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ABSTRACT 
This article aims to accomplish a review of state of the art in the 

humidification-dehumidification (HDH) desalination process. Foremost, an 
introduction to the main desalination technologies is presented to clarify 
the positives and negatives effects of each. Costs and project data are 
presented for experimental and theoretical studies. The information is 
shown by using tables, explaining the major variables, and the obtained 
results for each study. News regarding plants under the sea and packed 
beds are the main considerations of the present paper.

1. INTRODUCTION

The potable water is a primary substance for the existence of all kinds of known life; therefore, it lacks is highly 
worrisome for the human species. Statistics present that about 700 million of people does not have access to potable 
water on the world, [1] in addition to that, half of the world population suffers from severe water shortage at least 
one month per year. [2] Therefore, the consequent use of impure water is one of the biggest causes of diseases and 
deaths in our planet. [3] 
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With the increase of the population and the industrialization, the need for this recourse has enlarged with the 
years. Provisions show that in 2025, 1.8 billion people will suffer from water shortage; besides, approximately two-
thirds of the world population will have some difficulty to access it. [4] In 2030, the demand will be 6,900 billion 
cubic meters of potable water, although the estimated quantity available will be 4,500 billion, approximately. [5] The 
seawater represents 97% of our planet water, covering approximately 70% of the terrestrial surface. [6] Due to this 
fact, methodologies aiming for the transformation of saline water to potable water has been studies, to supply the 
scarcity of the last one. The accomplishment of seawater desalination is considered the best solution, and its favor 
would argue that about 40% of the world population lives in situated regions of distances up to 100 km from the 
coast. [7] Studies exhibit that 1% of the world population depends on desalination water having a production of 74 
million per cubic meters per day, approximately. [6] 

Among the developed procedures for the seawater purification, there are two main strands: based on the 
evaporation or with the use of semipermeable membranes. [8] Both approaches need a power source to accomplish 
the purification; therefore, the main purpose is the maximization of potable water production for a specified amount 
of energy expended in the process. The processes with membranes are used in distant regions of the equator line, 
majoritarian, due to the low solar radiation incidence. At equatorial localities as the Middle East and the Brazilian 
Northeast, the thermal processes are more attractive due to the use of solar energy from collectors. [6] 

The dependent processes of thermal sources have the heat as energy for the warming of the evolved fluids. In 
contrast, the processes evolving membranes, the energy source aimed is electrical, being responsible for feeding the 
high-pressure pumps or for creating electric fields to displace the ions. [8] The firsts energy sources to be explored 
were the ones from fossil fuels; however, these are inexhaustible sources, harmful to the environment, and have 
variable cost. The most used sustainable alternative is solar energy that is usually abundant in regions that suffer 
from water scarcity. [9] 

The desalination processes do not emit gases that intensify global warming. However, one of the biggest 
environmental problems is water disposal with great salt concentrations. There are three alternatives to work 
around the problem: to transport the saline water to a body of saline water, to evaporate the water by solar radiation 
exposition, or to inject the brine in underground regions of high salinity. [6] Feed systems by a thermal source cannot 
dispose of water at high temperatures, dealing with another environmental problem. Among the damages caused, it 
is noticed the decrease in oxygen quantities that might be dissolved per liter of water. This fact begets fishes and 
other aquatics being’s death dependents of oxygen to make up its vital functions. The great solution for the last case 
is the energy use of the output currents through heat exchangers to warm the input currents. Another solution is the 
recirculation of currents in the system if it is a viable procedure. 

The pioneer desalination method from a renewable source is the o Solar Still (ST), initially developed by Corrols 
Wilson. [10] These desalination plants are resumed to a chamber with a coated bottom with dark paint to retain a 
larger quantity of radiation. This medium is covered by a slanted and sealed glass cover aiming to collect the potable 
water and to reduce possible leaks. At the bottom of the chamber, there is saline water that is heated by the 
absorption of solar radiation. Thus, the mass transfer of water from the air to the chamber is verified. At the moment 
that the saturated air by the vapor reaches contact with the cold surface of the glass cover, there is the condensation 
of molecules. The condense move by gravity until the inferior part of the chamber, when it is collected. [11] 

The direct desalination system aforementioned stands out by its simplicity. However, it has been shown 
inefficiency energetically, being applied only for familiar's demands. The energy efficiency of these desalination 
plants under optimal conditions is about 30 to 45%, with daily production inferiors of 5 L per each square meter of 
water surface per day. [12] The humidification-dehumidification (HDH) system that will be approached by this text 
accomplishes the separation between the mediums where the evaporation and condensation occur, using the latent 
heat that was before lost by the glass at the bottom of the direct desalination system. Therefore, it produces a 
quantity of potable water five times bigger with the same quantity of heat supplied. [13] 

This study aims to accomplish a review of state of the art for the HDH desalination technology to clarify the main 
progress that occurred in the area. Furthermore, it will be exposed to environmental conditions at which the 
experiments were submitted, enabling the comparative study. 
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2. DESALINATION TECHNOLOGIES 
 
Methodologies to search for high efficiency of solar still systems were proposed with time; however, none of 

them were sufficient for a definitive adoption. Many times, these measures provided enormous complications in the 
desalination process characteristics, for example, the reduced pressure operation [14] that faced great difficulties of 
execution. It also occurs an attempted to create multiplex effects, therefore, searching to achieve the latent heat 
utilization of the vapor produced. Nevertheless, a decrease of incident radiation over the water was verified in the 
chamber interior and accumulation of salts in the glass. The Hassan et al. study mentioned a reach up to 57% of 
efficiency for the double effect system, [15] posteriorly Yeh and Chen presented a system with 13 L·m-2·day-1 of 
production. [16] However, productivity does not overcome the HDH systems most efficiently. Figure 1 presents the 
subdivision among the main desalination methodologies. 
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Figure 1: Classification of the main methods existing for desalination. 

 
The most important commercial desalination processes based on thermal energy are the multi-stage flash (MSF) 

and the multiple effect distillation (MED). [3] These two desalination methodologies consist of several stages in 
series, in which there are pressure and temperature decrease as the effects advance, besides a successive increase 
of salinity. The water vapor created in these systems is posteriorly compressed, aiming to obtain the potable water, 
the compression can be achieved by a thermal (TVC) or mechanical (MVC) source. 

The desalination method MSF is based on the vapor generation by the interval depressurization of seawater 
that goes into an evacuated chamber being depressurized on each stage. This process is based on the use of the 
existing energy in the vapor phase for heating of feeding current. Before the saline water accesses the depressurized 
stages, this current goes to a heat exchanger which is heated by contact with a vapor current at 100ºC. 

