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Abstract 

This paper presents, Lucid Particle Swarm Optimization (LPSO) algorithm for Solving Optimal 

Reactive Power Problem. Particle swarm   method is typically made up of a population of simple 

agents intermingle locally with one another and with their surroundings, with the aim of locating 

the optima within the operational environment. In this paper, a robust and Lucid particle swarm 

optimization framework based on multi-agent system is presented, where learning capabilities are 

integrated into the particle agents to dynamically fiddle with their optimality behaviours. Self-

Sufficiency is achieved by the use of communicators that separate an agent’s individual operation 

from that of the swarm, thereby making the system more robust. The proposed Lucid Particle 

Swarm Optimization (LPSO) algorithm has been tested on standard IEEE 118 & practical 191 bus 

test systems and simulation results show clearly about the premium performance of the proposed 

algorithm in reducing the real power loss. 
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1. Introduction

Optimal reactive power problem is to minimize the real power loss and bus voltage deviation. 

Various numerical methods like the gradient method [1-2], Newton method [3] and linear 

programming [4-7] have been adopted to solve the optimal reactive power dispatch problem. Both   

the gradient and Newton methods have the complexity in managing inequality constraints. If linear 

programming is applied then the input- output function has to be uttered as a set of linear functions 

which mostly lead to loss of accuracy.   The problem of voltage stability and collapse play a   major 

role in power system planning and operation [8].  Evolutionary algorithms such as genetic 

algorithm have been already proposed to solve the reactive power flow problem [9-11]. 

Evolutionary algorithm is a heuristic approach used for minimization problems by utilizing 

nonlinear and non-differentiable continuous space functions. In [12], Hybrid differential evolution 

algorithm is proposed to improve the voltage stability index. In [13] Biogeography Based 
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algorithm is projected to solve the reactive power dispatch problem. In [14], a fuzzy based method 

is used to solve the optimal reactive power scheduling method. In [15], an improved evolutionary 

programming is used to solve the optimal reactive power dispatch problem. In [16], the optimal 

reactive power flow problem is solved by integrating a genetic algorithm with a nonlinear interior 

point method. In [17], a pattern algorithm is used to solve ac-dc optimal reactive power flow model 

with the generator capability limits. In [18], F. Capitanescu proposes a two-step approach to 

evaluate Reactive power reserves with respect to operating constraints and voltage stability.  In 

[19], a programming based approach is used to solve the optimal reactive power dispatch problem. 

In [20], A. Kargarian et al present a probabilistic algorithm for optimal reactive power provision 

in hybrid electricity markets with uncertain loads. This paper presents, Lucid Particle Swarm 

Optimization (LPSO) algorithm for Solving Optimal Reactive Power Problem. Implementing the 

Particle Swarm Optimization (PSO) method from conventional supervised approach has a number 

of setbacks. To begin with, it is deficient in the autonomy of the system which nature deserves; 

the particles attain their goals by performing a fully detailed program, and they are restricted by 

the highly unified execution, since they have a consistent algorithm for implementation that 

prohibits self-sufficiency and intellect. But PSO naturally fits a system where the agents are 

delegated goals in some elevated level way, and then the agents decide for themselves how best to 

achieve their goals – the agents here have the capability to choose how best to act so as to achieve 

their delegated goals. The scalability that is needed in such a system is also lacking since an inert 

population is usually assumed during optimization procedure. There are variants of PSOs where 

partisanship of the total swarm population grows or shrinks dynamically [21-24], depending on 

the strengths and behaviours of members of the structure. Therefore, scalability in the form of 

population enlargement or reduction is desirable, which is fairly difficult to do in a monolithic and 

highly unified system. A perfect model will therefore not take for granted fixed neighbourhood of 

particle agents; agents should be able of moving from one neighbourhood to another, which may 

have dissimilar sizes. This feature is naturally available in Multi Agent System (MAS), since every 

agent is treated separately. Multifaceted communication patterns arise among the particles within 

a typical PSO system, and if not properly implemented, communication can be inherently 

synchronous. This drastically degrades the overall systems performance especially if the 

population size is too elevated. With the MAS approach, there is a natural asynchronous 

communication, because concurrency is natural, as agents implement independently. 

Implementing a population-based algorithm without regards for isolated behaviour of each 

candidate of the population makes the entire procedure as a complex one, especially with a large 

population. Since every particle has divided behaviour from other particles within the system, it is 

highly desirable to model the system as such. A number of other characteristics of PSO [25] that 

make it suitable for MAS exist; Natural algorithm: it is based on the behaviour of real birds/fish 

which are real agents; Parallel and distributed algorithm: the swarm is a population of agents move 

simultaneously, independently and without a supervisor; Cooperative particles: each agent chooses 

a new point partly based on the information received from other agents. To address these issues, 

literatures on MAS-based PSOs exist [25-27], however, the importance in these literatures are 

based on modelling, implementations, and load balancing/fault tolerance. The proposed Lucid 

Particle Swarm Optimization (LPSO) algorithm has been evaluated in standard IEEE 57 bus test 

system & the simulation results shows   that the proposed approach outperforms all reported 

algorithms in minimization of real power loss. 

 
 

2. Problem Formulation  
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The Optimal reactive power flow problem is measured as a general minimization problem with 

constraints, and can be mathematically written in the following form: 

 

Minimize f(x, u)                                                                                                                            (1)  

 

Subject to g(x,u)=0                                                                                                                        (2)  

 

And 

 
h(x, u) ≤ 0                                                                                                                                    (3) 

 

Where f(x,u) is the objective function. g(x.u) and h(x,u) are respectively the set of equality and 

inequality constraints. x is the vector of state variables, and u is the vector of control variables. 

