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ABSTRACT 
In the present paper we consider an application of stochastic 

differential equation to model age-specific mortalities. We use New 
Zealand mortality data for the period 1948–2015 to fit the model. The point 
predictions of mortality rates at ages 40, 60 and 80 are quite good, almost 
undistinguishable from the true mortality rates observed.

  
1. INTRODUCTION 
 
Human mortality rates are very important for prediction purposes in social security systems, life insurance, 

public and private pension plans, etc. The mortality rates of all age and sex groups have a tendency to decline over 
time, but they clearly show random fluctuations. Many authors have contributed towards the modelling of mortality 
data through stochastic differential equations (Braumann, 1993; Braumann, 1999a; Braumann, 1999b; Kessler et al., 
2012 and Aït-Sahalia, (2002, 2008)). These authors also have contributed towards estimation and other statistical 
inferential issues on stochastic differential equations. Braumann (1993) and Braumann (1999a) use Black–Scholes 
model for estimation, testing and prediction, including comparison tests among average return/growth rates of 
different stocks or populations. Ordinary differential equation (ODE) models have been used to study the growth of 
individual living beings, like farm animals, trees or fish. When the growth occurs in environments with random 
variations, stochastic differential equation (SDE) models have been proposed. Braumann (1999b) shows that 
qualitative results very similar to those obtained for specific models also hold for the general stochastic population 
growth model. 

Lagarto and Braumann (2014) used SDE model (stochastic Malthusian) for mortality data of Portugal and 
considered precisely the joint evolution of the crude death rates of two age-sex groups. Lagarto (2014) has 
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considered a study of alternative structures and has determined, among those, which ones have a good performance. 
These can then be used in predictions and in applications. 

 
2. STOCHASTIC MORTALITY MODEL 
  
The random fluctuations are mostly explained by environmental stochasticity and use a stochastic differential 

equation (SDE) model (Black–Scholes or stochastic Malthusian model) to represent 𝐷𝐷(𝑡𝑡), the death rate at time 𝑡𝑡 of 
a given age-sex group. In a random environment, the rationale is that the effect of environmental random fluctuations 
on the growth rate can be described approximately by a white noise, so that its accumulated effect up to time 𝑡𝑡 can 
be approximated by a Weiner process𝜎𝜎𝜎𝜎(𝑡𝑡). This gives to ∆𝐷𝐷(𝑡𝑡) = �𝑅𝑅∆𝑡𝑡 + 𝜎𝜎∆𝑊𝑊(𝑡𝑡)�𝐷𝐷(𝑡𝑡), with∆𝑊𝑊(𝑡𝑡) =
𝑊𝑊(𝑡𝑡 + ∆𝑡𝑡) −𝑊𝑊(𝑡𝑡), and, letting ∆𝑡𝑡 → 0, one gets the stochastic Malthusian growth model. We denote𝑌𝑌(𝑡𝑡) = 𝐷𝐷𝑚𝑚(𝑡𝑡) −
𝐷𝐷𝑓𝑓(𝑡𝑡), where 𝐷𝐷𝑚𝑚(𝑡𝑡) and 𝐷𝐷𝑓𝑓(𝑡𝑡) are the age specific mortality rates for males and females. 

Consider a Stochastic differential equation (SDE) 
 
𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑏𝑏(𝑡𝑡,𝑌𝑌𝑡𝑡) + 𝜎𝜎(𝑡𝑡,𝑌𝑌𝑡𝑡)𝑊𝑊𝑡𝑡 ,      𝑏𝑏(𝑡𝑡,𝑦𝑦)𝜖𝜖𝜖𝜖    𝜎𝜎(𝑡𝑡,𝑦𝑦)𝜖𝜖𝜖𝜖                                                        (1) 
 
Where 𝑊𝑊𝑡𝑡is one-dimensional ‘white noise’ 
By 𝐼𝐼𝐼𝐼𝑜𝑜� (1951) calculus, the 𝑌𝑌𝑡𝑡 satisfies the following Stochastic integral equation 
 
