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Abstract 

A complex network is a complex set composed of several elementary units which have certain 

characteristics and functions and interact with each other. In recent years, the complex network 

has become one of the research hotspots of nonlinear science. Many scholars in the fields of 

control, mathematics, computer, biology and economy have devoted themselves to the research of 

complex networks. This study focuses on the stability of pinning impulse synchronization for the 

directed complex dynamic networks. From the Impulse Control Theory, a simple and general 

synchronization criterion for complex dynamic networks is obtained. Furthermore, the obtained 

results are applied to a small-world network consisting of a convolution neural network (CNN) 

and a Hodgkin-Huxley model neuron oscillator as power nodes. The numerical simulation shows 

the correctness of the obtained theoretical results and the validity of the control method. 
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1. Introduction

In recent years, the pinning control and synchronization of complex dynamic networks have 

attracted wide attention from various fields, such as science and engineering technology [1-2]. In 

particular, the pinning impulse synchronization of complex dynamic networks has become a hot 

topic. There are many important results for pinning impulse control of complex dynamic networks 

with different types and topologies [3-8]. 

Pinning impulse control technology is an easy-to-implement control technology which is superior 

to some successive pinning control schemes and only controls some nodes in the network at some 

discrete times. Generally speaking, it is very difficult to estimate the impulse gain of the coupled 

dynamic networks, that is, the synchronous convergence analysis of the controlled networks is a 
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very challenging task. Recently, in the literature [4, 7], a new analysis method has been proposed 

on the stability of pinning impulse of complex (time-lag) dynamic networks. Some simple and 

general robust synchronization criteria for complex (time-lag) dynamic networks are obtained 

based on local linearization technology. In addition, it is proved that a given network can be 

synchronized to its homogeneous solution by a single impulse controller. In the literature [5], based 

on the observation of the state of all the nodes in the network, the overall synchronization 

convergence criterion of the complex dynamic network is obtained by using the impulse control 

method. Obviously, the control method described above may control all nodes of the entire 

network. Therefore, in essence, this control method is not a real pinning control technology. 

What’s more, in most previous work, most of the networks are undirected, that is, the coupled 

matrix is symmetric. However, in practice, most of the networks, such as telephone communication 

networks and interpersonal networks are directed. 

 

Based on the above comments, this study deals with the stability of pinning impulse 

synchronization of complex dynamic networks, and gives a simple and general synchronization 

convergence criterion for complex dynamic networks to achieve synchronization. Furthermore, 

the obtained results are applied to a small-world network composed of CNN and Hodgkin-Huxley 

neuron oscillators as power nodes. The numerical simulation verifies the correctness of the 

obtained theoretical results and the validity of the control method. 

 

In the Introduction section, present clearly and briefly the problem investigated, with relevant 

references. 

 
2. Complex Dynamic Network Model 

 

We consider a general model of a complex dynamic network, which contains N identical nodes of 

linear diffusion coupled oscillators. Each node is an n-dimensional non-autonomous dynamic 

system. The state equation of the entire network is described by the following differential equation: 

 
𝑥𝑖̇(𝑡) = 𝑓(𝑡, 𝑥𝑖(𝑡)) + 𝑐 ∑ 𝑙𝑖𝑗𝛤𝑥𝑗(𝑡)

𝑁
𝐽=1                                                                                                   （1） 

 

Where, i = 1,2, … , N，xi(t) = (xi1(t),… , xn1(t))
T
∈ Rn is the state variable of the ith dynamic 

node, f: R × Rn → Rn is a continuous vector equation of the parameters of the second variable. The 

constant c > 0 is the strength of coupling and its internal relation matrix Γ > 0 is positive definite 

and its coupling matrix L = (lij)N×N
 represents the Laplacian graph of the whole network, where 

lij has the following definition: 

 

𝑙𝑖𝑗 = {
𝑎𝑖𝑗,                                 𝑖 ≠ 𝑗

−∑ 𝑎𝑖𝑘
𝑁
𝑘=1,𝑘≠𝑖 ,             𝑗 = 𝑖

                                                                                                                           (2) 

 

If the network is connected, the Laplacian graph L is an asymmetric irreducible matrix. LT = SJS−1 

