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Abstract 

Source-code that a developer writes may not definitely make sense to another, the 

understandability of a source code depends on the proficiency in the language and the logical 

thinking pattern of the person who has developed the code and who tries to understand it.   

However, in distributed software development and in software maintenance there is a need to read 

and understand the source-code probably written by someone else after some time it has encoded.  

Flowcharts are used to depict the logical flow of processes and can be used as an effective tool in 

representing the control flow of software programs. This paper presents a novel approach to 

generate flowcharts from program snippets. It demonstrates that by using an intermediate abstract 

representation, independent of any programming language, the generation of flowcharts for 

programs written in any programming language can be achieved. The feasibility of the proposed 

approach was demonstrated by developing a porotype system of compilers to generate flowcharts 

for source-codes written in the PHP language. 
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1. Introduction 
 

Programming can be considered both as a science and as an art (Knuth D. E., 1974).  Programming 

languages are built to instruct a computer to perform a sequence of computations. The syntax used 

by different programming language may vary from a language to language. However, irrespective 

of the programming language used to code an algorithm, there is only a finite number of abstract 

constructs that can be used to develop a program. How these constructs are combined to produce 

the expected result is an art and can be done in many different ways in different programming 

languages based on the software development maturity and the programming language knowledge 

of the developer.   

 
The statements of a program define a logical flow of instructions. For a computer what matters is 

the sequence in which the instructions are to be executed. However, for a developer, who is writing 
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or reading the code, what is important is the logical flow of the program instructions. It is hard for 

a developer to conceptualize the logic defined by a program just by reading the code. Even an 

experienced programmer may find it difficult to understand the logic of a program encoded by 

him/her at a later time. This is also an inherent problem in distributed software development 

environments. In a distributed software development environment original author of the code is 

not the only one responsible in maintaining the code, rather the same code may have to modified 

by some others. 

 

Visualization is proved to be a good way for understanding a program. Different types of diagrams 

such as class diagrams, entity-relationship diagrams and Unified Modelling Language (UML) are 

widely used in application development. Flowchart is a diagram which depicts a complex process 

by dissecting it into simple steps. Flowcharts are widely used across various disciplines 

(Wijayasiriwardhane, Wijayarathna, & Karunarathna, "An automated tool to generate test cases 

for performing basis path testing", 2011) (Wijayasiriwardhane, Wijayarathna, & Karunarathna, "A 

Method to Generate Test Cases for Performing Basis Path Testing", 2016) (Nassi & Shneiderman, 

1973). In Computer Science (CS) flowchart is primarily used to explain algorithms. Thus, 

flowcharts is an ideal tool for depicting what a particular software source-code is supposed to do. 

Also, ISO 5807:1985 and BS 4058:1987 has published standard for flow chart drawing (BSI, 

1987).  

 

Flowchart representation of a source-code snippet makes it easier for a developer to understand, 

debug and check the validity of the logic of the code. There are numerous software packages to 

generate code from flowchart diagrams but there aren’t ways to generate flowcharts from source-

code. This paper presents a novel approach to generate flowchart for program snippets. The 

proposed approached is based on the compilers (Aho, Lam, Sethi, & Ulman, 2013) and can be 

easily extended to generate flowchart for programs snippets written in any programming language. 

The feasibility of the proposed approach is proved by building a porotype application to generate 

flowchart for PHP code snippets.    

 

There were very few researches reported in the literature on this domain. Even in the reported 

literature a generalized approach is not seen on how to translate source-code written in any 

language to flowcharts. We claim the proposed approach as novel because there was no research 

found to be done for the translation of source code snippets into flowcharts by constructing a 

compiler which can be easily extended for any programming language.   

 

One of the applications repoted to generate pictorial representations of source code is AutoDia 

(AutoDai, 2017). It is designed to generate Unified Modelling Language (UML) class diagrams 

from source-code written in a selected set of programming languages. The parser of this 

application searches for specific pre-defined programming language constructs to generating the 

output on the fly. The output of the sparser is in a proprietary format which is used by the drawing 

algorithm to generate the class diagrams. The drawing algorithm is tightly-coupled with the 

application. Since the output generated by the parse does not confirms to a specification, the output 

cannot be used with any other drawing tools. Also, to extend the application for other source/input 

languages sub-components have to be developed and the drawing algorithm has to be modified.  
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An attempt for Automatic Conversion of Flowcharts into language codes by generating program 

analysis diagrams (PADs) as an intermediate representation is reported in  (Xiang-Hu, Qu, & Li, 

2012). The authors have identified the basic structures of a flowchart diagram and proposed an 

algorithm to convert the flowchart into PADs then by using a recursive algorithm into a specific 

programming language code. This research have identified five control flow structures in any flow 

chart namely sequence, selection, pre-check loop and post-check loop and multiple selections  

(Xiang-Hu, Qu, & Li, 2012) which are depicted in Figure 1. They argued that any complex flow 

chart can be built by combining these five basic control structures. 

 

 

 

 
Figure 1: Basic flowchart structures described in (Xiang-Hu, Qu, & Li, 2012). 

