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Abstract 

Were quantified the plant residues on the soil, total soil organic carbon (TOC) and nitrogen (TN) 

contents and the different soil organic matte (SOM) fractions and to determine 13C and 15N isotopic 

soil composition and plant residues in the crop–livestock integration system (CLIS), pasture and 

Cerrado areas, in Goias, Brazil. TOC and TN, C and N light organic matter content (C-LOM/N-

LOM); C and N of particulate organic matter (C-POM/N-POM); and mineral organic matter (C-

MOM/N-MOM) were evaluated. δ13C and δ15N of soil and LOM, POM, and MOM fractions, as 

well as the δ13C of plant residues, were also determined. Plant residues from pasture were more 

enriched with nutrients and C, and CLIS which are richer in N. δ13C of pasture and CLIS soils 

indicated that the C from the Cerrado vegetation (typically C3) was replaced by vegetation with C4 

photosynthetic mechanisms. CLIS accumulated more TOC than the pasture, and provided higher 

C-MOM and N-MOM values than pasture, and higher N-LOM levels than pasture and Cerrado. 
δ13C of LOM is associated with more recent origins of carbon. δ15N of POM and soil of the CLIS 
and pasture indicate greater mineralization of SOM.
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1. Introduction 
 

The Cerrado biome is the largest savanna region in South America. It is located in the central 

portion of Brazil and is the second largest biome within the country, with an area of approximately 

200 million hectares. The prevailing soils are Oxisols, which are generally clayey, deep, 

weathered, and range from flat to smooth/wavy (Ratter et al., 2003; IBGE, 2004; Pereira de Castro 

et al., 2016). As Oxisols have good physical characteristics, much of the Brazilian Cerrado is used 

for extensive soybean, corn, beans, cotton, and sugarcane plantations (Sano et al., 2008; Loss et 

al., 2016), being one of the largest cultivated areas in the world (Maia et al., 2013). 

 
Approximately 97.0% of the state of Goiás (Brazil) is within the Cerrado biome (IBGE, 2004). 

Also, almost 55.0% of Goiás is used for human activities (Sano et al., 2008), of which 27.7% holds 

agricultural crops, 71.0% has cultivated pastures, and the remainder is occupied by forest 

plantation and urban areas. Regarding land use systems commonly used with agricultural crops 

and pastures, the no-tillage system (NTS) and crop–livestock integration system (CLIS) are the 

most used, respectively. Both systems have the potential to accumulate carbon in Cerrado soils. In 

CLIS, the use of forage increases haystack production, especially during the dry season, promoting 

an efficient development of NTS and the subsequent accumulation of organic matter in the soil 

(Carvalho et al., 2010; Loss et al., 2012a, 2016; Sant-Ana et al., 2017). 

 
The combination of environmental factors (e.g., high precipitation and high temperatures for most 

of the year), intrinsic factors of the soil (e.g., the prevalence of 1:1 clay minerals), and factors 

related to the functional attributes of plant material added to the soil (C/N ratio and lignin content) 

results in different processes regarding the dynamics of organic matter in the soil (SOM) in the 

Cerrado biome. Thus, well planned and conducted NTS and CLIS are used to obtain high quality 

agricultural production and preserve soil system resources. These systems result in better 

environmental conditions, since observed diversity, paths of nutrient flows, and other common 

processes in nature promote more conservationist agriculture (Carvalho et al., 2010, Loss et al., 

2013, Tivet et al., 2013, Sant-Ana et al., 2017). 

 
In the Cerrado, the continuous use of NTS and CLIS for food production and efficient soil 

management seems unquestionable. However, further studies are needed to evaluate changes 

occurring in the soil over time, especially when management system or land use is substituted over 

time. For example, in the Brazilian Cerrado, many areas that are currently managed using CLIS, 

were managed only with pastures 30 to 40 years ago, after the original vegetation was removed 

(Cerrado). After that, pastures were replaced by grain cultivation in conventional soil preparation 

systems (CPS), with plowing and harrowing. Then, CPS was replaced by NTS with crop rotation 

and, finally, part of the NTS was conducted in CLIS in the 2000s (Loss et al., 2012a; 2013). 

 
The different chemical and physical fractions of SOM are among the most used parameters to 

evaluate soil changes resulting from management systems and/or land use. The light organic matter 

(LOM) is one of these fractions, consisting of a heterogeneous mixture of recent plant residues, 

small-animal remains, and microorganisms, which can be in different stages of decomposition 

(Gregorich et al., 1994). The amount and composition of the LOM is reported by several studies 

as the most sensitive indicator used to characterize the most appropriate soil management forms 

(Bremer et al., 1995; Leite et al., 2003; Liebig et al., 2004; Koutika et al., 2005; Loss et al., 2012b). 
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Higher amounts of LOM observed in NTS areas using cover plants in the Cerrado, may reduce 

soil phosphorus adsorption (Pereira et al., 2010). 

 
The SOM fractions obtained through particle size fractionation are also widely used to evaluate 

land use changes. The particulate organic matter (POM) is the fraction corresponding to silt and 

sand size (>53 μm), being the most dynamic and sensitive to soil management. The mineral organic 

matter (MOM) fraction is smaller than 53 μm and is considered an organic material associated 

with the mineral components of the soil, forming organomineral complexes and showing reduced 

sensitivity to management. The carbon (C) and nitrogen (N) contents are quantified in the POM 

and MOM fractions, providing the C-POM and N-POM, and C-MOM and N-MOM, respectively. 

The C and N of POM are derived from plant and hyphae residues that remain in the soil due to 

physical protection in aggregates, being labile fractions that present higher recycling rates of 

organic constituents (Golchin et al., 1994). Higher accumulations of C and N are observed in POM 

fractions in systems with greater aerial and root biomass inputs, thus being more sensitive 

indicators than total organic C (TOC) and total N (TN) regarding the changes imposed by soil 

management (Loss et al., 2012c, Luce et al., 2013, 2014). Particulate C and N fractions, after being 

mineralized by microorganisms, are important sources of mineral C and N in agricultural soils 

(Luce et al., 2014). 

 
The isotopic methods have greatly contributed to the understanding of the origin of C and N in the 

different fractions of SOM, as well as the overall dynamics of these nutrients in agricultural 

systems. These elements present chemically stable and radioactive forms. C and N are important 

in SOM studies in both stable (12C and 13C, and 14N and 15N) and unstable (14C and 13N) forms 

(Marin-Spiotta et al., 2009; Cook et al., 2014; Loss et al., 2014). The modification of the Cerrado 

biome by cutting down and burning natural vegetation in different management systems usually 

reduces SOM levels (Bernoux et al., 2004; Loss et al., 2016), changing the C and N distributions, 

as well as the δ13C and δ15N natural abundance values (Bustamante et al., 2004; Costa Junior et 

al., 2011; Loss et al., 2014). Loss et al., (2014) evaluated the natural abundance of δ13C and δ15N 

in soil profiles of areas with different soil use systems in the Cerrado of Goiás and observed that 

the replacement of the original Cerradão vegetation by NTS and CLIS systems changed the δ13C 

signal. Specifically, after 17 years of cultivation, the incorporation of C from grasses in the areas 

produced an increase of the δ13C signal. The authors also reported that the isotopic analysis of δ15N 

indicated higher SOM mineralization with increasing soil depth, and higher rates in cultivated 

areas. 

