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Abstract 

In this paper, Adapted Flower Pollination (AFP) algorithm is proposed to solve the optimal 

reactive power problem. Flower pollination algorithm has been improved by comprising of the 

elements of chaos theory, Shuffled frog leaping search and Levy Flight. In the AFP algorithm, the 

initial population is generated using the circle map, frog leaping local search is performed by each 

solution and when rand>p, modified Levy flight with integration of inertia weight in global 

pollination is performed on that particular solution. Proposed AFP algorithm has been tested in 

standard IEEE 57 bus test system and simulation results show clearly the better performance of 

the proposed algorithm in reducing the real power loss. 
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1. Introduction

Optimal reactive power problem is to minimize the real power loss and bus voltage deviation. 

Various numerical methods like the gradient method [1-2], Newton method [3] and linear 

programming [4-7] have been adopted to solve the optimal reactive power dispatch problem. Both   

the gradient and Newton methods have the complexity in managing inequality constraints. If linear 

programming is applied then the input- output function has to be uttered as a set of linear functions 

which mostly lead to loss of accuracy.   The problem of voltage stability and collapse play a   major 

role in power system planning and operation [8].  Evolutionary algorithms such as genetic 

algorithm have been already proposed to solve the reactive power flow problem [9-11].  

Evolutionary algorithm is a heuristic approach used for minimization problems by utilizing 

nonlinear and non-differentiable continuous space functions. In [12], Hybrid differential evolution 

algorithm is proposed to improve the voltage stability index. In [13] Biogeography Based 

algorithm is projected to solve the reactive power dispatch problem. In [14], a fuzzy based method 

is used to solve the optimal reactive power scheduling method. In [15], an improved evolutionary 
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programming is used to solve the optimal reactive power dispatch problem. In [16], the optimal 

reactive power flow problem is solved by integrating a genetic algorithm with a nonlinear interior 

point method. In [17], a pattern algorithm is used to solve ac-dc optimal reactive power flow model 

with the generator capability limits. In [18], F. Capitanescu proposes a two-step approach to 

evaluate Reactive power reserves with respect to operating constraints and voltage stability.  

 

 In [19], a programming based approach is used to solve the optimal reactive power dispatch 

problem. In [20], A. Kargarian et al present a probabilistic algorithm for optimal reactive power 

provision in hybrid electricity markets with uncertain loads. This paper proposes Adapted Flower 

Pollination (AFP) algorithm is proposed to solve the reactive power problem. The basic idea of 

flower pollination process which leads to the formulation of flower pollination algorithm (FPA) 

[21] is first introduced and subsequently, chaos theory, Shuffled frog leaping search and Levy 

Flight are introduced. Proposed AFP algorithm has been evaluated in standard IEEE 118 & 

practical 191 bus test systems. Simulation results show   that our proposed approach outperforms 

all the entitled reported algorithms in minimization of real power loss. 

 
2. Problem Formulation  

 
Active Power Loss 

The objective of the reactive power dispatch is to minimize the active power loss in the 

transmission network, which can be described as follows: 

 

𝐹 = 𝑃𝐿 = ∑ 𝑔𝑘𝑘∈𝑁𝑏𝑟 (𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝜃𝑖𝑗)                                                                            (1) 

 

Where gk : is the conductance of branch between nodes i and j, Nbr: is the total number of 

transmission lines in power systems. Pd: is the total active power demand, Pgi: is the generator 

active power of unit i, and Pgsalck: is the generator active power of slack bus. 

 
Voltage Profile Improvement 

For minimizing the voltage deviation in PQ buses, the objective function becomes: 

 
𝐹 = 𝑃𝐿 + 𝜔𝑣  × 𝑉𝐷                                                                                                                        (2) 

 
Where ωv: is a weighting factor of voltage deviation. 

 

VD is the voltage deviation given by: 

 

𝑉𝐷 = ∑ |𝑉𝑖 − 1|𝑁𝑝𝑞
𝑖=1                                                                                                                          (3) 

 
Equality Constraint  

The equality constraint of the problem is represented by the power balance equation, where the 

total power generation must cover the total power demand and the power losses: 

 
𝑃𝐺 = 𝑃𝐷 + 𝑃𝐿                                                                                                                                          (4) 
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This equation is solved by running Newton Raphson load flow method, by calculating the active 

power of slack bus to determine active power loss. 

