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Abstract 

In this paper, Crowding Distance based Particle Swarm Optimization (CDPSO) algorithm has 

been proposed to solve the optimal reactive power dispatch problem. Particle Swarm 

Optimization (PSO) is swarm intelligence-based exploration and optimization algorithm which is 

used to solve global optimization problems. In PSO, the population is referred as a swarm and 

the individuals are called particles. Like other evolutionary algorithms, PSO performs searches 

using a population of individuals that are updated from iteration to iteration. The crowding 

distance is introduced as the index to judge the distance between the particle and the adjacent 

particle, and it reflects the congestion degree of no dominated solutions. In the population, the 

larger the crowding distance, the sparser and more uniform. In the feasible solution space, we 

uniformly and randomly initialize the particle swarms and select the no dominated solution 

particles consisting of the elite set. After that by the methods of congestion degree choosing (the 

congestion degree can make the particles distribution more sparse) and the dynamic ε 
infeasibility dominating the constraints, we remove the no dominated particles in the elite set. 

Then, the objectives can be approximated. Proposed crowding distance based Particle Swarm 

Optimization (CDPSO) algorithm has been tested in standard IEEE 30 bus test system and 

simulation results shows clearly the improved performance of the projected algorithm in 

reducing the real power loss and static voltage stability margin has been enhanced. 
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1. Introduction

Reactive power optimization plays a key role in optimal operation of power systems. Many 

numerical methods [1-7] have been applied to solve the optimal reactive power dispatch problem. 
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The problem of voltage stability plays a   strategic role in power system planning and operation 

[8].  So many Evolutionary algorithms have been already proposed to solve the reactive power 

flow problem [9-11]. In [12, 13], Hybrid differential evolution algorithm and Biogeography Based 

algorithm has been projected to solve the reactive power dispatch problem. In [14, 15], a fuzzy 

based technique and improved evolutionary programming has been applied to solve the optimal 

reactive power dispatch problem. In [16, 17] nonlinear interior point method and pattern based 

algorithm has been used to solve the reactive power problem. In [18-20], various types of 

probabilistic algorithms utilized to solve optimal reactive power problem. In this paper, Crowding 

Distance based Particle Swarm Optimization (CDPSO) algorithm has been proposed to solve the 

optimal reactive power dispatch problem.  Particle Swarm Optimization (PSO) [21] has been used 

efficaciously in solving many optimization problems, for its simplicity and fast convergence rate. 

Swarm intelligence is the subdivision of artificial intelligence and based on collective behaviour 

of self-organized system [22-31]. The crowding distance is introduced as the index to judge the 

distance between the particle and the adjacent particle, and it reflects the congestion degree of no 

dominated solutions. In the population, the larger the crowding distance, the sparser and more 

uniform. In the feasible solution space, we uniformly and randomly initialize the particle swarms 

and select the no dominated solution particles consisting of the elite set. After that by the methods 

of congestion degree choosing (the congestion degree can make the particles distribution more 

sparse) and the dynamic  infeasibility dominating the constraints, we remove the no dominated 

particles in the elite set. Then, the objectives can be approximated. Proposed crowding distance 

based Particle Swarm Optimization (CDPSO) algorithm has been tested in standard IEEE 30 bus 

test system and simulation results shows clearly the improved performance of the projected 

algorithm in reducing the real power loss and static voltage stability margin has been enhanced. 
 

2. Voltage Stability Evaluation 

 
2.1. Modal Analysis for Voltage Stability Evaluation 

 
Modal analysis is one among best   methods for voltage stability enhancement in power systems. 

The steady state system power flow equations are given by. 

 

[
∆P
∆Q

] = [
Jpθ      Jpv

Jqθ JQV
] [

∆𝜃
∆𝑉

]                                                                                                                     (1) 

 
Where 

ΔP = Incremental change in bus real power. 

ΔQ = Incremental change in   bus   reactive Power injection 

Δθ = incremental change in bus voltage angle. 

ΔV = Incremental change in bus voltage Magnitude 

Jpθ , JPV , JQθ , JQV jacobian matrix are   the   sub-matrixes    of   the System  voltage  stability  

is affected  by both P and Q.  

 
To reduce (1), let ΔP = 0 , then. 

 

∆Q = [JQV − JQθJPθ−1JPV]∆V = JR∆V                                                                                             (2) 
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∆V = J−1 − ∆Q                                                                                                                                (3) 

 
Where 

 

JR = (JQV − JQθJPθ−1JPV)                                                                                                               (4) 

 
JRis called the reduced Jacobian matrix of the system. 