 
In the state of Goiás (Brazil), 70% of the land is used with pastures (Sano et al., 2008). Pasture 

areas, if well managed, have great potential for SOM addition and may even surpass the values of 

native vegetation areas (Silva et al., 2004). Therefore, they represent good areas for comparing 

SOM management under different land use systems. Some authors have studied NTS with the 

inclusion of pastures (mainly forages of the genus Urochloa) in crop and animal component 

rotation systems, characterizing CLIS (Carvalho et al., 2010; Loss et al., 2012, 2013, Sant-Ana et 

al., 2017). Nevertheless, long-term studies with CLIS are still necessary to provide technical–

scientific foundations for the advancement of knowledge and research on the dynamics of different 

SOM fractions in this system, ultimately seeking soil conservation. The objectives of this study 

were: (a) to quantify plant residues on the soil; (b) to quantify TOC and TN soil contents and 
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different SOM fractions; and (c) to determine the isotopic composition of 13C and 15N in soil and 

plant residues in CLIS, pasture, and Cerrado areas, in the state of Goiás (Brazil). 

 
2. Material and Methods 

 
2.1. Location and History of The Areas 

 
The study was conducted in the municipality of Montividiu - GO, at Fazenda Vargem Grande, 

which belong to the company Agropecuária Peeters (macroregion of Rio Verde - GO; Figure 1).  

 

 
Figure 1: Location of the municipality of Montividiu (GO) within the Brazilian geographical 

context. 

 

Plant residues and soil samples were collected in three different areas in 2010, namely, a crop area 

(S 17° 19′ 35.5′′ and W 51° 29′ 29.7′′, altitude of 961 m) under the no-tillage system and CLIS 

with 13 years of implantation, a pasture area with Urochloa decumbens Stapf (S 17° 22′ 04.5′′ and 

W 51° 29′ 52.7′′; altitude of 946 m) and 15 years of implantation, and a native Cerrado area (S 17° 

22′ 12.2′′ and W 51° 29′ 49.8′′; altitude of 942 m), representing the original conditions of the soil. 

The soils of the study areas are the same, rated as Dystrophic Oxisols with clayey texture. The soil 

fertility attributes of the studied areas are shown in Table 1. 

 

Table 1: pH values, nutrients, H + Al, and remaining phosphorus (P rem) in different soil 

management systems in the Cerrado, Montividiu, GO, Brazil. 

Evaluated 

systems 

pH 

(H2O) 

Ca Mg K Al H+Al Pava Prem 

------------ cmolc kg-1 ------------ ---mg kg-1--- 

0–5 cm 

Pasture 4.97 2.94 5.20 0.12 0.00 8.29 2 24.28 

CLIS 5.65 2.52 7.50 0.16 0.00 6.76 8 25.66 

Cerrado 4.16 3.08 5.30 0.13 0.41 15.09 2 20.89 

 5–10 cm 

Pasture 4.77 2.50 3.56 0.07 0.00 9.11 4 21.98 

CLIS 5.36 2.40 5.58 0.08 0.00 7.51 10 25.50 

Cerrado 3.93 0.68 1.06 0.08 0.41 11.97 1 19.87 
CLIS: Crop–livestock integration system. None of the areas presented detectable sodium (Na) levels; Ca: 

exchangeable calcium; Mg: exchangeable magnesium; K: exchangeable potassium; H + Al: potential acidity; Al: 

exchangeable aluminum; Pava: available phosphorus; Prem: remaining phosphorus. 

 

http://www.granthaalayah.com/


[Loss et. al., Vol.7 (Iss.8): August 2019]                                                  ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

                                                                                                                                        DOI: 10.5281/zenodo.3381320 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [224] 

 

The mean annual precipitation of the Rio Verde and Montividiu region is 1700 mm and the mean 

annual temperature is 22.5 °C, with the existence of rainy and dry seasons. The Figure 2 shows the 

climatic pattern in 2009 (year before collection) and 2010 (samples were collected in April 2010). 

This information indicates that the period of 2009 to 2010 had an above average precipitation 

volume, especially from December to April. 
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Figure 2: Climatic normals of rainfall (series from 1997 to 2010) and average temperature (series 

from 2003 to 2010), and rainfall and average temperature of the years 2009 and 2010 in the 

region of Montividiu-GO, Brazil. (Source: FESURV Meteorological Station - University of Rio Verde 

– GO. Latitude: 17° 48’S; Longitude: 50° 55’W, Rio Verde - GO). 

 

The area with CLIS has been used for production for 26 years (since the 1984/85 crop harvest) and 

was previously composed of native vegetation (Cerradão). A palisade grass (Urochloa decumbens 

Stapf) pasture was introduced during early exploitation for beef cattle breeding and remained for 

a 10-year period (1984/85 to 1993/94). After this period, the area was exploited by grain crops for 

16 years (1994/95 to 2009/10). The conventional tillage system (CTS) was used in the first 3 years 

after grazing (1994/95 to 1996/97), when CLIS was implemented in the area (1997/98 to 2009/10), 

amounting to 13 years of use. 

 
As previously described, the area was exploited for cropping for 16 years (1994/95 to 2009/10). 

During the first 13 years (1994/95 to 2006/07) after that period, the area was always used with 

crop rotation, cultivating soybean in summer (between October and February) and corn in winter 

(between February and June). Urochloa ruziziensis (Germain et Evrard) was sown along with 

winter corn to increase haystack production, which was used for grazing beef cattle in the dry 

period (June to September), thus, following a CLIS (Figure 3). 
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Figure 3: Land use history in the different areas evaluated in Montividiu, GO, Brazil. CLIS: 

crop-livestock integration; CTS: conventional tillage system. 

 

New crops were introduced in the rotation system during the 2007/2008 harvest, with cotton being 

cultivated between November 2007 and August 2008. Soybean was grown during the 2008/2009 

harvest. Beans were grown between September and December during the 2009/2010 harvest, 

followed by cotton (December 2009 to August 2010). The samples were collected when cotton 

was being cultivated (April 2010). It is noteworthy that winter corn crops were always cultivated 

along with Brachiaria. 

 
The pasture area is composed exclusively of Urochloa decumbens Stapf. and was established 15 

years ago (since 1995). The area was previously occupied by native vegetation (Cerradão). In 

1990/91, rice and soybean started to be cropped in conventional tillage, enduring a period of 5 

years (1990/91 to 1994/95 harvests). During this period, the area received the last applications of 

mineral fertilizers and limestone. Fertilizers and correctives were no longer used in the area after 

1984/85 1990/91 1994/95    2010 

1996/97 

1993/94 

2006/07 

   2010 1984/85 

1984/85    2010 
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pasture implantation. Animal stocking of the pasture was approximately 1.4 animal unit (AU) ha-

1 during grazing, always avoiding animal overcrowding. 

 
The Cerrado area was adopted as a comparative area, being a parameter for the discussion of the 

values observed in the anthropized areas. The crop fertilization management in CLIS has been the 

same throughout the years. However, each crop receives a specific dosage. Thus, the dosages and 

formulations of each crop are: 

1) Soybean: 360 kg ha-1 of 02:20:18 + 20 g ha-1 of Mo + 6 g ha-1 of Co (sowing); 

2) Corn + Brachiaria: 320 kg ha-1 of 08:20:20 + 0.6% Zn (sowing) + 60 kg ha-1 of nitrogen 

approximately 40 days after the corn emergence; 

3) Bean: 400 kg ha-1 of 05:20:10 (sowing) + 40 kg ha-1 of nitrogen at approximately 28 days 

after emergence; 

4) Cotton: 550 kg ha-1 of 10:30:10 (sowing) + 200 kg ha-1 of 20:00:20 at approximately 40 

days after emergence. 

 
The last liming was performed in 2007, by applying 3.0 Mg ha-1 of dolomitic limestone with 82% 

RPTN to increase base saturation to 60%. The mean productivities observed in CLIS until the last 

harvest were as follows: soybean, 3,840 kg ha-1; winter corn intercropped with Brachiaria, 5,922 

kg ha-1; beans, 2,520 kg ha-1; and cotton: 312.0 arrobas ha-1. 

 
Beef cattle are grazed after corn harvest, taking advantage of corn and Brachiaria pasture residues. 