 
Inequality Constraints  

The inequality constraints reflect the limits on components in the power system as well as the 

limits created to ensure system security. Upper and lower bounds on the active power of slack bus, 

and reactive power of generators: 

 

𝑃𝑔𝑠𝑙𝑎𝑐𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘

𝑚𝑎𝑥                                                                                                              (5) 

 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑁𝑔                                                                                                             (6) 

 

Upper and lower bounds on the bus voltage magnitudes:          

 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥  , 𝑖 ∈ 𝑁                                                                                                                   (7) 

 

Upper and lower bounds on the transformers tap ratios: 

 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥  , 𝑖 ∈ 𝑁𝑇                                                                                                                 (8) 

 

Upper and lower bounds on the compensators reactive powers: 

 

𝑄𝑐
𝑚𝑖𝑛 ≤ 𝑄𝑐 ≤ 𝑄𝐶

𝑚𝑎𝑥 , 𝑖 ∈ 𝑁𝐶                                                                                                                (9) 

 

Where N is the total number of buses, NT is the total number of Transformers; Nc is the total 

number of shunt reactive compensators. 

 

3. Flower Pollination Algorithm  

 
Generally we use the following systems in Flower Pollination Algorithm (FPA), 

• System 1. Biotic and cross-pollination has been treated as global pollination process, and 

pollen-carrying pollinators travel in a way which obeys Levy flights. 

• System 2. For local pollination, A- biotic and self-pollination has been utilized. 

• System 3. Pollinators such as insects can develop flower reliability, which is equivalent to 

a reproduction probability and it is proportional to the similarity of two flowers implicated. 

• System 4. The communication of local pollination and global pollination can be controlled 

by a control probability p ∈ [0, 1], with a slight bias towards local pollination. 

 

System 1 and flower reliability can be represented mathematically as 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝜆)(𝑥𝑖
𝑡 − 𝑔∗)                                                                                                             (10) 

 

Where 𝑥𝑖
𝑡 is the pollen i or solution vector xi at iteration t, and 𝑔∗  is the current best solution found 

among all solutions at the current generation/iteration. Here γ is a scaling factor to control the step 

size. L(λ) is the parameter that corresponds to the strength of the pollination, which essentially is 
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also the step size. Since insects may move over a long distance with various distance steps, we can 

use a Levy flight to mimic this characteristic efficiently. We draw L > 0 from a Levy distribution 

 

𝐿~
𝜆Г(𝜆𝑠𝑖𝑛(𝛱𝜆/2))

𝛱
 

1

𝑠1+𝜆
 , (𝑠 ≫ 𝑠0 > 0)                                                                                                       (11) 

 
Here, Γ(λ) is the standard gamma function, and this distribution is valid for large steps s > 0. 

Then, to model the local pollination, for both system 2 and system 3 can be represented as 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+∈ (𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 )                                                                                                                             (12) 

 

Where 𝑥𝑗
𝑡  and 𝑥𝑘

𝑡   are pollen from different flowers of the same plant species. This essentially 

mimics the flower reliability in a limited neighbourhood. Mathematically, if  𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  comes from 

the same species or selected from the same population, this equivalently becomes a local random 

walk if we draw ∈ from a uniform distribution in [0,1]. Though Flower pollination performance 

can occur at all balance, local and global, neighbouring flower patch or flowers in the not-so-far-

away neighbourhood are more likely to be pollinated by local flower pollen than those far away. 

In order to mimic this, we can effectively use a control probability (system 4) or proximity 

probability p to switch between common global pollination to intensive local pollination. To start 

with, we can use a raw value of p = 0.8 as an initially value.   

 
The simplest method is to use a weighted sum to combine all multiple objectives into a composite 

single objective 

 
𝑓 = ∑ 𝑤𝑖𝑓𝑖

𝑚
𝑖=1  ∑ 𝑤𝑖 = 1𝑚

𝑖=1  , 𝑤𝑖 > 0                                                                                                   (13) 

 

 Where m is the number of objectives and wi(i = 1, ...,m) are non-negative weights. 