 
2.2. Modes of Voltage Instability 

 
Voltage Stability characteristics of the system have been identified by computing the Eigen values 

and Eigen vectors. 

 
Let 

 
JR = ξ˄η                                                                                                                                            (5) 

 
Where, 

ξ = right eigenvector matrix of JR 

η = left eigenvector matrix of JR 

∧ = diagonal eigenvalue matrix of JR and 

 
JR−1 = ξ˄−1η                                                                                                                                   (6)      

                             

          From (5) and (8), we have 

 
∆V = ξ˄−1η∆Q                                                                                                                                 (7)       

                            

                 Or 

 

∆V = ∑
ξiηi

λi
I ∆Q                                                                                                                               (8) 

 
Where ξi  is the ith  column right eigenvector and  η the ith row left  eigenvector of JR.  

 λi   is the ith Eigen value of JR. 

 
The  ith  modal reactive power variation is, 

 
∆Qmi = Kiξi                                                                                                                                    (9) 

 
Where, 

 
Ki = ∑ ξij2j − 1                                                                                                                              (10) 

 
Where 

ξji is the jth element of ξi 
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The corresponding ith modal voltage variation is 

 
∆Vmi = [1 λi⁄ ]∆Qmi                                                                                                                       (11) 

 
If   |    λi    |    =0   then the  ith modal voltage will collapse. 

 
In (10), let ΔQ = ek   where ek has all its elements zero except the kth one being 1. Then,  

 

∆V =  ∑
ƞ1k  ξ1

λ1
i                                                                                                                                  (12) 

 
ƞ1k     k th element of ƞ1      

V –Q sensitivity at bus k  

 
∂VK

∂QK
= ∑

ƞ1k  ξ1

λ1
i  = ∑

Pki

λ1
i                                                                                                                   (13) 

 
3. Problem Formulation 

 
The objectives of the reactive power dispatch problem is to minimize the system real power loss 

and maximize the static voltage stability margins (SVSM).  

 
3.1. Minimization of Real Power Loss 

 
Minimization of the real power loss (Ploss) in transmission lines is mathematically stated as 

follows. 

 
Ploss= ∑ gk(Vi

2+Vj
2−2ViVj cos θij

)
n

k=1
k=(i,j)

                                                                                               (14)         

    

Where n is the number of transmission lines, gk is the conductance of branch k, Vi and Vj are 

voltage magnitude at bus i and bus j, and θij is the voltage angle difference between bus i and bus 

j. 

 
3.2. Minimization of Voltage Deviation 

 
Minimization  of the voltage  deviation magnitudes (VD) at load buses  is mathematically stated 

as follows. 

 

Minimize VD = ∑ |Vk − 1.0|nl
k=1                                                                                                        (15) 

 
Where nl is the number of load busses and Vk is the voltage magnitude at bus k. 

 
3.3. System Constraints 

 
Objective functions are subjected to these constraints shown below. 

Load flow equality constraints: 
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PGi – PDi − V
i ∑ Vj

nb
j=1

[
Gij cos θij

+Bij sin θij
] = 0, i = 1,2 … . , nb                                                               (16) 

 

QGi − QDi −  V
i ∑ Vj

nb
j=1

[
Gij sin θij

+Bij cos θij
] = 0, i = 1,2 … . , nb                                                          (17)       

                           

 where, nb is the number of buses, PG and QG are the real and reactive power of the generator, PD 

and QD are the real and reactive load of the generator, and Gij and Bij are the mutual conductance 

and susceptance between bus i and bus j. 

 
Generator bus voltage (VGi) inequality constraint: 

 

VGi 
min ≤  VGi ≤ VGi

max, i ∈ ng                                                                                                            (18) 

 
Load bus voltage (VLi) inequality constraint: 

 

VLi 
min ≤  VLi ≤ VLi

max, i ∈ nl                                                                                                          (19) 

 
Switchable reactive power compensations (QCi) inequality constraint: 

 

QCi 
min ≤  QCi ≤ QCi

max, i ∈ nc                                                                                                          (20) 

 
Reactive power generation (QGi) inequality constraint: 

 

QGi 
min ≤  QGi ≤ QGi

max, i ∈ ng                                                                                                          (21) 

 
Transformers tap setting (Ti) inequality constraint: 

 

Ti 
min ≤  Ti ≤ Ti

max, i ∈ nt                                                                                                               (22) 

 
Transmission line flow (SLi) inequality constraint: 

 

SLi 
min ≤ SLi

max, i ∈ nl                                                                                                                         (23) 

 
Where, nc, ng and nt are numbers of the switchable reactive power sources, generators and 

transformers. 

