,   𝑣𝑣�𝑦𝑦  = 𝑣𝑣𝑦𝑦 + ∊𝑉𝑉2. 
𝜕𝜕𝑝𝑝�1
𝜕𝜕𝜕𝜕

= 𝜇𝜇  𝜕𝜕
2 𝑣𝑣𝑥𝑥�
𝜕𝜕𝑧𝑧2

  ,   𝜕𝜕𝑝𝑝�2
𝜕𝜕𝜕𝜕

= 𝜇𝜇  𝜕𝜕
2 𝑣𝑣𝑥𝑥�
𝜕𝜕𝑧𝑧2

  ,  𝜕𝜕𝑝𝑝�1
𝜕𝜕𝜕𝜕

= 0 ,       𝜕𝜕𝑝𝑝�2
𝜕𝜕𝜕𝜕

= 0,    𝜕𝜕𝑣𝑣�𝑥𝑥
𝜕𝜕𝜕𝜕

 +
𝜕𝜕𝑣𝑣�𝑦𝑦
𝜕𝜕𝜕𝜕

 = 0. 

 𝑓𝑓1 = - y 𝜕𝜕𝑝𝑝�1
𝜕𝜕𝜕𝜕

,   𝑓𝑓2 = 𝑥𝑥 𝜕𝜕𝑝𝑝�2
𝜕𝜕𝜕𝜕

.   

𝑣𝑣�𝑥𝑥  =  
𝑧𝑧2

2
 
𝜕𝜕𝑝𝑝�1
𝜕𝜕𝜕𝜕

 + 𝑧𝑧 𝐴𝐴1 (𝑥𝑥,𝑦𝑦) + 𝐵𝐵1 (𝑥𝑥,𝑦𝑦). 

𝑣𝑣�𝑦𝑦  =  
𝑧𝑧2

2
 
𝜕𝜕𝑝𝑝�1
𝜕𝜕𝜕𝜕

 + 𝑧𝑧 𝐴𝐴2 (𝑥𝑥,𝑦𝑦) + 𝐵𝐵2 (𝑥𝑥, 𝑦𝑦). 
 
By the boundary conditions, we have 
 
𝑉𝑉1 =  − 𝑦𝑦

2𝜇𝜇
 𝜕𝜕

2𝑝𝑝�1
𝜕𝜕𝑥𝑥2

𝑧𝑧(ℎ − 𝑧𝑧) ,   𝑉𝑉2 =  − 𝑦𝑦
2𝜇𝜇

 𝜕𝜕
2𝑝𝑝�1
𝜕𝜕𝑦𝑦2

𝑧𝑧(ℎ − 𝑧𝑧) , 
 
Under the assumption of a small influence of the moment 
 
𝑉𝑉1 =  − 𝑦𝑦

2𝜇𝜇
 𝜕𝜕

2𝑝𝑝
𝜕𝜕𝑥𝑥2

𝑧𝑧(ℎ − 𝑧𝑧),   𝑉𝑉2 =  − 𝑦𝑦
2𝜇𝜇

 𝜕𝜕
2𝑝𝑝

𝜕𝜕𝑦𝑦2
𝑧𝑧(ℎ − 𝑧𝑧) . 

 
 We get two equations that pressure must satisfy 
 
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕
2𝑝𝑝

𝜕𝜕𝑦𝑦2
= 0,   and  𝑦𝑦 𝜕𝜕

𝜕𝜕𝜕𝜕
   �−  𝜕𝜕

2𝑝𝑝
𝜕𝜕𝑥𝑥2

 � + 𝑥𝑥 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑦𝑦2

 = 0.   
 
Therefore, the following equation must be satisfied 
 
𝑦𝑦 𝜕𝜕
𝜕𝜕𝜕𝜕

   � 𝜕𝜕
2𝑝𝑝

𝜕𝜕𝑥𝑥2
 � −  𝑥𝑥 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥2

 = 0. 
   