Cattle stay in the area from July to September, i.e., approximately 70 days. Animal stocking during 

this period is approximately 8.0 AU ha-1. 

 
2.2. Sample Collection and Preparation 

 
All soil and plant residues samples were collected in April 2010. For chemical analyses of total 

organic carbon (TOC) and total nitrogen (TN), the samples were collected at depths of 0–5 cm, 5–

10 cm, 10–20 cm, and 20–40 cm with 5 composite samples for each depth, being each composite 

sample formed from 3 simple ones. For the particle size fraction analyses of SOM and light organic 

matter (LOM), only the samples from the 0–5 and 5–10 cm layers were used. To determine the 

δ13C, three trenches were opened in each area up to 100 cm deep. Samples were collected at layers 

0–5, 5–10, 10–20, 20–30, 30–40, 40–60, 60–80, and 80–100 cm. All soil samples were air-dried, 

stripped, and passed through a 2.00 mm mesh to obtain air-dried fine soil (ADFS). The chemical 

and physical analyses were performed using ADFS. 

 
The plant litter in the Cerrado area and the plant residues in the pasture and CLIS areas were 

collected using a metal square (0.50 x 0.50 m; 0.25 m2), with 5 replicates. The plant mass collected 

in the area of the square was taken to the laboratory and dried at 65 °C for 72 h in a forced 

circulation air oven. After dried, the samples were weighed for dry weight estimation (Mg ha-1). 

The samples were subsequently ground and sulfuric digestion was carried out for nitrogen (N), 

phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) determination (Tedesco et al., 

1995). 
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2.3. Laboratory Analysis 

 
Carbon, Nitrogen, And Isotopic 13C/12C and 15N/14N Variation of Soil and Plant Residues  

The soil and plant residues samples were previously macerated in a porcelain mortar and passed 

through a sieve with a 100-mesh opening (150 μm). The TOC, TN, and isotopic 13C/12C and 
15N/14N ratios were determined in this material (15N/14N ratio was determined only for SOM 

fractions). These procedures were performed using an elemental autoanalyzer coupled to a "Carlo 

Erba/Delta Plus" mass spectrometer. The results of the isotopic variation of carbon were expressed 

as δ13C (‰) in relation to the international standard PDB (Pee Dee Belemnite). For nitrogen, the 

results were expressed as δ15N (‰) in relation to atmospheric air (0.3663%). 

 
Light Organic Matter in Water (LOM) 

 
Fifty grams of ADFS were weighed and put in a 250 mL beaker, to which 100 mL of 0.1 mol L-1 

NaOH solution was added. The beaker was allowed to stand for 16 h. After that, the suspension 

was shaken with a glass rod and all material passed through a 0.25 mm sieve, eliminating the whole 

clay and silt fraction (Anderson and Ingram, 1989). Then, the material retained in the sieve (LOM 

and sand) was quantitatively transferred to the beaker and the volume was filled with water. All 

the floated material was carefully passed through a 0.25 mm sieve, in order to separate the LOM 

from the sand fraction. Then, water was again added to the beaker, which was shaken manually to 

resuspend the remaining LOM. The material was slowly poured into a 0.25 mm sieve. This 

procedure was repeated until all the material that floated with the stirring in water was removed. 

The material that was retained in the sieve (LOM) was transferred to aluminum containers 

(previously weighed in a precision scale of 0.0001 g) and taken to a drying oven at 65 °C until 

reaching a constant weight (72 h). The whole set was weighed. Later, the LOM mass was obtained, 

and the C and N contents were determined in this material by the dry combustion method in a C 

and N autoanalyzer at 900 °C (CHN-600 Carlo Erba EA-1110, Italy). The δ13C (‰) and δ15N (‰) 

of the LOM were also determined as described above. With the LOM weight and C and N content 

data, a correction was made for each element as follows: 

 
Corrected C content of the LOM (g kg-1) x LOM in soil (g kg-1)/100 

 
The procedure was carried out in the same way for nitrogen, only replacing the carbon values with 

those of nitrogen. After correction, the carbon and nitrogen values for LOM were obtained. 

 
Particle Size Fractionation of SOM 

Twenty grams of ADFS were weighed, 60 ml of sodium hexametaphosphate solution (5 g L-1) 

were added, and the mix was stirred for 15 h in a horizontal shaker (Cambardella and Elliot, 1992). 

After stirring, the suspension was passed through a 53 μm sieve with the aid of a jet of water to 

remove all the clay and silt. The material retained in the sieve, consisting of the particulate organic 

matter (POM) associated with the sand fraction, was oven dried at 60 °C and its mass was 

quantified. Then, it was macerated in a porcelain mortar and analyzed for TOC and TN contents 

in the autoanalyzer at 900 °C (CHN-600 Carlo-Erba EA-1110, Italy). The δ13C (‰) and δ15N (‰) 

of POM were also determined as described above. The material that passed through the 53 μm 

sieve consisted of organic matter associated with minerals (MOM) of the silt and clay fractions. 

Finally, the difference between TOC/TN and C and N of the POM contents were obtained and a 
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weight correction was performed. After analyzing the TOC and TN contents in the POM, a 

calculation was made with the percentage of material retained in the 53 μm sieve as follows: 

 
Corrected C content of the POM (g kg-1) = C of POM (g kg-1)/100 

 
The procedure was carried out in the same way for nitrogen, only replacing the carbon values with 

nitrogen values. After correcting the C and N contents of the POM, the C and N of the MOM were 

calculated as the difference between the soil TOC and POM values, and total soil N and N of the 

POM for carbon and nitrogen, respectively. 

 
After correcting the carbon and nitrogen values of the POM and LOM, a new correction was made 

for the physical particle size fraction of the SOM as follows: 

 
[ corrected C − POM (g kg − 1)] − [corrected C − LOM (g kg − 1)]

= adjusted C − POM (g kg − 1) 

 
At the end, three physical fractions of the SOM were obtained: 

1) C-LOM: carbon of light organic matter in water; 

2) C-POM: carbon of particulate organic matter; 

3) C-MOM: carbon of organic matter associated with minerals. 

 
The same procedure was performed to calculate the physical fraction of nitrogen. 

 
2.4. Statistical Analyses 

 
The areas evaluated in this study are under the same topographic and edaphoclimatic conditions, 

differing only in relation to land use system. Therefore, the design was completely randomized 

and consisted of three areas (pasture, CLIS, and Cerrado). The Lilliefors test was used to evaluate 

the normality of errors and the Cochran test to evaluate homogeneity of variances. Afterwards, the 

data were submitted to the F test through analysis of variance (ANOVA). Significant data in the F 

test at a 5% significance level had their means compared by the multiple-comparison Tukey test 

considering the same significance 5%. These procedures were performed using the software SAEG 

(2007). 

 

3. Results and Discussion 

 
3.1. Plant Residues: Quantification of Phytomass, Macronutrients, and Origin Of Δ13c 

 
Plant residues differed among samples, with higher values for the Cerrado and CLIS areas and 

lower values for the pasture area (Table 2). Higher contribution of plant residues was recorded in 

CLIS than in the pasture area and can be related to better soil fertility conditions in the former 

(Table 1), which favors plant growth and subsequent input and surface accumulation. The high 

production of plant litter in the Cerrado area is attributed to greater climatic stability under the tree 

canopy and the absence of anthropogenic intervention. 
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Table 2: Phytomass in areas with different land use and management systems in Montividiu - 

Goiás, Brazil. 

Evaluated areas  Dry Phytomass (Mg ha-1) 

Pasture 2.56 b 

CLIS 4.25 a 

Cerrado 5.55 a 

CV (%) 21.06 
Means followed by the same letters in the column do not differ in the Tukey test at a 5% significance level. CV: 

coefficient of variation; CLIS: crop–livestock integration system. 