 
Lemaitre et al. in (Aur´elie, Harold, Jean, & Bertrand, 2013) presented a technique to recognize 

handwritten flowcharts by using the structural and syntactic knowledge associated with flowcharts. 

The authors have described the syntax of flowchart by using a meta-language similar to Backus-

Naur Form (BNF).    

 

This research is presented in four sections. In the first section an overview of what is reported 

relevant to the research provided. In section 2 our proposed methodology is presented. In Section 

3 how the proposed methodology can be implemented for program snippets coded in PHP 
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language is described with examples used to evaluate the prototype implementation. The last 

section draws conclusions and suggestions. 

 

2. Methodology 

 
An application construction process intend to generate flowcharts for program snippets can take 

two different approaches. 

1) Develop code from scratch to generate flowcharts for programs written in any language. 

2) Develop an intermediate representation for flowcharts independent of any programming 

language, develop a single backend component to generate flowcharts from this 

intermediate representation and finally develop a frontend translator for each programming 

language to convert program snippets in that language to the intermediate representation. 

 

Using approach, a) to generate flowcharts for any program language source code by using a 

programming language like Python can be depicted by using a T diagram as in Figure 1. 

 

 
Figure 2: Generating a flowchart for any program using the Python Language. 

 

This is a complex approach and does not allow easy extendibility. Extending of this approach for 

each new programming language may require complex modification of the code. 

 

Using approach b) for this task offers may advantages over the approach a). Firstly, there are many 

popular tools available to generate different types of diagrams (Visio, 2018) (Gansner & Ellson, 

2017) (Lucidchart, 2018).  Thus, there is no need to invest time and money in developing 

application for data visualization. However, internal representations used by these tools to store 

data is different.  Thus, to visualize a flowchart in the intermediate representation requires a 

backend component to be developed for each visualization application that uses a different 

representation of data.  Secondly, the approach can be easily extended for program snippets 

developed in any language. In this case a font end translator must be developed for each 

programming language. 

  

Using the approach b) to generate flowcharts coded in a programming language such as PHP is 

depicted in Figure 3. 

 

 
Figure 3:  Generating flowchart for PHP programs through an intermediate representation 
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The application shown in Figure 3 comprises of three compilers. The first compiler, termed as the 

font-end of the application, converts a given PHP snippets into an Abstract Syntax Tree (AST), 

which is the intermediate representation of the flowchart. This requires tokenizing and parsing the 

source-code, which can be done by employing a technique used to develop compilers. Then by 

using the second compiler the flowchart in AST representation is converted to a representation in 

Dot Language (Gansner & Ellson, n.d.). Then  

 
An open source visualization software called Graphviz (Gansner & Ellson, 2017) is used as the 

compiler to generate the final flowchart. The last visualization component is termed as the back-

end of this approach. Extending this approach for a different programming language requires only 

the front-end component to be constructed for the new language. Using a different visualization 

application to generate flowcharts can also be done easily by developing an appropriate translator 

as the middle component of the architecture. Thus, this approach can be easily extensible for any 

programming language and for any visualization application. 

 

Since programs consist of nested code blocks during the generation of the intermediate 

representation the target code should be analyzed in two phases namely: 

• Shallow Analysis 

• Deep Analysis 

 

Shallow analyzer, inspired from the shallow parser in compilers, analyzes only the first level of 

nested code blocks. The shallow analysis does not recursively traverse through the nested code 

blocks. For example, whilst analyzing an if-else code block it would not look into nested code 

blocks within the if section or the else section of the code block. 

 

 
 

In the example given above as listing 2, the shallow analyzer only identifies   the whole if-else 

block starting at line 3 and ending at line 10. It doesn't evaluate the nested if-else block staring at 

line 4 and ending at line 6.  Thus, the if snippet embedded in the conditionally true block (line 4) 

of the first if statement in line 3 is not be evaluated by the shallow analyzer.  Consequently, the 

output of the shallow analyzer would be a partially annotated tree of the final AST. This is then 

required to be passed as input to the deep analyzer. 
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On the other hand, the deep analyzer evaluates recursively the embedded nested structures within 

each code block. The output of the shallow analyzer is passed to the deep analyzer which in turn 

carry out a shallow analysis for each enclosed block followed by a deep-analysis if the code block 

contains any other code blocks.    

 

Therefor the intermediate representation (AST) used to encode a flowchart needs features to 

represent nested code blocks recursively.  

 

Any flowchart can be converted to a direct graph data structure where nodes represent the 

individual items in the flowchart and the arrows represents the flow directions.  An example 

grammar of a language developed to represent the AST of flowcharts (the intermediate 

representation) is given below. In this AST a program snippet for which a flowchart to be generated 

is considered as a class. 

 

 
  

3. Results 

 
The feasibility of the proposed approach was verified by building a prototype to translate source 

code snippets written in PHP programming language to flowcharts and by evaluating the 

correctness of the generated flowchart.    

 

The front-end and the middle compiler of the architecture of our prototype was developed by using 

the tool “Yet Another Compiler-Compiler” (Yacc) and Graphviz software is used as the back-end 

compiler to generate flowcharts. 