 

4. Particle Swarm Optimization (PSO) 

 
PSO is a population based optimization tool, where the system is initialized with a population of 

random particles and the algorithm searches for optima by updating generations. Suppose that the 

search space is D-dimensional. The position of the i-th particle can be represented by a D-

dimensional vector 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . , 𝑥𝑖𝐷) and the velocity of this particle is 𝑉𝑖 =
(𝑣𝑖1, 𝑣𝑖2, . . , 𝑣𝑖𝐷).The best previously visited position of the i-th particle is represented by 𝑃𝑖 =
(𝑝𝑖1, 𝑝𝑖2, . . , 𝑝𝑖𝐷) and the global best position of the swarm found so far is denoted by𝑃𝑔 =
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(𝑝𝑔1, 𝑝𝑔2, . . , 𝑝𝑔𝐷). The fitness of each particle can be evaluated through putting its position into a 

designated objective function. The particle's velocity and its new position are updated as follows: 

 

𝑣𝑖𝑑
𝑡+1 = 𝜔𝑡𝑣𝑖𝑑

𝑡 + 𝑐1𝑟1
𝑡(𝑝𝑖𝑑

𝑡 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2𝑟2

𝑡(𝑝𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 )                                                                                (24) 

 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1                                                                                                                        (25) 

 

Where 𝑑 ∈ {1,2, . . , 𝐷}, 𝑖 ∈ {1,2, . . , 𝑁}N is the population size, the superscript t denotes the 

iteration number, 𝜔  is the inertia weight, r1 and r2 are two random values in the range [0,1],c1 and 

c2 are the cognitive and social scaling parameters which are positive constants. These both 

equations are used to update the velocity and position of a particle in the exploration space. The 

equation (24) is used to balance the search abilities of the particle in the search space. The equation 

(25) uses the velocity obtained in first equation to get the new position of the particle. 

 

5. Proposed Crowding Distance based Particle Swarm Optimization (CDPSO) 

Algorithm 

 

Let 𝑊𝑑
𝑛𝑒𝑥𝑡next wd and 𝑊𝑑

𝑙𝑎𝑠𝑡last wd be the next and the last adjacent particles of the d-th particle 

𝑊𝑑 , respectively. The crowding distance of the d-th individual particle 𝑊𝑑  is defined as, 

 

𝜎𝑑 = ∑
𝐹𝑚(𝑊𝑑

𝑛𝑒𝑥𝑡)−𝐹𝑚(𝑊𝑑
𝑙𝑎𝑠𝑡)

𝐹𝑚
𝑚𝑎𝑥−𝐹𝑚

𝑚𝑖𝑛
𝑝
𝑚=1                                                                                                       (26) 

 

where p is the number of the objectives , 𝐹𝑚(𝑊𝑑
𝑛𝑒𝑥𝑡) − 𝐹𝑚(𝑊𝑑

𝑙𝑎𝑠𝑡) and 𝐹𝑚(𝑊𝑑)are respectively 

the fitness values of m-th objective , 𝐹𝑚
𝑚𝑎𝑥 − 𝐹𝑚

𝑚𝑖𝑛are the maximum and minimum values of the 

m-th objective, respectively. 

 
The crowding distance is introduced as the index to judge the distance between the particle and 

the adjacent particle, and it reflects the congestion degree of no dominated solutions. In the 

population, the larger the crowding distance, the sparser and more uniform. 

 

The infeasibility threshold  is defined as 

 

 = {


o
(1 − 5t/4N), t ≤ 0.8N

0,                          t > 0.8𝑁
                                                                                                          (27) 

 
Where 

o
  is an initial value allowed by constraint violation degree, t is the current evolution 

generation, and N is the maximal evolution generation. 

 
The degree of the individual particle violating the constraints is defined as, 

𝐶(𝑊𝑑) = ∑ 𝑚𝑎𝑥 (𝐻5𝑟(𝑊𝑑), 0)𝑞
𝑡=1 + ∑ 𝑚𝑎𝑥 (|𝐻1𝑗(𝑊𝑑)| − 𝛿, 0) + ∑ 𝑚𝑎𝑥 (|𝐻3𝑟(𝑊𝑑) −𝑙

𝜏=1
𝑚
𝑗=1

𝐻2𝑟(𝑊𝑑) − √𝐻2𝑟
2 (𝑊𝑑) + 𝐻3𝑟

2 (𝑊𝑑) + 휀| − 𝛿, 0) +  𝑚𝑎𝑥 (|𝐻4(𝑊𝑑)| − 𝛿, 0)                                                                                                                                                 

(28) 
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where  is the tolerance of the equation constraints, which reflects the degree of the strictness on 

the equation constraints. In the feasible solution space, we uniformly and randomly initialize the 

particle swarms and select the no dominated solution particles consisting of the elite set. After that 

by the methods of congestion degree choosing (the congestion degree can make the particles 

distribution more sparse) and the dynamic  infeasibility dominating the constraints, we remove 

the no dominated particles in the elite set. Then, the objectives can be approximated. 