 

The similarity between phytomass values in CLIS and Cerrado shows the influence that CLIS, 

when handled properly, has on the input of plant residues to the soil surface. These values are of 

fundamental importance in agricultural systems of the Cerrado, because the high rate of 

decomposition of plant residues in this biome has hindered the maintenance of ideal amounts of 

phytomass in soil surface for the correct development of NTS (Boer et al., 2007; Torres et al., 

2008; Loss et al., 2016). Therefore, the use of pastures with forage grasses, such as Brachiaria, 

can increase phytomass production and positively contribute to carbon dynamics and nutrient 

cycling. 

 
Table 3 shows the total phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) 

contents in plant litter and residues in the evaluated areas. The pasture area showed the highest 

contents of P, K, and Mg, while CLIS showed the lowest Ca and Mg contents. In the Cerrado area, 

the highest Ca and lowest P contents were observed. The lowest P content in the Cerrado area 

could be due to lower availability of total phosphorus, since the other areas had previously received 

phosphate fertilization. In general, plant residues from the pasture area had the highest nutrient 

content, which is attributed to earlier stages of decomposition, since live and dead forage 

(haystack) were collected in the pasture samples. Contrarily, practically all the material was on the 

soil in CLIS, presenting more advanced stages of decomposition of plant residues (visual 

observation), which were composed mainly of corn stalks. 

 
Table 3: Total phosphorus, potassium, calcium, and magnesium contents in plant litter and 

residues of the areas under different land use systems and management in the Cerrado area, 

Goiás, Brazil. 

Evaluated areas 
P K Ca Mg 

----------------------------------- mg kg-1 ----------------------------------- 

Pasture 1931 a 8438 a 3012 b 6247 a 

CLIS 1086 b 3640 b 1500 c 2125 c 

Cerrado 600 c 4469 b 4544 a 2998 b 

CV (%) 9.56 9.62 10.80 5.75 
Means followed by the same letters in the column do not differ in the Tukey test at a 5% significance level. CLIS: 

crop–livestock integration system; CV: coefficient of variation 
 

The high amount of nutrients found in the pasture compared to CLIS may be due to higher contents 

of low molecular weight components, such as sugars, amino acids, and proteins, since green and 

dry mass were collected in the pasture, leading to faster decomposition in the initial period and 

greater nutrient release. The decomposition rate decreases over time due to the accumulation of 
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recalcitrant components, such as lignin, tannins, and cellulose (Giacomini et al., 2003; Lupwayi et 

al., 2007). In addition, there was much more dry material (corn stalks) in CLIS, which is richer in 

recalcitrant materials. 

 
It is important to highlight that CLIS holds a great variation of plant species and undergoes 

fertilization. For different species, organic residues with different resistance to decomposition 

(Crusciol et al., 2005) and different levels of recalcitrance are observed (Giacomini et al., 2003). 

Hence, nutrient cycling in CLIS depends on the plant residues remaining on the soil surface 

(soybean/corn/Brachiaria/beans/cotton), which represent important nutrient reserves. The 

availability of these nutrients can be rapid and intense or slow and gradual, depending on the 

interaction between climatic factors like precipitation and temperature, which are contrasting 

during summer and winter in the Cerrado (Figure 2), and factors related to the biological activity 

of the soil and the quality and quantity of residues (Heltz et al., 2014). 

 
Table 4 shows the carbon (C), nitrogen (N), δ13C, and C/N ratio values of plant litter and residues. 

The C and N values showed differences in all areas, with higher values for the Cerrado area (486.28 

g kg-1), followed by pasture (425.51 g kg-1), and CLIS (364.35 g kg-1). On the other hand, N values 

were also higher for the Cerrado area (13.69 g kg-1) followed by CLIS (11.53 g kg-1) and pasture 

(5.08 g kg-1) areas (Table 4). 

 
Table 4: Carbon, nitrogen, δ13C, and C/N ratio of plant residues and litter in different soil 

management systems in the Cerrado of the state of Goiás. 

Evaluated areas 
C N δ13C 

C/N 
---------- g kg-1 ---------- ------ ‰ ------ 

Pasture 425.51 b 5.08 c -12.25 a 83.84 a 

CLIS 364.35 c 11.53 b -15.33 b 31.64 c 

Cerrado 486.28 a 13.69 a -28.67 c 35.62 b 

CV (%) 2.06 5.23 -6.25 3.24 
Means followed by the same letters in the column do not differ in the Tukey test at a 5% significance level. C: carbon; 

N: nitrogen; C/N: carbon/nitrogen ratio; CLIS: crop–livestock integration system; CV: coefficient of variation. 

 

The lower N content in the plant residues of the pasture area provided a high C/N ratio (83.84) 

different to the other areas. In CLIS and Cerrado, differences were also observed, with the C/N 

ratio found in the Cerrado area (35.62) being higher than the ratio recorded for the CLIS (31.64; 

Table 4). Thus, plant residues from the pasture area tend to have greater resistance to 

decomposition, resulting in slower carbon cycling in the soil–plant–atmosphere system. In 

contrast, a more intense land use is observed in CLIS, enabling faster C and N cycling in this 

system. Moreover, the addition of N in CLIS via mineral fertilization should be emphasized, as it 

increases both the aerial and root biomass of forage, which in turn promotes a biological plowing 

in soil due to abundant and aggressive root systems. Thus, residual nutrients left by preceding 

crops are recycled, especially N in CLIS (Heltz et al., 2014). According to Heltz et al. (2014), 60% 

to 70% of the N found in plant biomass can be recycled and reabsorbed by plants in the following 

crop. These data differentiate CLIS from other land use systems, due to the combination and 

maintenance of large amounts of haystack (mainly Brachiaria in the Cerrado) on the soil, which 

supplies N for the succeeding culture (Loss et al., 2012b). 
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The δ13C differed among all areas, according to the different origins of plant materials (C3 or C4 

photosynthetic mechanisms). In C3 plants, the isotopic composition (δ13C) ranges from -24 to -34 

‰, while in C4 plants, the δ13C composition varies from -6 to -19 ‰ (Smith and Epstein, 1971). 

Therefore, a prevalence of C4 plants, in this case grassy species (Brachiaria), can be inferred in 

the pasture area, which presented a value of -12.25 ‰. The δ13C value of CLIS (-15.33 ‰) also 

indicates the presence of residues of plants with C4 photosynthetic mechanisms, probably remnant 

plant residues from corn and Brachiaria used in the crop rotation system. The difference found 

between δ13C values recorded for CLIS and pasture is due to the presence of plants with a C3 

mechanism (soybean and beans) in CLIS. In the Cerrado area, the δ13C value (-28.67 ‰) indicates 

the prevalence of litter of plants with C3 photosynthetic mechanism (Table 4). Some studies have 

reported that C3 plants prevail in the Cerradão vegetation (Pessenda et al., 1996; Roscoe et al., 

2000; Loss et al., 2012b). 

 
3.2. Source of SOM (Δ13C) 

 
The natural abundance of δ13C in the evaluated areas for depths up to 100 cm is shown in Figure 

4. The δ13C values for the surface layer of the Cerrado area (± -27 ‰) show the prevalence of C3 

plants. However, there is a gradual and constant increase of the δ13C values (± -20 ‰) with depth. 

This shows that this Cerrado area, whose specific local vegetation is Cerradão, possibly had plants 

with C4 mechanisms several years ago (centuries), which is a typical characteristic of the Cerrado 

(Balesdent and Mariotti, 1996). 
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Figure 4: Natural abundance of 13C in soils from pasture, CILS and native Cerrado areas up to 

100 cm deep. Average of three replicates. Error bars indicate the standard errors of the averages. 