Is Jordan decomposition of L, where J = diag{J1, … , Jl} is a diagonal block matrix. If  λk, k =
1, … , l,  are different eigenvalues of matrix L and J1 is a 1 × 1 matrix, then the first column of the 

matrix S is the right eigenvector [1, … ,1]Twhen the eigenvalue is 0. 
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Our main work is to design a single impulse controller to deal with the pinning synchronization in 

complex dynamic networks so that all states of the controlled dynamic networks are uniformly 

synchronized to a special solution s(t) of a homogeneous system, such as ṡ(t) = f(t, s(t)), then 

 
𝑙𝑖𝑚
𝑡→+∞

‖𝑥𝑖(𝑡) − 𝑠(𝑡)‖ = 0, 𝑖 = 1,… , 𝑁,                                                                                                         (3) 

 

Where s(t) may be a balance point, a periodic orbit, or a chaotic attractor?  

In general, the ith node is selected as the pinning point, and the node sequence of the network (1) 

is rearranged so that the first node is pinned or controlled. 

 

Then, this pinning control network can be described by the following measure differential 

equation: 

 

{

𝑥1̇(𝑡) = 𝑓(𝑡, 𝑥1(𝑡)) + 𝑐 ∑ 𝑙1𝑗𝛤𝑥𝑗(𝑡)
𝑁
𝐽=1 + 𝑈,

𝑥𝑖̇(𝑡) = 𝑓(𝑡, 𝑥𝑖(𝑡)) + 𝑐 ∑ 𝑙𝑖𝑗𝛤𝑥𝑗(𝑡)
𝑁
𝐽=1 ,

                                                  𝑖 = 2,… ,𝑁,

                                                                                                      (4) 

 

Where, U = ∑ bk(x1(tk
−) − s(t))δ(t − tk)

+∞
k=1  is an n-dimensional impulse controller whose 

control increment bk(k ∈ Z
+) is a constant, where δ(t) is a Dirac function. 

 

From the nature of the Dirac function, equation (4) can be expressed in the following form: 

 

{
 
 

 
 𝑥𝑖̇(𝑡) = 𝑓(𝑡, 𝑥𝑖(𝑡)) + 𝑐 ∑ 𝑙𝑖𝑗𝛤𝑥𝑗(𝑡)

𝑁
𝐽=1 ,

 𝑖 = 1,2,… ,𝑁, 𝑡 ≠ 𝑡𝑘
∆𝑥1(𝑡) = 𝑏𝑘(𝑥1(𝑡

−) − 𝑠(𝑡)),         𝑡 = 𝑡𝑘 ,

∆𝑥𝑖(𝑡) = 0,                   𝑖 = 2,… ,𝑁, 𝑡 = 𝑡𝑘 ,

                                                                                                           (5) 

 

Where the time series {tk}k=1
+∞  satisfiestk−1 < tk and lim

k→+∞
tk = +∞ , ∆xi = xi(tk

+) − xi(tk
−) is 

control law that satisfies xi(tk
+) = lim

t→tk
+
xi(t) andxi(tk

−) = lim
t→tk

−
xi(t). Generally, we assume that 

xi(tk
+) = xi(tk) represents that the solution xi(t) is right continuous. It is assumed that equation 

(4) has a unique solution to the initial value. 

 

Then the pinning impulse synchronization in a complex dynamic network (1) is translated into the 

stability analysis of the synchronous manifold of the controlled dynamic network (4). And we can 

get the following theorem: 

Theorem 1: 

If k ∈ Z+ satisfies the following conditions: 

 
a) σ + 2cα2λmin(Γ) + 2cλmax(Γ) < 0, 
b) σ(tk+1 − tk) + ln dk < 0, 

 

Where, σ ≥ λmax(D
Tf(t, s) + Df(t, s)), dk = (1 + bk)

2 < 1. 
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Then the controlled network (4) may be uniformly exponentially synchronized to s (t) by a single 

point impulse controller, where s (t) may be a balance point, a periodic orbit, or a chaotic attractor. 

 

3. Numerical Simulation of Pinning Network 

 

In order to verify the validity of the method, we consider a small-world network consisting of CNN 

with 50 nodes and Hodgkin-Huxley neuron oscillator as power nodes. For this small-world neural 

network, we set the parametersN = 50, K = 3, p = 0.3, and then the Laplacian graph L = Lsw can 

be generated randomly by the small-world model in the directed graph. The pinning points of the 

single point impulse controller are loaded for random selection.  