 

 FP Algorithm for solving optimal reactive power optimization  

 
Step 1. Objective min of (x), x = (x1, x2, ..., xd) 

Step 2. Initialize a population of n flowers 

Step 3. Find the best solution g∗ in the initial population 

Step 4. Define a control probability p ∈ [0, 1] 

Step5. Define a stopping criterion (a fixed number of     generations/iterations) 

Step6. while (t < Max Generation) 

Step6. for i = 1: n (all n flowers in the population) 

Step7. if rand < p, 

Step8. Draw a (d-dimensional) step vector L which obeys a Levy distribution Global pollination 

through xi
t+1 = xi

t + L(xi
t − g∗) 

else 

step9. Draw ∈ from a uniform distribution in [0,1] 

step 10. Do local pollination through xi
t+1 = xi

t+∈ (xj
t − xk

t ) 

end if 

step10. Evaluate new solutions 

step11. If new solutions are better, update them in the population 
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end for 

step12. Find the current best solution g∗ 

end while 

Output - best solution has been found 

 

4. Chaotic Maps  

 
Chaos is a random state found in the non-linear dynamical deterministic system, possesses non-

period, non-converging and bounded properties. The use of chaotic sequences is more beneficial 

than the random sequences due to its non-repetition and ergodicity properties. Borrowing the 

advantages of ergodicity, non-repetition and randomness of the chaotic sequences, the chaotic map 

is replacing the random sequences in generating the initial population in the FPA in this study. 

This is to ensure that the diversity of the initial population can be improved, where the distribution 

of the initial population is more uniform. Ten different chaotic maps are and circle map is selected 

for the integration with FPA. 

 

𝑥𝑛+1 = (𝑥𝑛 + 0.2 − (0.5
2𝜋⁄ )𝑠𝑖𝑛(2𝜋𝑥𝑛)) × 𝑚𝑜𝑑(1)                                                                                (14)  

 
5. Shuffled Frog Leaping Algorithm 

 
Shuffled frog leaping algorithm is a biological evolution algorithm based on swarm intelligence. 

The algorithm simulates a group of frogs in the wetland passing thought and foraging by 

classification of ethnic groups. In the execution of the algorithm, F frogs are generated at first to 

form a group, for N-dimensional optimization problem, frog i of the group is represented as 𝑋𝑖 =
(𝑥𝑖

1, 𝑥𝑖
2, . . , 𝑥𝑖

𝑁) then individual frogs in the group are sorted in descending order according to 

fitness values, to find the global best solution Px. The group is divided into m ethnic groups, each 

ethnic group including n frogs, satisfying the relation F = m × n. The rule of ethnic group division 

is: the first frog into the first sub-group, the second frog into the second sub-group, frog m into 

sub-group m, frog m + 1 into the first sub-group again, frog m + 2 into the second sub-group, and 

so on, until all the frogs are divided, then find the best frog in each sub-group, denoted by Pb; get 

a worst frog correspondingly, denoted by Pw. Its iterative formula can be expressed as: 

 

𝐷 = 𝑟𝑎𝑛𝑑( ) ∗ (𝑃𝑏 − 𝑃𝜔)                                                                                                                  (15)  

 

𝑃𝑛𝑒𝑤_−𝜔 = 𝑃𝜔 + 𝐷𝑖, −𝐷𝑚𝑎𝑥  ≤ 𝐷𝑖 ≤  𝐷𝑚𝑎𝑥                                                                                    (16) 

 

Where rand ( ) represents a random number between 0 and 1, 

Pb represents the position of the best frog, 

Pw represents the position of the worst frog, 

D represents the distance moved by the worst frog, 

𝑃𝑛𝑒𝑤_−𝜔 is the improved position of the frog, 

Dmax represents the step length of frog leaping. 

 

In the execution of the algorithm, if the updated𝑃𝑛𝑒𝑤_−𝜔  is in the feasible solution space, calculate 

the corresponding fitness value of   𝑃𝑛𝑒𝑤_−𝜔, if the corresponding fitness value of 𝑃𝑛𝑒𝑤_−𝜔 is worse 
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than the corresponding fitness value of Pw, then use Pw to replace Pb in equation (15) and re-

update 𝑃𝑛𝑒𝑤_−𝜔; if there is still no improvement, then randomly generate a new frog to replace Pw; 

repeat the update process until satisfying stop conditions. 