CILS: crop-livestock integration system. 
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The pasture area showed constant δ13C values, from 5 to 100 cm, with values near -17 ‰. The 

enrichment of δ13C is higher only in the superficial layer of 0–5 cm, with values near -15 ‰ (Figure 

4). This shows a considerable prevalence of C4 plants in this area. Through its residues, mainly via 

rhizodeposition, the pasture area has replaced most of the carbon that was withdrawn from the 

Cerradão vegetation from 1990 (to implant grain crops, rice, and soybean) until Brachiaria 

introduction in 1995 (Figure 3). After 1995, there were no more vegetation changes. 

 
Intermediate δ13C values to those found in Cerrado and pasture areas are observed in CLIS (Figure 

4). This pattern is also shown in Table 4 considering the δ13C of plant residues. The δ13C values 

indicate that this area was subject to different successions of plant species, as depicted in the 

history of use of the area (Figure 3). The superficial layers (0–30 cm) show the transition from C4 

to C3 plant species (Figure 4). However, the δ13C values on the surface (± -21 ‰) do not indicate 

the prevalence of any species. This relates to the replacement of pasture (C4) by agricultural crops, 

mainly soybean (C3 plant). Beans and cotton (C3 plants) have also been introduced in the crop 

rotation system. Some similarities in δ13C enrichment between CLIS and pasture areas is observed 

in the 20–40 cm layers (Figure 4). This relates to the period in which the area was used exclusively 

as pasture (Figure 3). In the 60–100 cm layers, values like those observed in the Cerrado area 

(Figure 4) were obtained, indicating that this area, in accordance with land use history (Figure 3), 

had native Cerrado vegetation before the exclusive cultivation of pasture in CLIS. In general, a 

convergence in the enrichment of δ13C is observed in the 80–100 cm layer in all the evaluated 

areas. This shows that before the areas were anthropized, the vegetation of the studied sites had 

similar characteristics, especially the Cerrado and CLIS areas, which presented the same δ13C 

values in the 80–100 cm layer. 

 
The δ13C values of CLIS and pasture areas up to the 80 cm depth were compared with those 

obtained for the Cerrado area, showing an isotopic enrichment (less negative carbon values) in 

CLIS and pasture areas (Figure 4). These results indicate the substitution of carbon from the 

Cerrado vegetation (typically C3) by a new carbon, from vegetation with C4 photosynthetic 

mechanisms, such as Brachiaria and corn. Similar results were reported by Loss et al., (2014), 

who evaluated δ13C in soil up to 100 cm depth in CLIS (corn + Brachiaria/beans/cotton/soybean) 

and Cerrado in the state of Goiás. The authors found δ13C values ranging from -26.26 ‰ (0.0–10.0 

cm) to -23.02‰ (80.0–100.0 cm) in the Cerrado and -17.53 to -15.50 ‰ in CLIS up to 50 cm. 

Then, an isotopic decrease was observed, with values ranging from -16.07 to -17.43 ‰ in CLIS 

up to 100 cm. 

 

3.3. Total Organic Carbon (TOC) and Total Nitrogen (TN) of the Soil 

 
The TOC and TN contents presented similar patterns at soil depths of 0–5 and 5–10 cm in the 

evaluated areas. The highest values were observed in the Cerrado, and the lowest values in CLIS 

and pasture areas, without differences between the latter (Table 5). The highest TOC and TN 

contents recorded in the Cerrado area are a consequence of higher C and N contents of the plant 

litter of Cerrado vegetation (Table 3), since plant litter is the most relevant compartment for C and 

N input when comparing with the other land use systems. However, the absence of differences 

between TOC and TN contents when comparing CLIS and pasture areas shows the stability of 

TOC and TN in CLIS, since areas with well managed pastures are considered systems with great 

stability regarding carbon and nitrogen dynamics (Corraza et al., 1999; Salton et al., 2011). It 
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should be noted that the pasture area of this study was formed 15 years ago and has been managed 

in a grazing system suitable for the productive capacity of the area, always avoiding excessive 

grazing. 

 
Table 5: Total organic carbon, nitrogen, and carbon/nitrogen ratio in different soil management 

systems in the Cerrado of the state of Goiás, Brazil. 

Evaluated areas 

TOC TN 
C/N 

-------------------- g kg-1 -------------------- 

0–5 cm 

Pasture 36.43 b 1.94 b 18.84 a 

CLIS 29.61 b 1.69 b 17.55 b 

Cerrado 65.40 a 3.45 a 18.99 a 

CV (%) 13.61 14.70 2.26 

 5–10 cm 

Pasture 24.20 b 1.24 b 19.47 a 

CLIS 24.27 b 1.32 b 18.33 b 

Cerrado 33.61 a 1.93 a 17.39 b 

CV (%) 8.33 8.03 3.60 

 10–20 cm 

Pasture 18.34 c 0.94 b 19.48 b 

CLIS 23.49 b 1.11 b 21.13 a 

Cerrado 30.15 a 1.69 a 17.75 c 

CV (%) 12.21 9.68 3.96 

 20–40 cm 

Pasture 16.45 a 0.83 b 19.83 ab 

CLIS 17.46 a 0.88 ab 19.94 a 

Cerrado 16.48 a 1.01 a 16.62 b 

CV (%) 6.29 11.37 10.26 
Means followed by the same letters in the column do not differ in Tukey test at a 5% significance level; TOC: total 

organic carbon; TN: total nitrogen; C/N: carbon/nitrogen ratio; CV: coefficient of variation; CLIS: crop–livestock 

integration system 

 

At a depth of 10–20 cm, CLIS presented higher TOC contents than pasture (Table 5). This shows 

the positive effects of CLIS, since carbon input occurs through plant residues of the crops, as well 

as via rhizodeposition of Brachiaria and waste of animals during grazing. Forage grasses have the 

potential to store most of the carbon below the surface (Salton et al., 2011), since pasture roots 

have a large capacity to accumulate carbon in the soil (Lal, 2002). This pattern is also shown in 

the 20–40 cm layer, where no differences were observed in TOC levels among the evaluated areas 

(Table 5). The CLIS developed in the NTS favors increased input of plant residues to the soil using 

crops and pastures, which provides increased TOC contents and stocks, especially in production 

systems that do not use pastures in the rotation of cultures (Loss et al., 2012a; Heltz et al., 2014). 

The TN values were higher for the Cerrado area in all soil layers evaluated, with the exception of 

the last layer (20–40 cm), where CLIS did not differ from the Cerrado area. No differences were 

found between TN contents of CLIS and pasture areas. As recorded for TOC, the NT contents in 

the 20–40 cm layer in CLIS did not differ from those found in pasture and Cerrado areas (Table 
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5). This is due to the similarity between TOC and TN dynamics in the soil, where only the 

mechanisms of additions and losses vary (Bayer et al., 2000; Lovato et al., 2004). 

 
The C/N ratio was lower at the depth of 0–5 and 5–10 cm in CLIS but did not significantly differ 

from the 5–10 cm layer of the Cerrado area. The lowest C/N ratio in the 10–20 and 20–40 cm 

layers was observed for the Cerrado area, although it did not differ from the 20–40 cm layer of the 

pasture area. The C/N ratio of the Cerrado area decreased with increasing depth, which can be 

explained by the higher stability of humic compounds in deeper layers, in addition to higher N 

contents present in the plant litter (Table 4). The C/N ratio in the 0–5 and 5–10 cm layers was 

higher in the pasture area than in CLIS (Table 5). This is a consequence of the origin of plant 

residues in the pasture, which have lower N contents and high C/N ratio (Table 4). 