𝑌𝑌𝑡𝑡 = 𝑌𝑌0 + ∫ 𝑏𝑏(𝑠𝑠,𝑌𝑌𝑠𝑠)𝑡𝑡

0 𝑑𝑑𝑑𝑑 + ∫ 𝜎𝜎(𝑡𝑡,𝑌𝑌𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0   

 
Or in differential form 
 
𝑑𝑑𝑑𝑑𝑡𝑡 = 𝑏𝑏(𝑡𝑡,𝑌𝑌𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑡𝑡,𝑌𝑌𝑡𝑡)𝑑𝑑𝐵𝐵𝑡𝑡                                                                              (2) 
 
It is the 𝐼𝐼𝐼𝐼𝑜𝑜� formula that is the key to the solution of many stochastic differential equations. 
Various models describe the pattern of human mortality, the one such model that we consider is a stochastic 

Gompertz model also called Malthusian growth model. 
  
𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑅𝑅𝑅𝑅(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡),                  𝑌𝑌(0) = 𝑌𝑌0 > 0                                        (3) 
 
Where 𝑅𝑅 is the arithmetic average growth rate, which is assumed constant over time and 𝑊𝑊(𝑡𝑡)is the white noise. 

The parameter R was interpreted in the literature as an average growth rate. We have used 𝐼𝐼𝐼𝐼ô’𝑠𝑠 calculus to obtain 
the solution. The solution is the geometric Brownian motion process. 

The solution of equation (3) is obtained by 𝐼𝐼𝐼𝐼𝑜𝑜� calculus (see also Øksendal 2003) 
 
𝑌𝑌(𝑡𝑡) = 𝑦𝑦0 exp ��𝑅𝑅 − 𝜎𝜎2

2
� 𝑡𝑡 + 𝜎𝜎𝜎𝜎(𝑡𝑡)�                            (4)  

 
𝑜𝑜𝑜𝑜 

 
𝑌𝑌(𝑡𝑡) = 𝑦𝑦0𝑒𝑒𝑒𝑒𝑒𝑒{𝑟𝑟𝑟𝑟 + 𝜎𝜎𝜎𝜎(𝑡𝑡)}                 (5)  
 
Where 𝑟𝑟 = 𝑅𝑅 − 1

2
𝜎𝜎2 is called the geometric average growth rate. 

We conclude that  
1) If 𝑅𝑅 > 1

2
𝜎𝜎2, then 𝑌𝑌(𝑡𝑡) → ∞ as 𝑡𝑡 → ∞ a.s 

2) If 𝑅𝑅 < 1
2
𝜎𝜎2, then 𝑌𝑌(𝑡𝑡) → 0 as 𝑡𝑡 → ∞ a.s 

3) If 𝑅𝑅 = 1
2
𝜎𝜎2, then 𝑌𝑌(𝑡𝑡) will fluctuate between arbitrary large and small values as 𝑡𝑡 → ∞ a.s  

 To fit model (4), we made it age-specific by writing 
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𝑌𝑌𝑥𝑥(𝑡𝑡) = 𝑦𝑦𝑥𝑥0 exp ��𝑅𝑅𝑥𝑥 −
𝜎𝜎𝑥𝑥2

2
� 𝑡𝑡 + 𝜎𝜎𝑥𝑥𝑊𝑊(𝑡𝑡)�                               (6)      

   
Where 𝑅𝑅𝑥𝑥 = 𝑟𝑟𝑥𝑥 + 𝜎𝜎𝑥𝑥2

2
 and hence, 𝑟𝑟𝑥𝑥 = 𝑅𝑅𝑥𝑥 −

𝜎𝜎𝑥𝑥2

2
, which called as geometric average growth rate.  