In the MED methodology, it occurs the heating of the saline water for each effect. This heating occurs with the 
vapor created at the posterior effect, being a more effective system than the MSF. [17] The higher the stage numbers, 
the bigger will be the process efficiency; however, to find an optimal number of stages, it must be accomplished a 
cost analysis. [18] 

Vacuum pumps are dispositive that spend a large energy expenditure, being accounted for as a problem in the 
operational costs analysis of the MED and MSF systems. Aiming to develop a desalination system which it would not 
have the necessity of this dispositive, it was created the Passive Vacuum Desalination (PVD) process. In this process, 
there is a waterfall of at least 10 meters that beget vacuum in the evaporator. Consequently, it occurs the saline water 
boiling temperature decrease. [18] 

Desalination methodologies by membranes were created to reply to the biological process of purification that 
occurs in the kidneys. Among those systems, the electrodialysis (ED), forward osmosis (FO), reverse osmosis (RO), 
and membrane distillation (MD) stand out. The first three ones exhibited are more interesting to accomplish the 
desalination due to the lack of phase change to occur the separation, not needing to provide latent heat for the water 
vaporization. However, these processes need constant maintenance due to the successive depositions of the 
particulate, increasing the operation cost. Also, there is an imminent need for electrical power to supply the high-
pressure pumps, scarce provision in remote locations. 
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The electrodialysis (ED) is a procedure that requires electricity to migrate the ion through a series of cationic 
and anionic membranes. The saline solution is pumped between membranes of opposite charges, which created an 
electric potential leading to the displacement of the ions. [19] The forward osmosis (FO) is a procedure that occurs 
previously, the initial solution dilution and posteriorly, the desalinated water extraction through the membrane. This 
process needs difficulties and onerous after treatments, and generally, it is not a viable process. [20] The reverse 
osmosis (RO) is among the most efficient desalination methods on a large scale; however, there is the need for a pre-
treatment of the seawater. [21] This procedure uses high-pressure pumps to create a reverse flux of mass 
transference. In contrast, those dispositive have greater valor, not being interesting for the small scale or in highly 
contaminated mediums use. The amount of required pressure is directly proportional to the saline concentration. 
The membrane distillation (MD) is a method that uses the membranes as the thermal energy to desalinate the water. 
In this case, the saline solution is heated until its vaporization, and this vapor goes for a hydrophobic membrane that 
only permits the water passage in the gas state, with the help of a compressor. [21] A condenser on the opposite side 
of the membrane is used to transform the vapor in potable water. Ordinarily, it is necessary high pressure for the 
gas to exceed the membrane, which makes the procedure impracticable.  

The desalination plants by reverse osmosis control the world market, comprehending 65% of the operational 
capacity installed in the world. [22] The reverse osmosis has been presenting a constant increase in the installation 
number; however, it does not reach the Gulf Cooperation Council (GCC) and Middle East-North Africa (MENA). In the 
mentioned regions, there is a domain of MSF and MED plants due to the existence of high salinity, which difficult the 
pre-treatment stages needed for the process that involve membranes. MSF processes represent more than 90% of 
the thermal desalination plant installations, while the RO includes more than 80% of the processes, including 
membranes. [8] 

Small size desalination plants that produce less than 100 m3 per day of potable water are generally the costliest 
when compared to the cost of produced m3. For a small scale, the RO has been highlighted as the most economical 
system obtaining 3 dollars cost per cubic meter of potable water. [23] However, plants of this class need high 
qualification labor for operation and manufacture, becoming a challenge in needy locals. 

 
3. HUMIFICATION-DEHUMIDIFICATION DESALINATION (HDH) 
 
Wilson was the first to develop an HDH desalination plant based on solar energy as a heat source, and this was 

created to supply a mining district. [24] Posteriorly, other plants were also built in Jordan [25] e Malaysia. [26],[27] 

The HDH desalination system is an attempt to reply to a natural phenomenon that occurs in coastal regions. At those 
locals, the solar radiation induces humidification of the air through the evaporation of the seawater. This humid air 
moves to higher altitudes, forming clouds that posteriorly precipitate. [8] Therefore, the transformation of seawater 
in potable water occurs as it can be seen in Figure 2. 
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Figure 2: Schematic representation of the rain cycle in coastal regions. 
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The HDH is an alternative to the usual desalination techniques, and it stands out for doe not need a high-
temperature source or a vacuum pump to cause the evaporation. This methodology uses atmospheric air to transport 
the water vapor of a humidifier to a dehumidifier; consequently, the operation might occur at atmospheric pressure 
and low temperature. The heat to increase mass transfer is supplied to the flow of air, water, or both. After heating, 
the fluxes interact in the humidifier, which increases the humid air. After that, the energy is removed from the humid 
air by a refrigerant fluid in the dehumidifier, producing potable water. 

As attractive as its advantages are, the HDH desalination systems require improvement at some factors as the 
provided latent heat recuperation, the optimization of mass and heat transference processes, besides to reduce the 
heat loss of all the system. Besides, it is cited the necessity to attain energy self-sufficiency, operating 24 hours for 
the day, which is only possible until now with the use of thermal storage tanks. 

An HDH desalination system generally is composed of the following equipment: solar collector, compressor, 
condenser, humidifier, economizer, potable water tank collector, and control system. The components efficiencies 
are interrelated as the output current is the input current of another. The economizer is a heat exchanger that 
performs the recuperation of saline water energy that leaves the process. Figure 3 presents a schematic flow chart 
of a typical HDH desalination system. 
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Figure 3: Typical compounds of an HDH desalination system with heating only in the water current. 

 
The solar collectors correspond to 40% of the installation cost of an HDH unity, approximately. [28] The existent 

variations in the market and that might be used in the desalination process are diverse, among them, it is cited the 
solar ponds, heliostat field collector, evacuated tube collectors, flat plate collectors, parabolic dish reflector, 
cylindrical trough collector, compound parabolic collector, linear Fresnel reflector and the parabolic trough 
collector. All those collectors are studied by Chaibi and El-Nashar, [29] enabling the best choice for each project. 
Based on the literature, it is noted that the flat plate collectors are one of the most used in desalination systems. [30] 
Figure 4 presents the most diverse classification forms for an HDH desalination system. 
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Figure 4: Schematic representation of HDH desalination systems. 

 
The first ramification presented in Figure 4 refers to the air circulation form that might be natural or forced, 

but, in general, the HDH installations are the forced type in order of the better air flux targeting in the cycle interior. 
Also, there is a classification as the humidifier input currents heating, which might warm the air or the water or both 
fluids solely. 

The restrict heating of the air current is not usual in the literature as it is noted by Bretano work findings, which 
it is analyzed the performance of the humidification stage in an HDH system. [31] The restrict heating of the air 
implies more significant expenses in the condensation stage due to the need for a greater surface area than the one 
on the humidification stage. [32] This fact is due to an imminent necessity to lead the overheated air until its dew 
point. The main variable to attain a high efficiency is the input temperature of the saline water flux, due to the air 
temperature that leaves the humidifier tends to be equal to the input water temperature. [31] Also, the air capacity 
to transport humid increases exponentially with the temperature. [30]  Consequently, a high seawater temperature 
leads to a bigger water transportation tax to the condenser. 