 
6. Levy Flight 

 
Levy flight is a rank of non-Gaussian random processes whose arbitrary walks are drawn from 

Levy stable distribution. This allocation is a simple power-law formula L(s) ~ |s|-1-β where 0 < ß < 

2 is an index. Mathematically exclamation, a easy version of Levy distribution can be defined as , 

 

𝐿(𝑠, 𝛾, 𝜇) = {
√

𝛾

2𝜋
             

0    𝑖𝑓 𝑠 ≤ 0  

𝑒𝑥𝑝 [−
𝛾

2(𝑠−𝜇)
]

1

(𝑠−𝜇)3 2⁄     𝑖𝑓 0  < 𝜇 < 𝑠 < ∞                                          (17)                 

         

Where  𝛾 > 0 parameter is scale (controls the scale of distribution) parameter, μ parameter is 

location or shift parameter. In general, Levy distribution should be defined in terms of Fourier 

transform 

                                                                                                                                  

𝐹(𝑘) = 𝑒𝑥𝑝[−𝛼|𝑘|𝛽], 0 < 𝛽 ≤ 2,                                                                                                   (18) 

 
Where α is a parameter within [-1,1] interval and known as scale factor. An index of o stability β 

∈ [0, 2] is also referred to as Levy index. In particular, for β = 1, the integral can be carried out 

analytically and is known as the Cauchy probability distribution. One more special case when β= 

2, the distribution correspond to Gaussian distribution. β and α parameters take a key part in 

determination of the distribution. The parameter β controls the silhouette of the probability 

distribution in such a way that one can acquire different shapes of probability distribution, 

especially in the tail region depending on the parameter β. Thus, the smaller β parameter causes 

the distribution to make longer jumps since there will be longer tail. It makes longer jumps for 

smaller values whereas it makes shorter jumps for bigger values. By Levy flight, new-fangled state 

of the particle is designed as, 

 

𝑋𝑡+1 = 𝑋𝑡 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦 (𝛽)                                                                                                            (19) 

 
α is the step size which must be related to the scales of the problem of interest. In the proposed 

method α is random number for all dimensions of particles. 

 

𝑋𝑡+1 = 𝑋𝑡 + 𝑟𝑎𝑛𝑑𝑜𝑚 (𝑠𝑖𝑧𝑒(𝐷)) ⊕ 𝐿𝑒𝑣𝑦(𝛽)                                                                                   (20) 

 
The product ⊕ means entry-wise multiplications. 

 
A non-trivial scheme of generating step size s samples are summarized as follows, 

 

𝑋𝑡+1 = 𝑋𝑡 + 𝑟𝑎𝑛𝑑𝑜𝑚 (𝑠𝑖𝑧𝑒(𝐷)) ⊕ 𝐿𝑒𝑣𝑦(𝛽)~0.01
𝑢

|𝑣|1 𝛽⁄ (𝑥𝑗
𝑡 − 𝑔𝑏)                                                 (21) 

 
Where u and v are drawn from normal distributions. That is 
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𝑢~𝑁(0, 𝜎𝑢
2)   𝑣~𝑁(0, 𝜎𝑣

2)                                                                                                               (22) 

 
With 

𝜎𝑢 = {
Г(1+𝛽)𝑠𝑖𝑛(𝜋𝛽/2)

Г[(1+𝛽)/2]𝛽2(𝛽−1)/2
}

1
𝛽⁄

 , 𝜎𝑣 = 1                                                                                                  (23) 

 
Here Г is standard Gamma function. One of the important points to be considered while performing 

distribution by Levy flights is the value taken by the β parameter and it substantially affects 

distribution. 

 

7.  Adapted Flower Pollination (AFP) algorithm 

 

In the AFP algorithm, the initial population is generated using the circle map, frog leaping local 

search is performed by each solution and when rand>p, modified Levy flight with integration of 

inertia weight in global pollination is performed on that particular solution. The steps involved in 

the AFP are as follows:  

 

Step 1: Parameter Initialization  

Initialize the relevant parameters of population size, n, dimension of search space, d, maximum 

iteration, max_iter, switch probability, p, range of search space [Lb, Ubm] , number of 

memeplexes, m and iterations within each memeplex, it.  

Step 2: create Initial Population using the chaotic map  

Step 3: Find the Best Solution  

The fitness value of each solution is calculated and the best solution is determined.  

Step 4: Perform the Frog Leaping Search - For each solution, search is performed. 

Step 5: Perform the Global Search of Flower Pollination Algorithm  

Step 6: Update the Solution  

The fitness value of each new solution is evaluated. The historical position is updated through 

comparison with the new solution. Subsequently, the best solution is updated.  

Step 7: Check Termination Condition or else, Step 4 is repeated. 