 
Step 1. Give the particle population size M (including the position x and the velocity v) and the 

maximal evolution generation N. Select the initial infeasibility threshold 
o
 , and let  t=0. 

Step 2. Update each particle in the particle group:  

Step 2.1. Archive the no dominated solutions of the particle swarm in the external elite set and 

calculate the congestion distance and the degree of the individual particle violating the constraints 

C(w) on each non-dominated solution in the external elite set. The distances are made in 

descending order. Then randomly select one particle as the global optimal position Pg from the 

archived elite set.  

Step 2.2. Update the velocity and position of the particle. If the position of a particle exceeds the 

preset boundary, the position of the particle is equal to its boundary value and its velocity is 

multiplied by “–1” to search the particle in the opposite direction.  

Step 3. Update the external elitist set: Compare the updated non-dominated solutions of the particle 

swarm with the non-dominated solutions in the external elites, and decide whether the non-

dominated solutions in the particle swarm should be archived in the external elite set. If the solution 

in the particle swarm satisfies the domination relation, it needs to judge whether the external elitist 

set is full: if it is not full, the non-dominated solution is archived directly; otherwise, the following 

steps are adopted:  

Step 3.1. Archive all non-dominated solutions of the external elite set in descending order 

according to the congestion distance.  

Step 3.2. Randomly pick a particle in the M particles of the sorted set and replace it with the 

particle that needs to be archived.  

Step 4. Update the local optimal position of the particle:  

Step 4.1. Update the global optimum position if the position of the particle updated dominates its 

historical optimal position.  

Step 4.2. If the updated particle position does not dominate its historical optimum position, 

according to 50% chance to retain its best position in history. When the degree of all the particles 

in the non-dominated set violating the constraints C(w) is zero, the algorithm terminates and we 

get the approximate Pareto optimal solutions w* and the values F (w*). Otherwise, go to Step 5. 

Step 5. If t  N we get the approximate Pareto optimal solutions w* and the values F (w*). 

Otherwise, set t =t +1, and go to Step 2. 

 
6. Simulation Results  

 
The efficiency of the proposed  Crowding Distance based Particle Swarm Optimization (CDPSO) 

algorithm is demonstrated by testing it on standard IEEE-30 bus system. The IEEE-30 bus system 

has 6 generator buses, 24 load buses and 41 transmission lines of which four branches are (6-9), 

(6-10) , (4-12) and (28-27) - are with the tap setting transformers. The lower voltage magnitude 

limits at all buses are 0.95 p.u. and the upper limits are 1.1 for all the PV buses and 1.05 p.u. for 

all the PQ buses and the reference bus. The simulation results have been presented in Tables 1, 2, 
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3 &4. And in the Table 5 shows the proposed algorithm powerfully reduces the real power losses 

when compared to other given algorithms. The optimal values of the control variables along with 

the minimum loss obtained are given in Table 1. Corresponding to this control variable setting, it 

was found that there are no limit violations in any of the state variables.  

 

Table 1: Results of CDPSO – ORPD optimal control variables 

Control variables Variable setting 

V1 

V2 

V5 

V8 

V11 

V13 

T11 

T12 

T15 

T36 

Qc10 

Qc12 

Qc15 

Qc17 

Qc20 

Qc23 

Qc24 

Qc29 

Real power loss 

SVSM 

1.042 

1.045 

1.041 

1.031 

1.000 

1.030 

1.00 

1.00 

1.00 

1.00 

2 

2 

2 

0 

2 

3 

3 

2 

4.1034 

 0.2476 

 

Optimal Reactive Power Dispatch problem (ORPD) together with voltage stability constraint 

problem was handled in this case as a multi-objective optimization problem where both power loss 

and maximum voltage stability margin of the system were optimized simultaneously. Table 2 

indicates the optimal values of these control variables. Also it is found that there are no limit 

violations of the state variables. It indicates the voltage stability index has increased from 0.2476 

to 0.2488, an advance in the system voltage stability. To determine the voltage security of the 

system, contingency analysis was conducted using the control variable setting obtained in case 1 

and case 2. The Eigen values equivalents to the four critical contingencies are given in Table 3. 