The process fluids recirculation viability depends on the environmental conditions; for each climate, there is a 
better configuration associated. In closed air/closed water systems, there is recirculation in the water and the air, 
and this configuration presents higher global efficiency than the others, this fact is due to the latent heat 
condensation recovery. This system is attractive to locals with low air humidity, besides low seawater and air 
temperature. However, the salt concentration in the seawater increases in each cycle. This phenomenon intensifies 
the sedimentation risks, fouling, and difficulty to accomplish the mass transference. 

The closed air/open water system must be used in locals with low ambient air temperature and humidity, 
besides the energy contained at the saline water that leaves the system must be sufficiently low. In open water 
systems, it is usually used its input saline water as a cooling fluid in the condenser. The open-air/closed water 
process must be applied with exhaust air with temperature and humidity inferior to the ambient air, besides the 
saline water temperature after each cycle must be superior to the possible external source. In closed water systems, 
it is necessary a cooling fluid for the condenser due to the high-water recirculation temperature. 

Eventually, the humidification region might contain a packing column, and this has the purpose of increasing 
the mass transference between the air and water currents. Therefore, there is a heat loss rise, occasionally creating 
the salts carriage by the gas current and fouling in the packing. That addition of heat loss begets a necessity for pumps 
and compressors higher performance that boosts both fluids; consequently, there is higher energy expenditure. The 
packing fouling tends to increase the heat loss, which decreases the process efficiency and entails the need for 
periodic stops for the packing cleaning, task that reduce the system productivity. Problems related to corrosion are 
notorious in these situations, mainly due to the high salts’ concentration attained by the fluid currents. It is noticed 
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the need for specific pipes for desalination plants due to the saline water is highly corrosive, effect increased by 
biggest temperatures. [26] 

The open-air/open water systems are not common due to the large heat loss in the output currents, besides its 
vulnerability with the environment conditions variations. Therefore, it might be interesting when the ambient air 
has temperature and humidity superior to the air that leaves the condenser; besides, the water temperature that 
enters the process must be greater than the one that leaves the humidifier. Related problems to salts concentration 
in the system are discarded. Furthermore, it is possible to couple a heating exchanger to recover energy, which 
increases the energetic efficiency of the system. The Table 1 presents a resume of the main characteristics of each an 
introduced configuration. 

 
Table 1: Relevant characteristics of the main configurations for the HDH desalination systems. 

Characteristic Closed air/ 
Closed water 

Closed air/ Open 
water 

Open-air/ Closed 
water 

Open-air/ Open 
water 

Ambient air temperature Low Low Moderate/High Moderate /High 
Seawater temperature Low Moderate /High Low Moderate /High 
Energy use High Low /Moderate High Low 
Fouling/ Deposition High Low High Low 
Addition cooling current Yes No Yes No 

 
The HDH desalination system is promising since its cost, and energetic efficiency are low on a rural scale. 

Differently of the membrane methodology, this favors the brine purification being a strong candidate for the natural 
gas wells desalination. There are other advantages, such as simplicity, moderate installations cost, low operation 
cost, and flexibility. HDH systems allow the coupling in a simple form to accomplish the fluids warming, not needing 
higher costs with that plant sector, differently of other methodologies that need a higher quantity of energy. As the 
devices for solar power collect usually are costly for a desalination plant, this is a great appeal of the HDH 
methodology. 

 
4. DISCUSSIONS  
 
This section presents some of the critical studies of the HDH desalination system in chronological order, aiming 

to highlight the area improvements. 
 
Nawayseh et al. [25] study through computational simulations the performance of an HDH desalination system 

built-in Jordan by 1993. It was found optimums conditions for unity performance through various parameters 
evolved in the system. The simulated data presented a good correlation with the experimental one, having 
determined discrepancy as a function of the heat and mass transference coefficient used, not being of the same plant. 
During the simulations, it was obtained great mass flows for the water and the air beside a condenser surface area 
of 4 m2. 

Al-Hallaj et al. [12] studied a desalination cycle with air recirculation and water elimination, in which there is 
the current seawater heating through a plane solar collector. In this experimental study was built two HDH unities 
to evaluate the air velocity, the condenser area, the humidifier area, temperature, and water flux rate influence. 
Specific a particular solar collector area available, additions of the water flux are essential due to the increase of 
available liquid in the mass transference. Therefore, there is a marked decrease that causes a reduction in the 
evaporation and condensation efficiency; that balance leads to the definition of optimum flux. The air velocity has 
presented as a significant parameter only at low temperatures; consequently, it does not become interesting to invest 
in a powerful compressor for the hot air recirculation. Figure 5 presents a schema of the desalination cycle studied. 

Nawayseh et al. [26]  accomplished an experimental study to find correlations for the mass and heat transference 
coefficients evolved in the humidification stage of the air currents. These coefficients are useful to model the system 
computationally, enabling to find optimums parameters for several conditions. These parameters are representative 
of a closed air system with natural convection circulation. It is analyzed three HDH plants, being these built-in Jordan 
and Malaysia. 
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Figure 5: Representative schema of a desalination plant with air recirculation and saline water disposable. 

Adapted from ref. [12]. 
 
Dai and Zhang [10] performed an experimental study for the HDH open-air/closed water HDH desalination 

system, which it is noted a strong dependency of the system performance when compared to the input seawater 
temperature at the humidifier. This study also defines the existence of an optimum rotation for the compressor, 
corresponding to good mass flux for the air to develop high thermal efficiency and water production. The thermal 
efficiency produced by the plant was measured at 85% under optimal conditions, presenting to be highly productive 
at arid locals. To achieve high efficiencies is was used as a layer in the humidifier, aiming to increase the mass and 
heat transference among the currents. Figure 6 presents the dispositive built in this study. 

Dai et al. [24] developed a mathematical model to represent one of its previous [10] paper, validating as an 
experimental model already built. Besides, it was performed a parametric analysis, optimizing the unity 
performance. The daily productivity of the system for each solar collector square meter was 0.25 kg·h-1, with the 
daily energy supply of 20 MJ, data based on the climate conditions of the Xian city, China. The water recycles in the 
system when it has low salt concentration and high temperature. The parametric analysis presented the existence 
of an optimum air flux, for which the potable water production was maximized. Furthermore, it was noticed that the 
produced water quantity increased with the rise of the air temperature, the relative humidity, the seawater, and the 
cooling water fluxes. 

 

 
Figure 6: Representative schema of an open-air/closed water desalination plant with forced circulation. 

Adapted from ref. [10]. 
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Yuan and Zhang [33] accomplished a study aiming to associate the solar collector area, the cooling water flux, 
the seawater flux, and the equipment dimensions with the collected potable water quantity. Those data are referent 
to an HDH system of closed air/closed water built in the Xian region, China. It was noted a decrease in the production 
with an increase of the saline water flux and with the change of season, falling for half in the winter. Besides, it was 
noticeable the raise of production with the following increases at the cooling water flux. 