We apply the methodology used in (Lagarto and Braumann, 2014; Braumann, 2019; Talawar and Agadi, 2020) 
for parameters estimation. The value of  𝑟𝑟𝑥𝑥 of the rate of decay of 𝑌𝑌𝑥𝑥(𝑡𝑡) would be negative since the tendency is for 
𝑌𝑌𝑥𝑥(𝑡𝑡) to decrease exponentially. The parameter 𝜎𝜎𝑥𝑥  measures the intensity of the effect of environmental fluctuations 
(weather conditions, epidemic diseases, social conditions, etc.) on the rate of change. In this case of mortality rates 
are time equidistant observations with ∆= 1 year and 𝑡𝑡𝑘𝑘 = 𝑘𝑘∆ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝑘𝑘 = 0,1,2 …𝑛𝑛 = 60),that is, the mortality rates 
are age-specific with single year. Denoting by 𝑌𝑌𝑥𝑥,𝑘𝑘 = 𝑌𝑌𝑥𝑥(𝑡𝑡𝑘𝑘) and by 𝐿𝐿𝑥𝑥,𝑘𝑘 = 𝑙𝑙𝑙𝑙(𝑌𝑌𝑥𝑥,𝑘𝑘/𝑌𝑌𝑥𝑥,(𝑘𝑘−1)), the log-returns, one gets 
for model (6) the maximum likelihood estimates of the parameters: 

 
𝑟̂𝑟𝑥𝑥 = 1

𝑛𝑛∆
∑ 𝐿𝐿𝑥𝑥,𝑘𝑘
𝑛𝑛
𝑘𝑘=1  /year and 𝜎𝜎�𝑥𝑥

2 = 1
𝑛𝑛∆
∑ �𝐿𝐿𝑥𝑥,𝑘𝑘 − 𝑟̂𝑟𝑥𝑥∆�

2𝑛𝑛
𝑘𝑘=1  /year 

 
Therefore the 95% confidence intervals of the parameters 𝑟𝑟𝑥𝑥  and 𝜎𝜎𝑥𝑥2 are 
 

 𝑟̂𝑟𝑥𝑥 ± 1.96�𝜎𝜎�𝑥𝑥
2 𝑛𝑛∆⁄   and  𝜎𝜎�𝑥𝑥

2 ± �2𝜎𝜎�𝑥𝑥
4 𝑛𝑛⁄  

 
3. APPLICATIONS OF THE MODEL 

 
 For the application of model we considered the mortality data of New Zealand from 1948-2015. In Figure 1 

it shows that age-specific death rates of 60-year-old females and males of the New Zealand population for each year 
of the period 1948–2015 (Source: https://www.mortality.org/). For convenience, we start counting time in 1948, 
so initial time, 𝑡𝑡 =  0 corresponds to 1948.  

Figures 2-4, show the results of using model (6) for the age-specific mortality rates of 60 year-old New Zealand 
males and females. Notice the decline from 𝑌𝑌60(0) = 0.0138/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦in 1948 to𝑌𝑌60(60) = 0.00489/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 in 2008 and 
𝑌𝑌60(75) = 0.00377/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 in 2023. For parameter estimation, we only use the data of the period 1948–2008, 
reserving the period 2009–2023 for prediction purposes.  

 Therefore the estimates of the parameters are 
 
𝑟̂𝑟60 = 1

𝑛𝑛∆
∑ 𝐿𝐿60,𝑘𝑘
𝑛𝑛
𝑘𝑘=1 = 1

𝑛𝑛∆
𝑙𝑙𝑙𝑙 𝑌𝑌60,𝑛𝑛

𝑌𝑌60(0)
 /year 

𝜎𝜎�60
2 = 1

𝑛𝑛∆
∑ �𝐿𝐿60,𝑘𝑘 − 𝑟̂𝑟60∆�

2𝑛𝑛
𝑘𝑘=1 /year 

The 95% confidence intervals of the parameters are 

 𝑟̂𝑟60 ± 1.96�𝜎𝜎�60
2 𝑛𝑛∆⁄ = (−1.0373 ± 0.3371/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)   and  

𝜎𝜎�60
2 ± �2𝜎𝜎�60

4 𝑛𝑛⁄ = (0.0291 ± 0.003756)/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦. 
 