 
The variation found in CLIS for C/N ratio values is possibly related to the different origins of 

organic residues in the area. In other words, different cultivated crops (soybean, beans, corn, 

cotton, and Brachiaria) could be under the influence of Brachiaria through a root system at greater 

depths, resulting in the higher C/N ratios, as well as higher TOC contents observed in the 10–20 

cm layer. This is supported by the similarity between C/N ratios of CLIS and pasture areas in the 

20–40 cm layer. It is also believed that higher C/N ratios at greater depths in CLIS are consequence 

of faster carbon dynamics, which in turn reduce humification rates of SOM. Similar C/N ratio 

values to those of this study were reported by Loss et al., (2012a), who recorded values of 21 and 

18 at the depths of 20–30 and 30–40 cm, respectively, in CLIS; and 12.5 at both depths, in the 

Cerrado of Goiás, Brazil. 

 
3.4. Light Organic Matter: Mass Quantification and C and N Content 

 
The Cerrado area presented the highest mass values of light organic matter (M-LOM) at the two 

evaluated depths (Table 6). These values are consequence of the higher contribution of plant litter 

in this area (Table 2), which is associated with an environment with high-volume of roots from 

natural vegetation. The plants of the natural vegetation form a large network of fine roots, 

especially in the superficial layer, to absorb nutrients provided by the plant litter (Menezes et al., 

2010). 

 
Table 6: Mass of light organic matter (M-LOM) in water under different soil management 

systems in the Cerrado of the state of Goiás, Brazil. 

Evaluated areas M-LOM 

0–5 cm 5–10 cm 

------------------------- g kg-1 ------------------------- 

Pasture 5.16 b 4.51 b 

CLIS 4.77 b 1.59 c 

Cerrado 22.38 a 8.51 a 

CV (%) 15.90 25.76 
Means followed by the same letters in the column do not differ by Tukey test at a 5% significance level; CV: 

coefficient of variation; CLIS: crop–livestock integration system. 

 

The obtained M-LOM values for CLIS and pasture areas did not differ at the depth of 0–5 cm. 

However, a lower M-LOM value was observed for CLIS at the depth of 5–10 cm. This can be 
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attributed to the lower C/N ratios of LOM (Table 7) and plant residues in this area than in the 

pasture and Cerrado areas (Table 2). The similarity of M-LOM values between CLIS and pasture 

in the 0–5 cm layer may be related to the presence of grasses (such as corn and Brachiaria) in the 

crop rotation system of CLIS. These plants have higher C/N ratios, and thus longer residence time 

in the soil. This was also observed by Loss et al., (2012b) when studying M-LOM in CLIS, NTS, 

and native Cerrado of the state of Goiás with Dystrophic Oxisols. The authors found higher M-

LOM values in CLIS and Cerrado than in NTS, which did not use Brachiaria in crop rotation. 

 
Comparing CLIS and pasture areas in the 5–10 cm layer, higher values of M-LOM are observed 

in the pasture area because it presents a root system with large number of fine roots, associated 

with forage permanence in the pasture and adequate grazing in the area. 

 
The carbon contents of LOM (C-LOM) did not differ among areas, in the two evaluated layers 

(Table 7). However, the nitrogen contents of LOM (N-LOM) differed among all the evaluated 

areas, showing the same pattern in the two evaluated layers. The highest N-LOM values were 

observed in CLIS and the lowest values in the pasture area. 

 
Table 7: Carbon (C), nitrogen (N), and C/N ratio values for light organic matter (LOM) of the 

soil in areas of different management systems. 

Attributes Depth (cm) 
Evaluated areas 

CV (%) 
Pasture CLIS Cerrado 

C-LOM (g kg-1) 
0–5 276.72 a 291.74 a 314.58 a 9.29 

5–10 283.59 a 288.97 a 321.29 a 10.48 

N-LOM (g kg-1) 
0–5 6.87 c 16.33 a 9.51 b 11.70 

5–10 6.81 c 16.08 a 12.77 b 10.13 

C/N-LOM 
0–5 40.34 a 17.83 c 24.86 b 8.46 

5–10 41.62 a 17.99 c 25.28 b 4.17 
Means followed by the same letter in the row do not differ in the Tukey test at a 5% significance level. CV: coefficient 

of variation; CLIS: crop–livestock integration system. 

 

The higher N-LOM values recorded in CLIS are possibly related to the nitrogen fertilization 

carried out in agricultural crops. This practice enables part of the applied N to remain in the culture 

residues, including the LOM. Furthermore, soybean cultivation increases soil N through biological 

fixation. In addition to the increased N in CLIS, the use of grasses such as Brachiaria can extract 

nutrients from the soil at greater depths, which then are released at the soil surface during the 

decomposition of the grasses, may also produce higher N-LOM values in CLIS. 

 
In the Cerrado area, it is possible that the presence of native plants (leguminous crops), with 

biological fixation potential, are assisting in the maintenance of N and its dynamic in this native 

area. Variations in C/N ratios were recorded among all areas due to N-LOM differences (Table 7). 

The highest C/N ratios were observed in the pasture area, followed by the Cerrado and CLIS areas. 

This difference causes an important impact on the carbon dynamics among areas, being more 

intense in areas with lower C/N ratios (CLIS). Similar results were reported by Loss et al (2012b) 

in CLIS and Cerrado areas in Goiás. The authors found mean C-LOM values of 315 and 340 g kg-

1, mean N-LOM values of 16.0 and 15.0 g kg-1, and mean C/N values of 18.0 and 23.0 for the CLIS 

and the Cerrado areas, respectively, in the 0–10 cm layer. 
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3.5. Physical Particle Size Fractionation of SOM: Quantification and Contribution of C 

and N Contents 

 
The carbon (Table 8) and nitrogen contribution values (Table 9) from the physical particle size 

fractions (in relation to the TOC) had a similar pattern in the 0–5 cm layer. However, the Cerrado 

area differed from the others, presenting the highest values. The higher values in the Cerrado are 

attributed to the greater contribution of plant litter (Table 1) and lack of anthropic disturbances in 

this area. Salton et al. (2011) studied Cerrado areas in the state of Mato Grosso do Sul and 

concluded that higher amounts of organic matter of higher lability (C-LOM and C-POM) are 

associated with higher inputs of plant material. 

 
Table 8: Carbon contribution from the physical particle size fractions regarding the total organic 

carbon (TOC) under different soil management systems in the Cerrado of the state of Goiás, 

Brazil. 

Evaluated areas 

C-LOM C-POM C-MOM TOC 

------------------------------ g kg-1 ------------------------------ 

0–5 cm 

Pasture 1.59 (4.3) b 6.70 (18,4) b 28.18 (77.3) b 36.43 b 

CLIS 1.37 (4.6) b 6.34 (21,5) b 21.88 (73.9) b 29.61 b 

Cerrado 7.01 (10.7) a 16.37 (25.0) a 42.02 (64.3) a 65.40 a 

CV (%) 14.57 25.96 19.54 13.61 

 5–10 cm 

Pasture 1.28 (5.3) b 7.21 (29.8) b 15.70 (64.9) b 24.20 b 

CLIS 0.45 (1.9) c 2.91 (12.0) c 20.91 (86.1) a 24.27 b 

Cerrado 2.72 (8.1) a 9.79 (29.1) a 21.09 (62.8) a 33.61 a 

CV (%) 25.42 23.03 11.79 8.33 
Means followed by the same letter in the column of each depth do not differ in the Tukey test at a 5% significance 

level. The values between parentheses are the percentage of carbon of the fraction regarding TOC. CLIS: livestock 

farming a system; C-LOM: light organic carbon; C-POM: particulate organic carbon; C-MOM: organic carbon 

associated with minerals; CV: coefficient of variation. 

 

No differences in carbon and nitrogen values between pasture and CLIS areas in the 0–5 cm layer 

were observed in all evaluated fractions. For CLIS, this can be considered a great benefit regarding 

the increase of labile fractions of SOM, since the pasture area keeps the soil permanently covered, 

in addition to the appropriate grazing. However, CLIS undergoes stages in the productive process 

that favors SOM decomposition, such as the desiccation of cover crops and sowing. The 

inadequate increase of organic matter (C-LOM and C-POM) leads to reduced TOC, which reduces 

quality and increases degradation of the soil (Causarano et al., 2008). 