Amer et al. [34] accomplished a theoretical and experimental study of the productivity conditions in a closed 
air/open water desalination system with layer coupling. The heat and mass transference coefficients were measured 
at different conditions for the three layers types. Empirical correlations express their curves. The results showed 
that the productivity increased proportionally to the water mass flux at the studied range, as well as the condenser 
input and output air humidity. The proportionality between the condenser output water temperature and the 
humidifier input water temperature was another verified result. The latter diminished with the increase of the mass 
flux. The rise of the input or output air temperature in the condenser presented direct relation with the major 
humidifier input water temperatures. Regarding the air circulation, the forced form did not present greater 
improvements for the fluid at high temperatures. The maximum productivity achieved was 5.8 kg·h-1, obtained with 
a wood layer operating under forced convection for the humidifier input water of 85ºC and seawater flux of 168 
kg·h-1. Figure 7 represents the studied plant in this paper. 

 

 
Figure 7: Representative schema of a desalination plant. Adapted from ref. [34]. 

 
Narayan et al. [8] accomplished and state of the art literature review of HDH desalination systems. They defined 

and evaluated the main parameters to compare the performance among the cycle variations developed until now. 
Furthermore, they created new proposes to improve the analyzed cycles. The paper is concluded appearing the HDH 
technology relevant at small scale desalination besides noticing the necessity to improve efficiency and reduce 
capital costs. 

Mahmoud et al. [35] performed a theoretical and experimental study aiming to compare the closed air/closed 
water and open-air/closed water system in a single stage. The device was installed in Minya Governorate city, Egypt, 
which had its averages climate conditions used in the simulations, region with air humidity between 30 and 40%. A 
thermal storage tank of glass wool coated steel was used, aiming to minimize the heat loss. Moreover, an electric 
heater was needed to adjust the saline water temperature that supplies the humidifier. The humidification and 
dehumidification chambers consist of cubic structures of galvanized steel, covered by a polymeric layer. In this study, 
it was obtained saline water temperatures sufficiently high for both cases, enabling the water recycling. Also, the 
authors concluded that the closed cycle for the air was more productive. 

Zamen et al. [36] studied the experimental closed air/closed water HDH system with two stages. This article 
presented results for cold and hot days of an arid local, aiming to optimize the freshwater production for a small 
solar collector area. The system proposed has exhibited 20% more efficient than a similar one with one stage, 
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presenting to be better as the cost and efficiency. The authors also calculated the efficiency of the system for more 
two stages, noticing not significant improvements, concluding that the two-stage operation would be the best option. 
Figure 8 represents the built plant disposition. 

 

 
Figure 8: Disposition of the two-stage desalination plant. Adapted from ref. [36]. 

 
Juarez-Trujillo et al.  [30] accomplished at TRNSYS software, the simulation and parametric analysis of an HDH 

desalination system provided by solar energy. In the simulation, it was projected equipment aiming to achieve the 
maximum individual efficiency. Thus, it was performed by heating and recirculation of the water and air currents. 
The heating was performed with oil at the temperature of 110ºC as the evaporative process occurred at a higher 
temperature without boiling the water, maximizing the vapor quantity transported by the air current. The simulated 
process needed a capture and thermal oil storage system, being an isolated tank and an evacuated pipe connected to 
the solar collectors, enabling the operations of the system at night. The condenser was projected with an area excess 
for the air returned to the ambient temperature, and a larger quantity of water was condensed. A controlled flux 
system was used, enabling to set the obtained temperature by the water that flows for an evaporation tower, aiming 
to keep it at 90ºC during the daily operation. A parametric study was accomplished, where it was determined the 
effects of variation in the collector's numbers, the thermal tank volume, and the water flow rate. The used climate 
conditions were equal to the Chihuahua city, Mexico, simulating the system behavior throughout a year of continuous 
operation, measuring the condensed quantity produced during this time. In this paper, it was calculated the 
production variation in kilograms of distilled water by year by the solar collect square meter and by thermal tank 
cubic meter. 

Zubair [6] analyzed the HDH system integrated to collectors’ tubes for the water heating, which is searched to 
avail the solar energy for this type of system. Besides, it has explored the possibility of coupling with the thermal 
storage tank, variating the input fluxes. The study also involved the variation of the system location, proposing an 
optimal configuration that might variate from city to city, according to the climate conditions of each one. It is noticed 
that a high flux in the storage tank leads to great productivity, although for a small period of hours. For a low flux, 
there is small productivity; however, there is a high number of operating hours. Therefore, it was achieved the 
optimal flux so the system could be able to operate 24 hours, being self-sufficient. The paper concluded that the 
systems with coupled storage tanks are more productive than the direct HDH’s. The expected durability for the plant 
was 20 years, where the operation cost per freshwater liter variates between $0.018 and $0.024. 

Enayatollahi [37], at his thesis, investigated the heat and mass transference at the humidification and 
dehumidification phenomenon in open-air/open-water system, noticing that this would be the relevant parameter 
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to measure the collected potable water quantity. Therefore, it was proposed a system where the water passed by the 
cascade in the humidifier, aiming to improve the transference rates. It was found dimensionless parameters for the 
model, enabling the influence analyses of the diverse existent variables in the new system. Among the studied 
conditions, it was noted that the saline water evaporation before its entrance in the humidifier leads to a production 
fall, due to the difficulty in the condensation stage. Therefore, when the air flux enters in overheating conditions, this 
must suffer cooling until its dew point. Consequently, an additional condensation area might be necessary, due to 
the increase of the flux’s temperature is not always attractive. For a given seawater input temperature, the flux 
increase of this fluid decreases the potable water production. This finding is due to the flux does not receive enough 
energy in the collector to evaporate in the humidifier. The implementation of the cascade process represented an 
increase of 15% at the system income, where the required was reduced for one-quarter of the needed over the 
humidifier channel. Also, this thesis studies the solar heating coupling to the desalination system, something usually 
applied in the other studies. 

Ahmed et al. [38] accomplished an experimental study in which they analyzed the performance of an HDH 
desalination system. The main analyzed variables were the air and water temperatures that enter the humidifier, 
the water, and the air mass rate, besides the cooling water mass flux that enters the condenser. The news of this 
paper is the use of a layer in the humidifier formed by corrugated aluminum sheets, and this device has the purpose 
of increasing the air contact surface with the water. Consequently, there are improvements in the heat and mass 
transference processes. The proposed model presented a small pressure fall than the sprinkler nozzles, which are 
typically used. Besides, this layer presented facilities as cleaning and maintenance. One of the more significant 
findings obtained was the big influence of the air and cooling water mass fluxes in the condenser efficiency. For the 
created unity, the maximum productivity achieved was 15 kg·h-1. Furthermore, it was performed a cost analysis that 
analyzed a plant for ten years. 

Elsafi [39] developed a theoretical study on Engineering Equation Solver (EES) software to analyze the 
performance of a cogeneration unity based on the integration of an HDH desalination cycle with a concentrated 
photovoltaic-thermal collector (CPVT). This study aimed the potable water production as the electric energy, and 
accomplished the cost and quantities produced estimated for each utility per year. In this study, there is only the air 
current heating, which decreases the cost with solar collectors due to the equipment simplicity, although there is a 
system efficiency fall concomitantly. 