From this result it is observed that the Eigen value has been improved considerably for all 

contingencies in the second case.  

 

Table 2: Results of  CDPSO-Voltage Stability Control Reactive Power Dispatch Optimal Control 

Variables 

Control Variables Variable Setting 

V1 

V2 

V5 

 

1.047 

1.048 

1.042 

 

http://www.granthaalayah.com/


[Lenin *, Vol.6 (Iss.6): June 2018]                                                           ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

(Received: May 26, 2018 - Accepted: June 22, 2018)                                                DOI: 10.5281/zenodo.1305360 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [234] 

 

V8 

V11 

V13 

T11 

T12 

T15 

T36 

Qc10 

Qc12 

Qc15 

Qc17 

Qc20 

Qc23 

Qc24 

Qc29 

Real power loss 

SVSM 

1.031 

1.000 

1.031 

0.090 

0.090 

0.090 

0.090 

3 

3 

2 

3 

0 

2 

2 

3 

4.9896 

0.2488 

 

Table 3: Voltage Stability under Contingency State 

Sl.No Contingency ORPD Setting VSCRPD Setting 

1 28-27 0.1419 0.1434 

2 4-12 0.1642 0.1650 

3 1-3 0.1761 0.1772 

4 2-4 0.2022 0.2043 

 

Table 4: Limit Violation Checking Of State Variables 

State variables limits ORPD VSCRPD 

Lower  upper 

Q1 -20 152 1.3422 -1.3269 

Q2 -20 61 8.9900 9.8232 

Q5 -15 49.92 25.920 26.001 

Q8 -10 63.52 38.8200 40.802 

Q11 -15 42 2.9300 5.002 

Q13 -15 48 8.1025 6.033 

V3 0.95 1.05 1.0372 1.0392 

V4 0.95 1.05 1.0307 1.0328 

V6 0.95 1.05 1.0282 1.0298 

V7 0.95 1.05 1.0101 1.0152 

V9 0.95 1.05 1.0462 1.0412 

V10 0.95 1.05 1.0482 1.0498 

V12 0.95 1.05 1.0400 1.0466 

V14 0.95 1.05 1.0474 1.0443 

V15 0.95 1.05 1.0457 1.0413 

V16 0.95 1.05 1.0426 1.0405 

V17 0.95 1.05 1.0382 1.0396 
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V18 0.95 1.05 1.0392 1.0400 

V19 0.95 1.05 1.0381 1.0394 

V20 0.95 1.05 1.0112 1.0194 

V21 0.95 1.05 1.0435 1.0243 

V22 0.95 1.05 1.0448 1.0396 

V23 0.95 1.05 1.0472 1.0372 

V24 0.95 1.05 1.0484 1.0372 

V25 0.95 1.05 1.0142 1.0192 

V26 0.95 1.05 1.0494 1.0422 

V27 0.95 1.05 1.0472 1.0452 

V28 0.95 1.05 1.0243 1.0283 

V29 0.95 1.05 1.0439 1.0419 

V30 0.95 1.05 1.0418 1.0397 

 

Table 5: Comparison of Real Power Loss 

Method Minimum loss 

Evolutionary programming [32] 5.0159 

Genetic algorithm [33] 4.665 

Real coded GA with Lindex as SVSM  [34] 4.568 

Real coded genetic algorithm [35] 4.5015 

Proposed CDPSO method 4.1034 

 
 

7. Conclusion 

 
Crowding Distance based Particle Swarm Optimization (CDPSO) algorithm has been successfully 

solved optimal reactive power dispatch problem. The crowding distance is introduced as the index 

to judge the distance between the particle and the adjacent particle, and it reflects the congestion 

degree of no dominated solutions. In the population, the larger the crowding distance, the sparser 

and more uniform. In the feasible solution space, we uniformly and randomly initialize the particle 

swarms and select the no dominated solution particles consisting of the elite set. After that by the 

methods of congestion degree choosing (the congestion degree can make the particles distribution 

more sparse) and the dynamic  infeasibility dominating the constraints, we remove the no 

dominated particles in the elite set. Then, the objectives can be approximated. Proposed crowding 

distance based Particle Swarm Optimization (CDPSO) algorithm has been tested in standard IEEE 

30 bus test system and simulation results shows clearly the improved performance of the projected 

algorithm in reducing the real power loss and static voltage stability margin has been enhanced. 
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