 
3.1. CNN Neuron Oscillators 

 
CNN neuron oscillator can be described by the following three-dimensional nonlinear differential 

equation: 

 
𝑥̇(𝑡) = −𝐶𝑥(𝑡) + 𝐴𝑓(𝑥(𝑡)),                                                                                                                                      (6) 

 

Where, x(t) = (x1(t), x2(t), x3(t))
T
 is state vector of network, f(x) =

(f(x1), f(x2), f(x3))
T
satisfiesfi(x) = f(x) =

1

2
(|x + 1| − |x − 1|),where  

 

A = ( 
1.2500 −3.200 −3.200
−3.200 1.100 −4.400
−3.200 4.400 1.000

) , C = (
1 0 0
0 1 0
0 0 1

). Obviously, the network is a typical CNN 

neuron oscillator. 

 

If the controlled synchronization state s(t) = (s1(t), s2(t), s3(t))
T
 is the special solution of CNN 

neuron oscillator, the three different pinning situations are as follows: 

• Pinning the network to a balance point 

 
The model (5) has three unstable balance points: 

x+̅̅ ̅ = (1.1971,0.7273,−0.7107) ∈ Σ+,  
Σ+ = {(x1, x2, x3)||x1| > 1, |x2| ≤ 1, |x3| ≤ 1},  
x0̅̅̅ = (0,0,0) ∈ Σ0,  
Σ+ = {(x1, x2, x3)||x1| ≤ 1, |x2| ≤ 1, |x3| ≤ 1},  
x−̅̅ ̅ = (−1.1971,−0.7273,0.7107) ∈ Σ−,  
Σ+ = {(x1, x2, x3)|x1 ≤ 1, |x2| ≤ 1, |x3| ≤ 1},  
Generally, the numerical simulation is to pin the network to one of the balance points s =
(1.1971,0.7273,−0.7107)T, then σ = 3.6974, c = 5.0, the internal connection matrix Γ = I3，
constant step h = 0.02. For simplicity, we consider equal impulse intervals tk − tk−1 = Δt and 

impulse control increment for any k ∈ Z+, bk ≡ b ∈ (−2,0). Then it can be easily obtained if the 

following condition is satisfied: 

 
3.6974∆t + 2 ln|1 + b| < 0                                                                                                                                      (7) 
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Then all the conditions of Theorem 1 are satisfied, which means that the small world neural 

network (6) can be uniformly exponentially synchronized to the balance point s. In this simulation, 

the impulse control increment b = −0.5 is made to satisfy the in equation (7) with an equal 

impulse interval ∆t = 0.06. Figure 1 intuitively describes the evolution process of the state 

variable of the controlled small-world network (6). 

 

 
Figure 1: Pinning the CNN neuron oscillator to a balance point 

 

• Pinning the network to a chaotic attractor  

 

The CNN neuron oscillator has a chaotic attractor of the initial value (x1(0), x2(0), x3(0))
T
=

(0.1,0.1,0.1)T, as shown in Figure 2. In this simulation, all parameters are as follows: σ ≤
9.3537, c = 11, ∆t = 0.01, h = 0.001, so that it satisfies the condition of Theorem 1. 
Accordingly, Figure 3 intuitively describes the evolution process of the state variable of the 
controlled small-world network (6). 
 

 
Figure 2: Chaotic attractor of CNN neuron oscillator 

 

 
Figure 3: Pinning the CNN neuron oscillator to a chaotic orbit 
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• Pinning the network to a periodic orbit 

 

A three-dimensional CNN neuron oscillator in the following form is considered: 

 

ẋ(t) = −Cx(t) + Af(x(t)) + sin x(t),                                                                                           (8) 

 
The structure of the equation (8) indicates that the CNN neuron oscillator has a periodic behavior, 

as shown in Figure 4, where the initial value is: 

 

(x1(0), x2(0), x3(0))
T
= (0.1,0.1,0.1)T   

 

In this simulation, all parameters are consistent with the test parameters in Figure 1, σ ≤ 3.9449 

Figure 5 is a phase diagram based on the results of this numerical simulation, which intuitively 

demonstrates that the network is pinned to the periodic orbit s(t) by the single point impulse 

controller. Accordingly, Figure 6 intuitively describes the evolution process of the state variable 

of the controlled small-world network (6). 