Correlations to stimulate the saline water properties according to the temperature, salinity, and pressure 
variation were aborted at Nayar et al. study. [40] This paper was based on Elsafi [39] to find the thermophysical 
properties of the saline water needed to project a desalination plant. The negligence of the variations caused in the 
saline water properties by the presence of salts led to mistakes up to 20% in the obtained results. [41] The 
meteorological conditions used were the same as Dhahran city, Saudi Arabia. 

Rajaseenivasan and Srithar [42] performed an experimental study to evaluate the efficiency of an HDH system 
with the packing layer. The heating in this system is a dual-purpose solar collector, where the water and air currents 
are heated simultaneously. Semicircular tabulators are added to the air flux in the solar collector, aiming to increase 
the temperature of the fluid before it enters the humidifier. The authors evaluated the system performance through 
a hot air and water flux variation that enters the humidifier, besides the cooling water flux in the condenser. 

Mahdizade and Ameri [43] accomplished a theoretical study with Engineering Equation Solver (EES) software 
due to the modeling of a semi-open-air/open water HDH desalination system. In this study, it was heated the air and 
water current, the supply proportion of energy variated between both currents aiming to find a higher rate. 
According to the performed analysis, the authors noticed that the HDH system is efficient at dry climates, as well as 
the humid ones. In the semi-open-air/open water system, part of the air that leaves the condenser mix with the 
ambient air, uniting in a single flux that will supply the humidifier. The analysis of the unity efficiency variation with 
the contribution of each current was accomplished. It was found that for 40 and 45ºC temperatures, the system GOR 
increased as the unity approximate to an air closed flux. Temperatures over to 55ºC, the behavior is raised until an 
optimal point, where there is a decrease in the income. The analysis of the ambient temperature variation has shown 
that this parameter has a significant impact on system performance than the relative humidity. It is noticed that in 
overheated air and water cycles under high ambient temperature, the close cycle presented better performance. 
However, the open cycle is more efficient for small ambient temperatures. The semi-open-air/open water cycle only 
showed itself interesting for temperatures between 15 and 30ºC; at icy locations, the adoption of the open-air cycle 
is an unanimity. Analogously, at tropical locations, the adoption of a closed air cycle is unquestionable. 
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Campos et al. [44] performed a theoretical study using the MATLAB software proposing a mathematical model 
to predict and to optimize the produced distilled quantity by an HDH desalination system. The proposed model is 
compared to the other seven methodologies, presenting to be more efficient than this. A multi objective global 
function achieved the parametric analysis, among the found data, there are the optimum condenser and humidifier 
heights. Also, it was evaluated the importance of considering the presence of sodium chloride in the solution, besides 
to work with a humidifier output current with non-saturated air. 

Yang [45] performed a theoretical study to evaluate the performance of an HDH desalination system from the 
variation of the system pressure or only the humidification chamber. A vacuum pump to conduce the air circulation 
was used to create pressures of until 0.2 atm, being this the only device supplied by electrical energy. Another critical 
point of this study is the analysis of a plant built under the sea; something still little explored in the literature. The 
great advantage of this type of approach is the possibility to use four types of renewable energy sources, being these 
solar, wind, wave power, and tidal power. 

Li et al. [46] studied an HDH desalination system heated by solar energy and with a humidification system 
formed by a porous membrane through the modeling by Fortran code to assess the effects of the membrane 
characteristics in unity performance. It is a theoretical and experimental study, where it evaluates three types of 
membranes with different mass diffusivities, surface areas, and thermal conductivities. Of the analyzed coefficients, 
the mass diffusivity and the total surface are the most relevant parameters for the potable water production. The 
use of porous membranes is justified by the small specific surface area in the used layers of other HDH plants, not 
overcoming 100 m2·m-3, while the porous membranes of this study achieve 809 m2·m-3. 

Huang et al. [47] accomplished a theoretical study to evaluate the thermodynamic models, and the pressure falls 
where they could predict and optimize the performance of an HDH desalination system. The results of the simulation 
are obtained from the MATLAB and Aspen Plus software, which are compared with experimental data presented in 
the literature. The optimization is performed through the variation of the saline water mass flux and the input 
humidifier temperature, presented to be the main parameters to influence the efficiency. An analysis of the electric 
energy consumed was made, which has shown negligible according to the total supplied energy. 

It is aiming to approach with greater depth the presented studies; Table 2 and Table 3 additional exhibit 
information to clarify the project details, configurations, and main conclusions. The experimental studies limit Table 
2, while Table 3 includes modelling and theoretical papers. Therefore, this article differs from the current approach 
of state of the art, presenting various modifications and obtained results by the studies of HDH desalination systems. 
Among the alterations, it is cited the fluids circulation form, the membrane's presence, the geometries, the layers 
composition, and the presence of a thermal storage tank. 

 
Table 2: Representation of the main information presented in the experimental studies of HDH desalination. Part 

A 
System type, location, operation and project data Main observations 
Al-Hallaj, Farid, and Tamimi (1998) – ref [12] 
- Closed air/open water. 
-Humidifier with a wood layer with 87 m2·m-3 for 
the pilot plant and 14 m2·m-3 for bench scale. 
-Water temperature that enters the humidifier 
variated between 60 and 63 ºC. 
-Condenser area of 0.6 m2 for bench scale and 
8.0 m2 for the pilot plant. 
- Flat solar collector and electric resistance of 2.5 
kW. 

-An increase in the water flux raises the mass transference 
rate due to a higher quantity of available fluid. 
-An increase in the water flux decreases the water 
temperature that enters the humidifier. 
-Air velocity is only a significant parameter of temperatures 
lower than 50 ºC.  

Nawayseh, Farid, Al-Hallaj et al. (1999) – ref [26] 
- Closed air/open water. 
-Natural convection for the air. 
-Humidifier with wooden packing layer and 
surface area of 5.04 m2. 
-Ratio variation between the saline water and air 
input rate of 1 to 10. 

- Mass transference coefficients in the humidifier present 
stronger dependency in the water flux. 
- There was no significant improvement in the use of air flux 
for forced convection. 
- The bigger the water flux, the bigger must be the air flux.  
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- Water flux variation between 7.20 and 144.00 
kg·h-1. 
- The optimum productivity reached was 1.70 
kg·h-1 for the power of 1 kW. 
- Electric heating and flat plates solar collector. 

- Air fluxes too big produce excessive heat losses in the 
condenser and the humidifier. 
- The higher the contact area in the humidifier and the 
condenser, the bigger will be the productivity. 

Dai and Zhang (2000) – ref [10] 
- Open-air/closed water. 
-Air flows through a straight channel, avoiding 
pressure losses. 
-The maximum thermal efficiency of 85%. 
- An average productivity of 26 kg·m-2·h-1. 
-Solar collector under average radiation of 700 
W·m-2. 

-The system efficiency increases with the input water 
temperature in the humidifier, beyond the water and air 
mass flux. 
-The lower the input water temperature in the humidifier, 
the bigger will be the optimal rotation for the compressor. 