 

The following subset of PHP constructs were used to build our prototype. 

• If-else condition 

• Switch-cases 

• While loop 

• Statements (e.g.: variable initialization) 

• Function/method calls 
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The experiment designed to evaluate the correctness of the outputs included the following phases: 

Designing flowchart representation of a logic flow of a program by hand. 

 
Encoding the logic flow by using PHP programming language. 

 
Use the encoded program as the input for the compiler and generating flowchart outputs. 

Compare the output generated in step 3 with the initial flowchart generated at step 1 manually, for 

correctness. 

 

The experiment listed out were performed across number of standard and mixed programming 

language constructs as described in the following sections. 

 

Test 1:  If-Else Construct 

 
An if-else construct comprises a single if block and a single else block.  Either of these two blocks 

can be optional. A manual flowchart and PHP code constructed to represent an if-else construct 

are shown in Figure 2 and Listing 3 respectively and the flowchart generated by the prototype 

implementation is shown in figure 3. 

 

 
Figure 2: Basic if-else statement drawn beforehand 
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Figure 3: Translated flowchart from the source-code snippet given in Listing 5. 

 

Test 2: Nested If-Else Construct 

 
Nested if-else construct comprises of a embed if-else construct within the if block or else block of 

a basic if-else construct. A manual flowchart and PHP code constructed to represent a nested if-

else construct are shown in figure 4 and Listing 4 respectively and the flowchart generated by the 

prototype implementation is shown in figure 5. 

 

 
Figure 4: Modelled flowchart for nested if-else conditions. 
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Figure 5: Generated flowchart for the code-snippet in Listing 6. 

 

Test 3: Switch construct 

 
Switch construct can be considered as an extension of nested if-else construct. It typically 

comprises of multiple logical tests and actions associated with each test.  Switch-case can be 

represented in the flowcharts using a series of if-else constructs. A manual flowchart and PHP 

code constructed to represent switch construct are shown in figure 6 and Listing 5 respectively and 

the flowchart generated by the prototype implementation is shown in figure 7. 
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Figure 6 :Typical switch-case construct in flowchart representation.  

 

   

   

 
 

http://www.granthaalayah.com/


[Karunarathna et. al., Vol.6 (Iss.9): September 2018]                           ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

(Received: September 01, 2018 - Accepted: September 29, 2018)                           DOI: 10.5281/zenodo.1465019 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [515] 

 

 
Figure 7: Translated flowchart for Listing 7 

 

Test 4: While Loop Construct 

 
This can be easily represented by using a logical test creating a cyclic to a previous point in the 

flowchart. A manual flowchart created for a while loop, the corresponding PHP code segment and 

generated flowchart are shown in fig. 8, listing 6 and fig. 9 respectively. 

 

 
Figure 8: Standard while loop construct in flowchart representat 
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Figure 9:Translated flowchart from the source-code given in Listing 8. 

 
Test 5: Mixed Constructs 

 
 A flowchart created by mixing different flow control structures is given in Figure 10. The 

corresponding source-code written in PHP and the generated flowchart are given in Listing 7 and 

Figure 11 respectively. 

 
Figure 10: A flowchart comprising a mixture of programming language constructs. 
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Figure 11: Generated flowchart for mixed constructs. 

 

Table 1 summarized the overall results produced by each of the experiments. This contains the 

experimentation subject and Boolean values stating whether the flowcharts generated were correct, 

with regard to the original logic flow and source-code, and whether the flowcharts were valid, with 

regard to the rules of drawing flowcharts. 

 

Table 1: Overall summary of experiments performed. 

Flowchart for section Is the generated flowchart correct Is the flowchart valid 

If-else construct True True 

Nested If-else construct True True 

Switch-case construct True True 

While construct True True 

Mixed construct True True 

 

http://www.granthaalayah.com/


[Karunarathna et. al., Vol.6 (Iss.9): September 2018]                           ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

(Received: September 01, 2018 - Accepted: September 29, 2018)                           DOI: 10.5281/zenodo.1465019 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [518] 

 

4. Conclusion 

 
The experimentations and results verified that the flowcharts are valid and correct. With regard to 

the experiments and the corresponding results, we can conclude that the proposed architecture is 

feasible in constructing a compiler to translate source-code to flowcharts.  

 

There are various ways that this research can be extended. 

 

The application can be extended to support various other source languages by writing the 

appropriate lexers and parsers. The output of the parser should be an AST and it should comply 

with the specification of AST composed in this research. 

 

Enhancement to the look and feel of the flowchart can be done as a future contribution to the work, 

either by modifying the GraphViz library or by constructing another library using the Dot language 

as the input source.  

 

Optimizations of the generated dot language representation hasn’t been considered by this research 

which could be done as an improvement. 

 

The prototype system built to prove the concepts presented only selected set of programming 

language constructs were used. The rest of the programming language constructs can be made 

supported by extending the code-generator. 

 

Finally, a User interface (UI) can be implemented for novice developers to use the prototype 

compiler as a product. 
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