The parameter value 𝑟̂𝑟60 obtained is used in (6) to get the plots and putting 𝜎𝜎𝑥𝑥 = 0, as if we have a deterministic 

environment, we obtain an adjusted curve (the thin solid line in Figures 1-7) that gives an idea of the trend. If one 
has the data up to 2008 (corresponding to 𝑛𝑛 = 60 and 𝑡𝑡𝑛𝑛 = 2008 − 1948 = 60 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) and wants to make 
predictions for the future period 2009–2023, one uses model (6) with the estimated parameter values (based only 
on data up to 2009), starting with the observed mortality rate of 2009, 𝑌𝑌60(𝑡𝑡𝑛𝑛) = 𝑌𝑌60(60) = 0.00489/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦. It is easy 
to work with 𝑍𝑍60(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑌𝑌60(𝑡𝑡), since it is Gaussian. For 𝜏𝜏 > 0 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, using the same technique as in Braumann 
(2019), one gets the point predictor 

 
𝑍̂𝑍60(𝑡𝑡𝑛𝑛 + 𝜏𝜏) = 𝑙𝑙𝑙𝑙 0.00489 + 𝑟̂𝑟60𝜏𝜏 
𝑍̂𝑍60(𝑡𝑡𝑛𝑛 + 𝜏𝜏) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑍̂𝑍60(𝑡𝑡𝑛𝑛 + 𝜏𝜏)) 

and an approximate 95% confidence prediction interval for 𝑍̂𝑍(𝑡𝑡𝑛𝑛 + 𝜏𝜏) 
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𝑍̂𝑍60(𝑡𝑡𝑛𝑛 + 𝜏𝜏) ± 1.96�𝜎𝜎�2𝜏𝜏(1 + 𝜏𝜏 𝑡𝑡𝑛𝑛⁄  
 
From which extremes, by taking exponentials, one gets an approximate confidence prediction interval for 

𝑌𝑌�60(𝑡𝑡𝑛𝑛 + 𝜏𝜏). The similar procedure can be used to estimate 𝑟𝑟𝑥𝑥  and 𝜎𝜎𝑥𝑥2 at each age 𝑥𝑥. The three lines in Figure 1-7 
show the extremes of such a prediction interval (outer lines) and the point prediction (middle line). As we can see, 
the point predictions quite good, almost undistinguishable from the true mortality rates observed in 2009–2023.  

 

 
Figure 1: Forecasted mortality rate of New Zealand male and female 

 

 
Figure 2: Forecasted mortality rate of New Zealand female 

 

 
Figure 3: Forecasted mortality rate of New Zealand male 
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Figure 4: Forecasted mortality rate of New Zealand male-female difference 

 

 
Figure 5: Forecasted mortality rate of New Zealand Infant 

 

 
Figure 6: Forecasted mortality rate of New Zealand at age 40  
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Figure 7: Forecasted mortality rate of New Zealand at age 80 

 
Table 1: The parameter values for males and females of New Zealand mortality   data. 

 𝑌𝑌(0)/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑌𝑌(𝑡𝑡𝑛𝑛)/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑌𝑌(75)/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑟̂𝑟/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎�2/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

𝑁𝑁𝑁𝑁60
𝑓𝑓     0.0138 0.00489 0.00377 -0.0173 0.0291 

𝑁𝑁𝑁𝑁60𝑚𝑚     0.02014 0.00792 0.00626 -0.0156 0.01586 
𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇     0.02817 0.00463 0.00296 -0.0301 0.0051 
𝑁𝑁𝑁𝑁40𝑇𝑇     0.00242 0.00098 0.00021 -0.1051 0.0198 
𝑁𝑁𝑁𝑁80𝑇𝑇     0.10842 0.0499 0.04111 -0.0129 0.0051 
𝑁𝑁𝑁𝑁60𝐷𝐷     0.00634 0.00303 0.00253 -0.01231 0.1421 

 
4. CONCLUSIONS 

 
This stochastic mortality model gives good prediction intervals and the point prediction for each age. The point 

predictions of mortality rates at ages 40, 60 and 80 are quite good, almost undistinguishable from the true mortality 
rates observed. The similar procedure can be used to estimate parameters at each age 𝑥𝑥. Once all the age-specific 
mortalities are obtained, the different columns of a life table can be constructed using their interrelationships. 
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