 
Table 2: Part B 

System type, location, operation and project data Main observations 
Zamen et al. (2014) – ref [36] 
-Closed air/closed water. 
- The pilot plant built in an arid region in a central 
local of Iran.  
-Two stages. 
-Use of storage tank. 
-Air flows by forced circulation. 
-Use of packing layer based on polypropylene, 
with a specific surface area of 240 m2·m-3. 
-Condensers with 30 m2 of the area of thermic 
exchange. 
- Saline water mass flux of until 1400 kg·h-1. 
-Cooling water temperature equal to 20ºC, while 
the humidifier input saline water of 70ºC. 
-Water salinity equal to 4500 ppm. 
-Daily production of 0.31 kg·h-1·m-2. 
- Solar collector with 80 m2. 

-The two-stage system increases more than 35% of the 
energy recovery in the condenser, and consequently, it 
reduces the thermic energy consumption. This system 
presented a better option for the costs of produced water 
quantity, and it is 20% more efficient than the one-stage 
system. 
-Systems with more than two stages do not present 
significant improvement. 
-The increase of the daily production per solar collector unity 
was superior to 40% for two stages. 
-The ratio between the saline water and the air flux decreases 
with the humidifier input water temperature fall. 
 -The bigger the saline water flux, the higher the productivity. 
-More than 75% of water production occurs in the first stage. 

Ahmed et al. (2017) – ref [38] 
-Open-air/closed water. 
-The plant developed in Egypt. 
-Use of packing layer in the humidifier, formed by 
aluminum corrugated sheets. 
-The condenser is a compact heat exchanger with 
a surface area of 13 m2. 
-Use of storage tank for the saline water. 
-Air velocity variated between 0.8 and 15 m·s-1. 
-Operation under atmospheric pressure. 
-It was considered an adiabatic system in the 
energy balance; in the summer, it was a 
reasonable approximation due to the low 
difference between the system and ambient 
temperatures. Besides the well isolated humid. 
-Use of cooling water. 
-Maximum productivity of 15 kg·h-1. 

-Air and cooling water mass flux exhibited a direct effect in 
the condenser. 
-Increases in the humidifier input water temperature or the 
flux, besides the increment in the cooling water flux, lead to a 
rise in the potable water production. 
-The increase in the input air temperature presented a small 
relevance in productivity. Otherwise, the absolute humid 
increase of this current caused high earnings. 
-The decrease in the cooling water temperature of 28.5ºC to 
17ºC increased the production by 50%, going to 10 kg·h-1 for 
15 kg·h-1. 
-Cost of $0.01 for each produced potable water liters.  
 

Rajaseenivasan and Srithar (2017) – ref [42] 
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-Open-air/closed water. 
-Experiments performed between October of 
2015 and February of 2016. Installation in the 
Madurai city, India. 
-Packing layer with a surface area of 0.09 m2. 
-Use of cooling water. 
-The turbulence created by obstacles in the air flux 
of the solar collector, increasing the air 
temperature before it enters the humidifier.  
-Air flux variation between 50.4 and 64.8 kg·h-1. 
-Saline water flux variation between 60 to 180 
kg·h-1. 
-Cooling water flux variation between 90 and 210 
kg·h-1. 
-The average efficiency of 67.6%. 
-Maximum productivity of 0.63 kg·m-2·h-1, using 
concave turbulators. 
-Dual-purpose solar collector, heating the air, and 
the water current. 

-Increase of the productive capacity with the raise of the air 
and water flux temperature that enters the humidifier. 
-Increase of productivity with the air, saline water, and 
cooling water flux raise. 
-Concave turbulators presented efficiency 23% bigger than 
the conventional system and 7.7% superior to the convex 
turbulators. 
-A decrease in the production cost with the air flux increase. 
The minimum cost of $0.0257 per produced potable water 
liter by the concave turbulators system. 

 
Table 3: Representation of the main information presented in the modelling and theoretical studies of HDH 

desalination. Part A 
System type, location, operation and project 
data 

Main observations 

Nawayseh et al. (1997) – ref [25] 
-Closed air/open water. 
-Closed air/open water. 
-Wooden packing layer with surface area 
variating between 2 to 23 m2. Optimal area 
of 5.6 m2. 
-Condenser area variation between 1 to 40 
m2. Optimal area of 4 m2. 
-Water flux variation between 18 to 43.2 
kg·h-1. An optimal flux of 25.2 kg·h-1. 
-Air flux variation between 18 to 54 kg·h-1. 
An optimal flux of 21.6 kg·h-1. 

-Optimal productivity of 0.48 kg·h-1·m-2. 
-Electric pre-heating of 2.5 kW and flat plate 
solar collector of 2 m2. 

-Significant increase in the mass and heat transference coefficients 
with the water flux raise.  
-Water flux increase decreases the humidifier input water 
temperature. 
-The air flux velocity has small representability; therefore, the 
natural convection is a better option.   

Dai, Wang, and Zhang (2002) – ref [24] 
-Open-air/closed water. 
-Forced air flux. 
-Use of packing layer in the humidifier.  
-Use of cooling water from the sea. 
-Water salinity of 5%. 
-In the humidifier, it adopted the turbulent 
air flux and the laminar water flux.  
-Condenser with concentric tubes in 
counterflow.  
-Maximum productivity of 0.25 kg·m-2·h-1 of 
potable water, for daily supply of 20 MJ of 
power. 

-The potable water quantity produced increases with the raise of 
the air temperature, the relative humidity, the seawater, and the 
cooling water flux.  
-The bigger the air flux, the smaller the productivity.  
-The higher the temperature and the relative humidity, the greater 
the productivity.  
-The lower the cooling water temperature, the higher the 
productivity.  
-The heat capacity and the water-specific mass increase with the 
salt concentration. Consequently, the evaporation rate decreases. 
The system is efficient until 20% of salt concentration.  
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-The solar collector of evacuated tubes. 
Average solar radiation of 700 W·m-2. 
Yuan and Zhang (2007) – ref [33] 
-Closed air/closed water. 
-The plant installed at Xi’an, China. 
-Humidifier sprinkles the saline water 
through nozzles, and there is not a packing 
layer.  
-Presence of a saline water storage tank. 
-Seawater flux of 200 kg·h-1. 
-Cooling water flux of 200 kg·h-1. 
-It is used two humidifiers and two 
condensers. 
-Maximum production of 2.17 kg·h-1 of 
freshwater in July. Minimum production of 
1.13 kg·h-1 of freshwater in December. 
-Flat plate solar collector with an area of 10 
m2. Solar radiation of 800 W·m-2. 

-The increase of the seawater flux decreases the operation 
temperature and productivity but increases the efficiency of the 
collector, the humidifier, and the condenser.  
-The mass and heat transference coefficients decrease with 
temperature.  
-The influence in the humidifier length increases with the collector 
area rising.  
-There is an optimum value for the cooling water flux that 
increases with the surface area. The larger the collector area, the 
more significant the cooling water flux effect is.  
-Decrease of 5% in the production during the night.  