 
The percent distribution of the different carbon forms showed a similar pattern in the two 

anthropized areas. These values are approximately 4.5%, 20%, and 75% for the fractions C-LOM, 

C-POM, and C-MOM, respectively (Table 8). The carbon values of the fractions were also higher 

for the Cerrado area in the 5–10 cm layer but did not differ from CLIS for the C-MOM. These 

higher C-MOM values in CLIS and Cerrado areas can be due to greater phytomass accumulation 

in these areas (Table 2), which leads to more intense cycling due to lower C/N ratio values of plant 

residues (Table 3) and LOM (Table 7). More humidified organic compounds, such as C-MOM, 

can be formed with higher carbon cycling and higher N contents (Tables 3 and 7). The carbon 
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contents of the physical fractions of the pasture and CLIS areas in the 5–10 cm layer showed lower 

values for C-LOM and C-POM in CLIS (Table 8). These differences may be due to the greater 

susceptibility of the C-POM and C-LOM fractions to variations imposed by the soil management 

when compared to TOC and C-MOM. In addition, CLIS holds more nitrogen-rich plant residues 

(Table 4), as well as higher N levels in LOM (Table 7), which leads to lower C/N values in CLIS 

than in pasture. This foster higher C and N cycling in LOM and POM in CLIS than in pasture. 

Some studies (Rangel and Silva, 2007; Pereira et al., 2010; Frazão et al., 2010) have suggested 

greater sensitivity of lighter fractions of SOM to soil management. 

 
The nitrogen fractions presented greater variation than the carbon fractions in the percentage 

distribution for the 0–5 cm layer. In CLIS, nitrogen participation in forms associated with the most 

labile fractions (N-LOM and N-POM) was higher than the fractions of the pasture area (Table 9). 

This is probably due to the use of nitrogen fertilization and cultivation of leguminous plants 

(soybeans and beans) in the crop rotation system, which provide more nitrogen-enriched residues. 

 
Table 9: Nitrogen contribution of the physical particle size fractions regarding total nitrogen 

(TN) under different soil management systems in the Cerrado of the state of Goiás, Brazil. 

Evaluated areas 

N-LOM N-POM N-MOM TN 

------------------------------ g kg-1 ------------------------------ 

0–5 cm 

Pasture 0.04 (2.0) b 0.38 (19.6) b 1.52 (78.4) b 1.94 b 

CLIS 0.08 (4.6) b 0.40 (23.7) b 1.21 (71.7) b 1.69 b 

Cerrado 0.28 (8.2) a 1.02 (29.5) a 2.15 (62.3) a 3.45 a 

CV (%) 20.62 15.51 20.17 14.70 

 5–10 cm 

Pasture 0.03 (2.5) b 0.34 (27.4) b 0.87 (70.1) c 1.24 b 

CLIS 0.03 (1.9) b 0.17 (12.7) c 1.13 (85.4) b 1.32 b 

Cerrado 0.12 (5.6) a 0.51 (26.5) a 1.31 (67.9) a 1.93 a 

CV (%) 28.74 21.14 9.00 8.03 
Means followed by the same letter in the column of each depth do not differ in the Tukey test at a 5% significance 

level. The values between parentheses represent the percentage of nitrogen of the fraction in relation to TN. CLIS: 

crop–livestock integration system; N-LOM: nitrogen of light organic matter; N-POM: nitrogen of particulate organic 

matter; N-MOM: nitrogen of organic matter associated with minerals; CV: coefficient of variation. 

 

No differences were observed between N-LOM, N-POM, and N-MOM for the 0–5 cm soil surface 

layer of CLIS and pasture areas, a pattern similar to the one recorded for carbon. In CLIS, this is 

related to nitrogen fertilization and crop rotation, while in pasture, it is related to the continuous 

use of Brachiaria and proper grazing. When compared with the pasture area, CLIS presented 

similar N-LOM, lower N-POM, and greater N-MOM values in the 5–10 cm layer (Table 9). The 

CLIS showed the lowest C-MOM variation between the 0–5 and 5–10 cm layers. Also, CLIS 

showed higher C-MOM levels than the pasture area. Carbon and nitrogen tended to prevail in 

MOM form in CLIS, especially in the 5–10 cm layer. This is due to the higher resistance of this 

fraction to management practices despite of the lower resistance of LOM and POM fractions. 

 
The C/N ratio of the LOM fraction (CN-LOM) has been previously discussed (Table 7). The C/N 

ratio of POM (CN-POM) and of MOM (CN-MOM) did not differ between areas in the 0–5 cm 

layer (Table 10). The 5–10 cm layer of the pasture area presented the highest CN-POM values. 
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Also, it higher CN-MOM values than the Cerrado. The higher C/N ratios in the pasture area are 

explained by the higher C/N ratio of plant residues (Table 4). 

 
Table 10: Carbon/nitrogen ratio (C/N) of the soil physical particle size fractions under different 

management systems in the Cerrado of the state of Goiás, Brazil. 

Evaluated areas CN-LOM CN-POM CN-MOM CN-S 

------------------------------ g kg-1 ------------------------------ 

0–5 cm 

Pasture 40.34 a 17.69 a 18.64 a 18.84 a 

CLIS 17.83 c 15.97 a 18.06 a 17.55 b 

Cerrado 24.86 b 15.94 a 19.63 a 18.99 a 

CV (%) 8.46 11.32 5.62 2.26 

 5–10 cm 

Pasture 41.62 a 20.97 a 18.08 a 19.47 a 

CLIS 17.99 c 17.48 b 18.46 a 18.33 b 

Cerrado 25.28 b 19.05 ab 16.06 b 17.39 b 

CV (%) 4.17 6.35 6.51 3.60 
Means followed by the same letter in the column of each depth do not differ in the Tukey test at a 5% significance 

level. CLIS: crop–livestock integration system; CN-LOM: carbon/nitrogen ratio of light organic matter; CN-POM: 

carbon/nitrogen ratio of particulate organic matter; CN-MOM: carbon/nitrogen ratio of organic matter associated with 

minerals; CN-S: carbon/nitrogen ratio of soil; CV: coefficient of variation. 
 

It is important to note that CN-POM values were proportionally smaller in the 0–5 cm layer than 

in the 5–10 cm layer (Table 10). This can be explained by higher intensity of microbial activity in 

the surface layer (Beutler et al., 2016), with POM being an important nutrient source for soil biota, 

especially of carbon and nitrogen. In the superficial layer, the gas exchange of the soil with the 

atmosphere is more intense. Greater presence of free-living nitrogen-fixing bacteria, which supply 

their carbon requirements from sources such as LOM and POM, may also occur. 

 
The CN-MOM was lower in the Cerrado area (5–10 cm layer) than the pasture and CLIS areas. 

Areas of greater chemical and physical stability in SOM dynamics are expected to have more 

stable carbon in the more recalcitrant fractions of deeper layers (Favoretto et al., 2008). 

 
3.6. Δ13C AND Δ15N of Physical Particle Size Fractions of SOM 

 
The δ13C values of LOM, POM, and soil in the two evaluated layers were all higher in the pasture 

area, followed by CLIS and Cerrado areas (Table 11). As previously discussed (Table 4), the 

prevalence of plants with C4 photosynthetic mechanisms in the pasture area and C3 in the Cerrado 

area is clearly verified. On the other hand, CLIS showed intermediate values, indicating mixed 

occurrences of C3 and C4 plants. Different patterns within each evaluated area regarding the 

variation of δ13C values were observed between LOM, POM, and soil, with more negative δ13C 

values in LOM than in POM and soil in the pasture area. In soil, the δ13C values are higher (more 

negative), but do not differ from POM values in the two evaluated layers. Differences among δ13C 

values of LOM, POM, and soil were observed in the two layers evaluated in the CLIS area, with 

the soil exhibiting the higher values, followed by POM and LOM. The δ13C of soil and LOM 

differed in the Cerrado area, being significantly higher for soil, whereas POM showed intermediate 

values, statistically not differing from soil and LOM δ13C (Table 11). 
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Table 11: Natural abundance of 13C in light organic matter (LOM), particulate organic matter 

(POM), and soil under different management areas in the Cerrado of the state of Goiás, Brazil. 