The results allow us to hope that the pressure distribution along the corresponding axes is responsible for large 

eddies.  Dispersion create small waves. Viscosity is responsible for dissipation. 
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4. THE PROPOSED VERSION OF THE EQUATIONS 
 
We will use the expansion  that is in the textbooks [], but we will make a decomposition with respect  near the 

center of inertia of the elementary volume 𝑟𝑟𝑐𝑐  =𝑟𝑟′(𝑥𝑥′, 𝑦𝑦′, 𝑧𝑧′) 
 
𝑢𝑢′ = 𝑢𝑢 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (𝑥𝑥 − 𝑥𝑥′ ) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (𝑦𝑦 −  𝑦𝑦′)  + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (𝑧𝑧 − 𝑧𝑧′)

𝑣𝑣′ = 𝑣𝑣 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (𝑥𝑥 − 𝑥𝑥′ ) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (𝑦𝑦 −  𝑦𝑦′)  + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (𝑧𝑧 − 𝑧𝑧′)

  𝑤𝑤′ = 𝑤𝑤 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (𝑥𝑥 − 𝑥𝑥′ ) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (𝑦𝑦 −  𝑦𝑦′)  + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (𝑧𝑧 − 𝑧𝑧′)⎭
⎪
⎬

⎪
⎫

                           

 
We will not divide the speed into divergent and vortex parts. We leave Newton's law for the effect of viscosity. 

In modern computational mechanics, no difficulties will arise. 
Then the viscous stress tensor 𝑆̇𝑆 will have the form 
 

𝑆̇𝑆 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

       
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

        
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

         
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

          
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

      
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

         
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
For an incompressible fluid, the equations remain the same in the case for the non-compressible liquid   without 

the angular momentum, the pressure gradient will change. Really, 
 
 𝑝𝑝𝑥𝑥𝑥𝑥 =  𝑝𝑝1  +  𝜇𝜇 𝜕𝜕𝑝𝑝𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
,     𝑝𝑝𝑦𝑦𝑦𝑦 =  𝑝𝑝2 +  𝜇𝜇

𝜕𝜕𝑝𝑝𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

,        𝑝𝑝𝑧𝑧𝑧𝑧 =  𝑝𝑝3  +  𝜇𝜇 𝜕𝜕𝑝𝑝𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

 . 

𝑝𝑝𝑥𝑥𝑥𝑥 =𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , 𝑝𝑝𝑦𝑦𝑦𝑦 =  𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , 𝑝𝑝𝑦𝑦𝑦𝑦  =  𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  ,    𝑝𝑝𝑧𝑧𝑧𝑧 =  𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 ,   𝑝𝑝𝑧𝑧𝑧𝑧 = 𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 ,  

 𝑝𝑝𝑥𝑥𝑥𝑥 =  𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 . 

 𝜕𝜕𝑝𝑝𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 
𝜕𝜕𝑝𝑝𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

  +𝜕𝜕𝑝𝑝𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

=  − 𝜕𝜕𝑝𝑝1
𝜕𝜕𝜕𝜕

+  𝜇𝜇∇2𝑢𝑢, 
 
for the remaining components is similar. It is significant that in this case the velocity remains equal to the initial 

one and the equations coincide in speed with the Lamb equation. In general, the influence of the moment is added. 
It follows that all the conclusions of the classical theory will be preserved. 

 
APPENDICES 

 
A new model of a continuous medium is proposed, based on taking into account the angular momentum through 

calculation outside the integral term using the Ostrogradsky-Gauss theorem. The model does not use the hypothesis 
of equal pressure of one third of the sum of pressures on the sides of the elementary volume parallel to the coordinate 
axes. The proof is the occurrence of a vortex sheet when solving flow problems according to the Euler model. The 
contribution of the moment becomes decisive in calculating the flow separation near the wings. The symmetry of 
the stress tensor is possible only if we ignore the additional term,which takes into account the rotation of the 
elementary volume,   that creates additional force in the equation for the momentum. 
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