 
Table 3: Part B 

System type, location, operation and 
project data 

Main observations 

Amer et al. (2009) – ref [34] 
-Closed air/open water. 
-The optimal system was operated in 
forced convection for the air.  
-The coupled wooden layer was the 
best option for packing material.  
-Water enters the humidifier at 85ºC. 
-Seawater flux equals to 168 kg·h-1. 
-Seawater flux variation between 72 to 
180 kg·h-1. 
-Humidifier input water temperature 
variation between 50 to 85ºC. 
-Condenser output water temperature 
variation between 30 to 45ºC. 
-Humidifier and condenser surface 
areas equal to 6 m2. 
-Maximum productivity of 5.8 kg·h-1. 
-Solar collector.  

-It occurs a productivity increase with the seawater flux, condenser 
input and output humidity raise. 
 -It was verified the proportionality between the humidifier input water 
temperature and the condenser output water temperature.  
-The humidifier input water temperature decreases with the process 
input saline water mass flux increase. 
-The bigger the humidifier input water temperature, the greater will be 
the condenser input and output air temperatures and humidity.  
-Air forced convection did not present significant improvements for the 
air at high temperatures.  

Mahmoud, Farrag, and Mohamed (2013) – ref [35] 
-Comparative study between closed 
air/ closed water and open-air/closed 
water systems. 
-Installation at Mynia Governorate, 
Egypt. 
-Only one stage. 
-Average air flux equals 510 kg·h-1 and 
an average velocity of 4.5 m·s-1. 
-Relative humidity between 30 to 40%. 
-The thermal storage tank of glass wool 
coated steel. 

-The better results were obtained for the closed air cycle.  
-The Fresnel lenses presented efficiency of until 70% for clean days.  
-It is noticed a small dependency on the water evaporation rate with the 
air velocity; therefore, there is a strong dependency on the diameter of 
the spayed drop. Thus, the smaller the particle size, the bigger will be 
the evaporation rate.  
-The higher the humidifier input water temperature, the greater the 
productivity.  
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 -Humidification and dehumidification 
of cubic chambers of galvanized steel 
coated by a polymeric layer. 
-Use of rotative sprayer to create small 
drops.  
-The productivity of 2.5 kg·h-1·m-2 for 
open-air system and of 4.67 kg·h-1·m-2 
for the closed air system. 
-Electric heater and solar collector 
optimized with the use of Fresnel 
lenses. The solar light intensity of 800 
W·m-2. 
Juarez-Trujillo et al. (2014) – ref [30] 
-Closed air/closed water. 
-Climate conditions of Chihuahua, 
Mexico. 
-The Humidifier is a vertical packing 
tower.  
-The heating of the air and water 
currents by counterflow concentric 
pipes heat exchanger with thermic oil.  
-Use of isolated tank for thermal 
storage, enabling the day and night 
system operation.  
-Control of the saline water flux was 
necessary to maintain the system 
operating for 24 hours. 
-Compact condenser.  
-Oil temperature equals to 110 ºC. 
-Humidifier input water temperature of 
90 ºC. 
-Solar collector evacuated tubes for the 
thermic oil heating. 
-The numbers of solar collectors varied 
among 2, 4, 6, 8, 10, and 12. 
-Thermal storage tank volume variation 
between 1 to 6 m3. 
-The water flux that supplies the 
humidifier variated between 1 to 220 
kg·h-1. 

-The potable water production rises as the number of collectors, and the 
storage tank volume increase. 
-For the numbers of collectors between 2 and 6, the increase of the 
storage tank volume caused a fall of the potable water production. This 
fact is due to the necessity of a lot of energy to heat a big tank, which is 
impracticable for a small number of collectors.  
-The optimum distilled water production occurs for a storage tank of 6 
m3, with the feeding of 70 kg·h-1 and 12 collectors. This case would have 
as the results the hourly potable water production of 7.57 kg. 

 
Table 3: Part C 

System type, location, operation and 
project data 

Main observations 

Zubair (2015) – ref [6] 
-Variation of the location of the system. 
-Analysis with or without storage tank, 
variating the input fluxes. 
-System durability expected for 20 years. 
-Evacuated tubes solar collector. 

-Systems with storage tank have presented more productive.  
-Potable water production cost variation between $0.018 and $0.024 
per liter. 

Enayatollahi (2016) – ref [37] 
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-Open-air/open water. 
-Forced circulation for the air and the 
saline water.  
-The humidifier was operating in 
cascade.  
-Input seawater used as a cooling fluid.  
-Heating only of the water current. 
-Study based on dimensionless 
parameters.  
-Wind velocity of 5 m·s-1. 
-Atmospheric pressure, air temperature 
of 20ºC, and relative humidity of 50%. 
-It is assumed that pure water properties 
can be applied for seawater.  
-Optimal air flux of 91.44 kg·h-1. 
-Shell and tube condenser with one shell 
pass and two tube passes. Optimal area 
of 2 m2. 
-Humidifier with long channels with air 
in counterflow with water. Optimal area 
of 1.4 m2. 
-Solar collector, radiation of 1000 W·m-2. 

-Potable water production increases linearly with radiation incidence 
and ambient air temperature.  
-The input seawater raise decreases the production for a given input 
seawater temperature fixed.  
-The turbulent flux in the humidification stage makes the system more 
efficient due to the increase of the mass transference area, beyond the 
increase created in the heat and mass transference coefficients. 
-Increase of 15% in the system performance when using the process 
in cascade. The humidifier required area reduced by 25%. 
 

Elsafi (2017) – ref [39] 
-Closed air/open water. 
-Dhahran city, Saudi Arabia. 
-Analysis under stationary conditions.  
-It is neglected the heat loss in the pipes, 
the ducts, the humidifier, the condenser, 
and the collector.  
-Saline water enters the unity with an 
average temperature of 22ºC and a 
salinity of 35 g·kg-1. 
-Air at 25ºC and 1 atm. 
-The potable water and the saline water 
leave the system with a salinity of 0 and 
35.5 g·kg-1, respectively. 
-Pump and compressor consume 25 and 
50 W of energy, respectively. 
-Restrict heating of the air current.  
-Use of CPVT system with a double pass 
for the air. Collector total surface area 
equals 9 m2. 

-Production of 12 m3 of potable water and 960 kWh of electric energy 
per year for each unity. Result based on the solar incidence of 1.88 
MWh per year. 
-The daily production of potable water is four times bigger in the 
summer, while the electric energy is approximately two times bigger.  
-Cost of $0.01 per produced potable water liters, beyond a cost for the 
electric energy production of $0.289 per kWh. 

 
Table 3: Part D 

System type, location, operation and project 
data 

Main observations 

Mahdizade and Ameri (2018) – ref [43] 
Semi-open air/open water. 
-Analysis under the stationary state.  
-The system operates at atmospheric pressure.  
-It is assumed that the condenser and the 
humidifier exhaust air are saturated.  