Evaluated Areas 

LOM POM Soil 
CV (%) 

-------------------- δ13C (‰) -------------------- 

0–5 cm  

Pasture -13.79 aA -14.46 aAB -15.29 aB -3.89 

CLIS -24.17 bC -21.64 bB -20.56 bA -2.41 

Cerrado -28.53 cB -28.18 cAB -27.07 cA -2.18 

CV (%) -1.65 -2.82 -3.58  

 5–10 cm  

Pasture -13.80 aA -15.80 aB -16.84 aB -5.45 

CLIS -24.29 bC -20.96 bB -19.81 bA -1.70 

Cerrado -27.62 cB -27.45 cAB -26.08 cA -2.61 

CV (%) -1.79 -4.04 -3.38  
Means followed by the same lowercase letter in the column and uppercase letter in the row do not differ in the Tukey 

test at a 5% significance level. CLIS: crop–livestock integration system; CV: coefficient of variation. 

 

The δ13C values of the less stable fraction (LOM) tends to be similar to the values observed in 

plant and litter residues of the pasture and Cerrado areas (Table 4). In CLIS, this pattern was not 

observed, since the plant residues showed δ13C of values of 15.33 ‰ and LOM values of 

approximately -24 ‰ (Table 11). This is explained by the dynamism of the crop rotation system 

between C3 (soybean, cotton, and bean) and C4 (corn and Brachiaria) plants. Possibly, LOM 

fractions of this area had higher proportions of fine roots (live and dead) of the cotton crop, which 

was being cultivated at the time of sampling. 

 
The δ13C values of POM fractions showed a pattern similar to those observed in soil. Thus, 

comparing the LOM and POM fractions it is possible to infer that the POM fraction better 

represents the origin of medium-term organic residues, while LOM was efficient to identify the 

origin of short-term. In other words, LOM is associated with the input of recent (new) carbon, 

especially from the plant residues of plants present at the time of soil collection. On the other hand, 

POM, which has already undergone the decomposition of plant residues, represents the carbon that 

has undergone processes of physical and chemical transformation. In general, these studies may 

contribute to the understanding of the stages and variations during the process of decomposition 

of litter and plant residues, which probably undergo different physical and chemical forms within 

SOM dynamics, among which are LOM and POM. 

 
The δ15N of LOM did not differ among areas in the two evaluated layers (p > 0.05). The δ15N of 

POM was higher for the pasture and CLIS areas in the 0–5 cm layer. No differences between areas 

were observed for the 5–10 cm layer (p> 0.05). The δ15N values of the soil were higher for the 

pasture and CLIS areas in the two evaluated layers (Table 12). The higher δ15N values for soil and 

POM in the pasture and CLIS areas may be due to the higher mineralization of SOM and N 

assimilation by plants, as this leads to greater decomposition of the lighter N isotope (14N), leaving 

the remaining SOM with higher δ15N values (Hogberg, 1997). Similar results were found by Costa 

Junior et al., (2011) evaluating the δ15N of the soil of pasture areas, NTS, and Cerrado in GO. 

Lower values were found in the Cerrado (4.30 ‰) than in the pasture (6.30 ‰) and NTS (5.50 ‰). 
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The comparison of the δ15N values of LOM, POM, and soil in each area showed that LOM had 

the lowest δ15N values for the pasture and CLIS areas in both evaluated layers. On the other hand, 

no differences between the LOM and POM fractions and the soil were detected at any depth in the 

Cerrado area (p> 0.05). The POM presented δ15N values similar to those observed for the soil, 

except for CLIS in the 0–5 cm layer, where values for POM were lower than in the soil, but higher 

than in LOM (Table 12). 

 
Table 12: Natural abundance of 15N in light organic matter (LOM), particulate organic matter 

(PMO), and soil under different management areas in the Cerrado of the state of Goiás, Brazil. 

Evaluated Areas 

LOM POM Soil 
CV (%) 

-------------------- δ15N (‰) -------------------- 

0–5 cm  

Pasture 2.14 nsB 4.73 aA 5.05 aA 20.90 

CLIS 2.37 nsC 4.06 aB 5.40 aA 10.25 

Cerrado 2.44 ns 1.78 b ns 3.33 b ns 25.80 

CV (%) 16.99 15.92 13.07  

 5–10 cm  

Pasture 3.50 nsB 5.25 nsA 6.59 aA 14.35 

CLIS 3.99 nsB 6.88 nsA 6.31 aA 9.80 

Cerrado 3.05 ns 3.58 ns 4.83 b ns 29.14 

CV (%) 15.14 25.94 3.40  
Means followed by the same lowercase letter in the column and uppercase letter in the row do not differ in the Tukey 

test at a 5% significance level. ns: not significant to the 5% F test. CLIS: crop–livestock integration system; CV: 

coefficient of variation 
 

Generally, an isotopic enrichment was observed in the pasture and CLIS areas, especially in LOM 

and POM, with greater δ15N values for LOM. This greater isotopic enrichment may be a 

consequence of transformations of N-organic to N-mineral. Thus, as mineralization, nitrification, 

denitrification, and volatilization reactions occur, the remaining organic matter (POM) becomes 

enriched in 15N atoms (Bustamante et al., 2004; Hogberg, 1997). In the 0–5 cm layer of CLIS, the 

pattern regarding the enrichment of δ15N (LOM < POM < Soil) could be due to more intense 

mineralization, nitrification, denitrification, and volatilization reactions occurring in this system 

after nitrogen fertilizers have been added and different plants (grasses and leguminous plants) 

influencing the nitrogen dynamics. 

 
4. Conclusions 

 
The Cerrado and CLIS areas show higher amounts of dry phytomass than the pasture. Plant 

residues from the pasture are richer in P, K, Ca, Mg, and C than CLIS, which is richer in N. 

 
The soil δ13C of pasture and CLIS areas showed a replacement of carbon from the Cerrado 

vegetation (typically C3) by new carbon from vegetation with C4 photosynthetic mechanisms (e.g., 

Brachiaria and corn). 

 
The CLIS and pasture areas do not show differences in TOC and TN contents for the 0–10 cm 

layer. However, CLIS accumulates more TOC than pasture in the 10–20 cm layer. 
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The particle size fractions of carbon (C-POM and C-MOM) and nitrogen (N-POM and N-MOM) 

did not differ between CLIS and pasture areas in the 0–5 cm layer. The CLIS presented lower C-

POM and N-POM values than the pasture in the 5–10 cm layer. Nevertheless, CLIS provides 

higher C-MON and N-MOM values than pasture. The CLIS also provides higher N-LOM levels 

than pasture and Cerrado areas. The particle size fractionation of SOM into LOM, POM, and MOM 

was more efficient than TOC and TN (0–10 cm) for detecting variations among the different land 

uses evaluated in this study. 

 
The δ13C of LOM is related to the most recent origin of carbon (related to current vegetation) in 

comparison to POM and soil. The δ15N of POM and soil of the CLIS and pasture indicates greater 

mineralization of SOM and N assimilation by plants when compared with the Cerrado. 

Additionally, the δ15N showed an isotopic enrichment in CLIS and pasture areas toward LOM in 

contrast to POM and soil. 
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