 

 
Figure 4: Periodic behavior of CNN neuron oscillator 

 

 
Figure 5: Phase diagram of controlled CNN neuron oscillator 

 

 
Figure 6: Pinning the CNN neuron oscillator to a periodic orbit 
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3.2. Hodgkin-Huxley Neuron Oscillator 

 

The Hodgkin-Huxley neuron oscillator [9] is described by the following differential equation: 

{
 
 
 

 
 
 𝐶

𝑑𝑉

𝑑𝑡
= 𝐼0 − 𝑔𝑁𝑎𝑚

3ℎ(𝑉 − 𝑉𝑁𝑎)

 −𝑔𝑘𝑛
4(𝑉 − 𝑉𝐾) − 𝑔𝐿(𝑉 − 𝑉𝐿)

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(𝑉)(1 − 𝑚) − 𝛽𝑚(𝑉)𝑚   

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(𝑉)(1 − ℎ) − 𝛽ℎ(𝑉)ℎ

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(𝑉)(1 − ℎ) − 𝛽𝑛(𝑉)𝑛

                                                                                                                                         (9)                                                                                                                                                                  

 

Where, gNa = 120
𝑚𝑆

𝑐𝑚2 , 𝑔𝐾 = 36
𝑚𝑆

𝑐𝑚2 , 

𝑔𝐿 = 0.3
𝑚𝑆

𝑐𝑚2 , 𝑉𝑁𝑎 = 50 𝑚𝑉, 𝑉𝐾 = −11 𝑚𝑉,   

𝑉𝐿 = −54.4 𝑚𝑉, 𝐶 = 1
𝜇𝐹

𝑐𝑚2 , and 

{
 
 
 
 

 
 
 
 𝛼𝑚(𝑉) =

0.1(𝑉+40)

1−exp[−(𝑉+40)/10]

𝛽𝑚(𝑉) = 4 exp[−(𝑉 + 65)/18]

𝛼ℎ(𝑉) = 0.07 exp[−(𝑉 + 65)/20]

𝛽ℎ(𝑉) = {1 + exp [−
𝑉+35

10
]}
−1

𝛼𝑛(𝑉) =
0.01(𝑉+55)

1−exp[−(𝑉+55)/10]

𝛽𝑛(𝑉) = 0.125 exp[−(𝑉 + 65)/80].

  

 

When I0 = 7 μA/cm2, the initial value (V(0),m(0), h(0), n(0))
T
= (−25,0.38,0.57,0.08)T has 

a stable limit cycle, as shown in Figure 7 and Figure 8. 

 

 
Figure 7: Stability limit cycle of Hodgkin-Huxley neuron oscillator (phase diagram) 
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Figure 8: Stability limit cycle of Hodgkin-Huxley neuron oscillator (time sequence diagram) 

 

In this simulation, all parameters are as follows: σ ≤ 2.5153, c = 5, ∆t = 0.02, h = 0.06 so that it 

satisfies the condition of Theorem 1. Accordingly, Figure 9 is a phase diagram based on the 

numerical simulation results, which intuitively demonstrates that the network is pinned to the 

periodic orbit s(t) by the single point impulse controller. Accordingly, Figure 10 intuitively 

describes the evolution process of the state variable of the controlled small-world network (5). 

 

 
Figure 9: Phase diagram of controlled Hodgkin-Huxley neuron oscillator 

 

 
Figure 10: Pinning the Hodgkin-Huxley neuron oscillator to a periodic orbit 

 

The results section should provide details of all of the experiments that are required to support the 

conclusions of the paper. The section may be divided into subsections, each with a concise 

subheading. 
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It is advised that this section be written in past tense. It is a good idea to rely on charts, graphs, and 

tables to present the information. This way, the author is not tempted to discuss any conclusions 

derived from the study. The charts, graphs, and table should be clearly labeled and should include 

captions that outline the results without drawing any conclusions. A description of statistical tests 

as it relates to the results should be included. 

 

4. Conclusions 

 

This study mainly discusses the stability of pinning impulse synchronization of directed complex 

dynamic networks. Based on the Impulse Control Theory, simple and general synchronization 

criteria for complex dynamic networks are obtained. Furthermore, the obtained results are applied 

to a small-world network composed of CNN and Hodgkin-Huxley neuron oscillators as power 

nodes. The numerical simulation shows the correctness of the obtained theoretical results and the 

validity of the control method. 
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