-The bigger the ambient temperature, the major the GOR.  
-When the ambient temperature is high, the closed air cycle is 
more efficient.  
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-Adiabatic humidifier and condenser.  
-Ambient air conditions: temperature of 20ºC 
and relative humidity of 60%. 
-It is assumed that seawater and pure water 
properties are equal. 
-Heating of the air and water currents through 
a solar collector.  

-The system achieves the maximum performance when the 
energy detached to warm the air is close to the quantity used to 
warm the water.  
-For the heating of a unique current, the water heating is more 
efficient when the supplied energy is low. Otherwise, air heating 
is the best solution.  

Campos et al. (2018) – ref [44] 
Closed air/open water. 
-Stationary state model.  
-Forced convection for the air.  
-Use of packing layer for the humidifier with 
112 m2·m-3 of specific surface area. Transversal 
section of 0.093 m2. 
-Saline water and dry air mass flux of 43.20 and 
144.00 kg·h-1, respectively. 
-It does not consider that the hot air current 
leaves the humidifier saturated.  
-Condenser height variation between 0.25 to 
0.70 m. 
-Humidifier height variation between 0.25 to 
0.60 m. 
-Solar incidence variation between 400 and 
1300 W. 
-Production of 0.051 kg·h-1 of distillate. 
-Solar collector.  
-Warming only the water current. 

-The use of correlations that consider the presence of sodium 
chloride did not have an impact on system performance.  
-An error of 4.3% in the provision of the produced distillate 
quantity. The magnitude of 31% minor than the literature 
previews.  
-The rise of the humidifier height increases the heat 
transference ratio for the seawater, the heat loss for the 
ambient, and the air current absolute humidity at the departure 
of this equipment.  
-Condenser and humidifier optimums heights of 0.50 and 0.35 
m, respectively. 

Yang (2019) – ref [45] 
-Closed air/open water. 
-Use of vacuum pump supplied by electric 
power.  
-Adiabatic humidifier submerged with disc 
form.  
-Air leaves the humidifier, and the condenser 
saturated.  
-There are not expenses with pumping, 
pretreatments, and brine discard. 
-Energy sources: solar, electric, wave power, 
and eolian. 
- A significant part of the plant is submerged, 
favoring the heating of the cold air current and 
the cooling of the hot air. 
-Air velocity of 2.5 m·s-1. 
-Production of 4 to 11 kg·h-1 of potable water 
under optimal conditions, variating with the 
system size and the climate conditions.  
-Heating of the air current by solar energy and 
wave power.  
-Heating of the water current by solar energy 
with 1000 W·m-2 and 50% of efficiency. 

-The applications of pressure gradients between the humidifier 
and the condensation stages create excessively high costs with 
electric energy.  
-The optimum operating pressure is near the atmospheric 
pressure because the gain production created by the pressure 
fall does not supplement the energetic cost.  
-Mixture ratio in the saturation increases with the pressure 
decrease for a given temperature.  
-Great potential for potable water production at large scale and 
low cost.  
-The electrical energy consumed by the vacuum pump of 0.9 to 
1.6 kWh per cubic meter of produced water.  
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Table 3: Part E 
System type, location, operation and project data Main observations 
Li, Qi, and Zhang (2019) – ref [46] 
-Open-air/closed water. 
-Results obtained between 18 and 20 of August of 2017 for the 
system installed in Guangzhou city, China. 
-Use of a porous membrane at the humidification state in which 
the water flows through ducts and the air permeates in 
crossflow. It was adopted that in the vapor flux, it prevails the 
ordinary and the Knudsen diffusion combination, despising the 
Poiseuille flux.  
-Compact condenser with thermal exchange area 0.25 m2. 
-Air flux of 19.05 kg·h-1 and temperatures between 27 and 36ºC. 
-Water enters the humidifier at 28ºC and with a flux of 160 kg·h-

1. Laminar flux in the membrane fiber, Reynolds equals to 65.5. 
-Use of cooling water with a turbulent flux of 160 kg·h-1. 
-The solution developed with a 3.5% mass of NaCl. 
-Presence of a thermal storage tank with 80 l, temperature 
between 45 and 70ºC. 
-Restrict the heating of the water current.  
-Use of evacuated tubes solar collector with an area of 4.13 m2. 
-Maximum radiation incidence of 800 W·m-2. 

-Membranes with high diffusivity capacity and 
small thickness are more efficient in the 
potable water production.  
-It was recorded the presence of a critic 
diffusivity valor equals to 3.0·10-6 m2·s-1, 
though there is no improvement in the system 
performance. 
-The membrane system has shown superior to 
the packing layer. Presenting GOR higher than 
the literature for several reasons for air-water 
mass flow rate.  
-The air velocity presented to be proportional 
to the water production until the valor of 1.1 
m·s-1, which there is an asymptote that limits 
the production increase.  

Huang et al. (2020) – ref [47] 
Open-air/closed water. 
-Use of dust and impurities collector filter for the air current.  
-Use of packing layer with finned sheet metals. The specific 
surface area of 500 m2·m-3.  
-The condenser is a compact heat exchanger of stainless steel 
with an area of 27.43 m2. 
-Minimum consumption of 220 kJ of energy per kilogram of 
produced potable water, for air and water mass fluxes of 400 
and 2230.7 kg·h-1, respectively. 
-Restrict the heating of the water current through electric 
energy. 

-The pressure falls in the system increases 
with the air and saline water flux, and with the 
humidifier input water temperature. 
Deviations minors than 15% with 
experimental data. 
-The consumed electric energy represented 
9.9% of the totality. 
-The optimal temperature for the humidifier 
input saline water is equal to 76.4 ºC. 

 
5. CONCLUSIONS  
 
The present paper aimed to present the state of art of an HDH desalination system. From the analysis of the 

most recent articles, it is noted the predominance of the closed air/open water configuration due to the energetic 
utilization of the air current, besides, dismiss additional current of thermal exchange in the condenser and avoid the 
salts accumulation in the system. The accumulation is associated with incrustation, corrosion, and damages at the 
equipment structures.  

Renewable energetics matrixes are fundamentals for the desalination systems to achieve economic viability, 
being the solar energy unanimity in the fluid current heating, in general, the saline water current. The desalination 
plants installation under the sea is another news that the studies presented, a choice that facilitates the use of wave 
power and tidal power. The use of packing layers and membranes have been used as an unquestionable form to 
increase the mass transference in the humidification stage; recent studies aim to find geometries and materials that 
optimize this stage. For the condensation stage, the use of compact condenser become ideal for working with thermal 
exchanges evolving gas fluids. Considerations of the water chemical composition in some theoretical studies still are 
unknown, existing disagreements in the conclusions, a question that still must be worked in future simulations. The 
vast majority of studies utilize the Engineering Equation Solver (EES) software for HDH plant modeling, which is an 
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excellent alternative to resolve several equations simultaneously. Finally, this article hopes to contribute to the 
understanding of HDH desalination systems, being an update of the advances presented in the literature. 
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