 
8. Simulation results  

 
Adapted Flower Pollination (AFP) algorithm has been tested in standard IEEE-57 bus power 

system. 18, 25 and 53 are reactive power compensation buses. PV buses are 2, 3, 6, 8, 9 and 12 

and slack-bus is bus 1. In Table 1 system variable limits are given.  

 
IEEE-57 preliminary conditions for the bus power system are given as follows: 

Pload = 12.102 p.u. Qload = 3.020 p.u. 

 
 Complete sum of initial generations and power losses are attained as follows: 
∑ 𝑃𝐺 = 12.410 p.u. ∑ 𝑄𝐺  = 3.3120 p.u. 

Ploss = 0.25841 p.u. Qloss = -1.2032 p.u. 

 
Control variables values obtained after optimization is given in Table 2. Comparisons of results 

are shown in Table 3.  
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Table 1: Variable Limits 

Reactive Power Generation Limits  

Bus no  1 2 3 6 8 9 12 

Qgminimum -1.4 -.015 -.02 -0.04 -1.3 -0.03 -0.4 

Qgmaximum 1 0.3 0.4 0.21 1 0.04 1.50 

Voltage And Tap Setting Limits 

vgminimum Vgmaximum vpqminimum Vpqmaximum tkminimum tkmaximum 

0.9 1.0 0.91 1.05 0.9 1.0 
 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcminimum 0 0 0 

Qcmaximum 10 5.2 6.1 
 

 

Table 2: Control variables obtained after optimization 

List of Control 

Variables  

AFP 

V1 1.100 

V2 1.03120 

V3 1.03110 

V6 1.02000 

V8 1.02000 

V9 1.00110 

V12 1.01010 

Qc18 0.06500 

Qc25 0.20010 

Qc53 0.04520 

T4-18 1.00020 

T21-20 1.04110 

T24-25 0.86010 

T24-26 0.87000 

T7-29 1.05000 

T34-32 0.87090 

T11-41 1.01000 

T15-45 1.03000 

T14-46 0.91000 

T10-51 1.02000 

T13-49 1.06000 

T11-43 0.91000 

T40-56 0.90000 

T39-57 0.95000 

T9-55 0.95000 
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Table 3: Comparison results 

S.No. Optimization 

Algorithm 

Finest 

Solution 

Poorest 

Solution 

Average 

Solution 

1 NLP (Chaohua Dai et al .,2009) 0.25902 0.30854 0.27858 

2 CGA (Chaohua Dai et al .,2009) 0.25244 0.27507 0.26293 

3 AGA (Chaohua Dai et al .,2009) 0.24564 0.26671 0.25127 

4 PSO-w  (Chaohua Dai et al .,2009) 0.24270 0.26152 0.24725 

5 PSO-cf (Chaohua Dai et al .,2009) 0.24280 0.26032 0.24698 

6 CLPSO (Chaohua Dai et al .,2009) 0.24515 0.24780 0.24673 

7 SPSO-07 (Chaohua Dai et al .,2009) 0.24430 0.25457 0.24752 

8 L-DE (Chaohua Dai et al .,2009) 0.27812 0.41909 0.33177 

9 L-SACP-DE  (Chaohua Dai et al 

.,2009) 

0.27915 0.36978 0.31032 

10 L-SaDE (Chaohua Dai et al .,2009) 0.24267 0.24391 0.24311 

11 SOA (Chaohua Dai et al .,2009) 0.24265 0.24280 0.24270 

12 LM (Gomes et al .,1999) 0.2484 0.2922 0.2641 

13 MBEP1 (Gomes et al .,1999) 0.2474 0.2848 0.2643 

14 MBEP2 (Gomes et al .,1999) 0.2482 0.283 0.2592 

15 BES100 (Gomes et al .,1999) 0.2438 0.263 0.2541 

16 BES200 (Gomes et al .,1999) 0.3417 0.2486 0.2443 

17 Proposed AFP 0.22001 0.23002 0.22200 

 

9. Conclusion  

 
Adapted Flower Pollination (AFP) algorithm has been effectively applied for solving reactive 

power problem. And it has been tested in standard 57 bus test system. Performance comparisons 

with well-known population-based algorithms give improved results. Adapted Flower Pollination 

(AFP) algorithm emerges to find good solutions when compared to that of other reported 

algorithms. The simulation results presented in previous section prove the capability of AFP 

approach to arrive at near to global optimal solution. 
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