 

The state variables are the load buses (PQ buses) voltages, angles, the generator reactive powers 

and the slack active generator power: 

 

x = (Pg1, θ2, . . , θN, VL1, . , VLNL, Qg1, . . , Qgng)
T
                                                                           (4) 

 
The control variables are the generator bus voltages, the shunt capacitors/reactors and the 

transformers tap-settings: 

 

u = (Vg, T, Qc)
T

                                                                                                                           (5) 

 

Or 

 

u = (Vg1, … , Vgng, T1, . . , TNt, Qc1, . . , QcNc)
T
                                                                               (6) 

 
Where Ng, Nt and Nc are the number of generators, number of tap transformers and the number 

of shunt compensators respectively. 

 
3. Objective Function 

 
Active power loss 

The objective of the reactive power dispatch is to minimize the active power loss in the 

transmission network, which can be described as follows: 

 

𝐹 = 𝑃𝐿 = ∑ 𝑔𝑘𝑘∈𝑁𝑏𝑟 (𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝜃𝑖𝑗)                                                                        (7) 

                

Or 

 

𝐹 = 𝑃𝐿 = ∑ 𝑃𝑔𝑖 − 𝑃𝑑 = 𝑃𝑔𝑠𝑙𝑎𝑐𝑘 + ∑ 𝑃𝑔𝑖 − 𝑃𝑑
𝑁𝑔
𝑖≠𝑠𝑙𝑎𝑐𝑘𝑖∈𝑁𝑔                                                          (8) 
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Where gk : is the conductance of branch between nodes i and j, Nbr: is the total number of 

transmission lines in power systems. Pd: is the total active power demand, Pgi: is the generator 

active power of unit i, and Pgsalck: is the generator active power of slack bus. 

 
Voltage profile improvement 

For minimizing the voltage deviation in PQ buses, the objective function becomes: 

 

𝐹 = 𝑃𝐿 + 𝜔𝑣  × 𝑉𝐷                                                                                                                      (9) 

  
Where ωv: is a weighting factor of voltage deviation. 

 

VD is the voltage deviation given by: 

 

𝑉𝐷 = ∑ |𝑉𝑖 − 1|𝑁𝑝𝑞
𝑖=1                                                                                                                      (10) 

 

Equality Constraint  

 
The equality constraint g(x,u) of the ORPD problem is represented by the power balance equation, 

where the total power generation must cover the total power demand and the power losses: 

 

𝑃𝐺 = 𝑃𝐷 + 𝑃𝐿                                                                                                                               (11) 

 

This equation is solved by running Newton Raphson load flow method, by calculating the active 

power of slack bus to determine active power loss. 

 
Inequality Constraints  

The inequality constraints h(x,u) reflect the limits on components in the power system as well as 

the limits created to ensure system security. Upper and lower bounds on the active power of slack 

bus, and reactive power of generators: 

 

𝑃𝑔𝑠𝑙𝑎𝑐𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘

𝑚𝑎𝑥                                                                                                          (12) 

 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑁𝑔                                                                                                      (13) 

 

Upper and lower bounds on the bus voltage magnitudes:          

 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥  , 𝑖 ∈ 𝑁                                                                                                          (14) 

  

Upper and lower bounds on the transformers tap ratios: 

 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥  , 𝑖 ∈ 𝑁𝑇                                                                                                         (15) 

 

Upper and lower bounds on the compensators reactive powers: 

 

𝑄𝑐
𝑚𝑖𝑛 ≤ 𝑄𝑐 ≤ 𝑄𝐶

𝑚𝑎𝑥 , 𝑖 ∈ 𝑁𝐶                                                                                                        (16) 
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Where N is the total number of buses, NT is the total number of Transformers; Nc is the total 

number of shunt reactive compensators. 

 
4. Lucid Particle Swarm Optimization 

 

Lucid is connected with the way of thinking &is carried out in order to land at a termination. It 

refers to the capability to come to accurate conclusions about what is true or real, and about how 

to solve problems [28]. Reasoning in a general sense is a broad subject matter that refers to the 

ability to make sense of things, to set up and confirm facts, and to alter or validate practices and 

beliefs [29]. We use practical way of thinking model to agency [30, 31] to represent intellectual 

actions. Realistic way of thinking is the capacity for resolving, through reflection, the question of 

what is to be done. Deliberation of this kind is realistic in the subject matter, insofar as it is 

concerned with action. But it is also practical in its consequences or its issue, in so far as indication 

about action itself directly moves an agent to act [32]. The idea of realistic reasoning agent is 

modelled by looking at an agent as having a set of beliefs which are the discernment of the agent’s 

operating environment, set of requirements which are the various options at the agent’s disposal, 

and set of intents which are selections made from the desires by filtering the most excellent options. 

Realistic reasoning is comprised of two major components [31]: The intentions here are the future 

directed intentions, which simply symbolize the state of mind of the agent, with no deeds taken. 

Deliberation is modelled as choice of generation and filtering processes [31], which are thus 

described as follows: 

 
i. Option generation function takes the present beliefs and present intentions in order to yield 

the agent’s desire set. Thus, 

 

𝑜𝑝𝑡𝑖𝑜𝑛 ∶ 2𝐵𝑒𝑙 × 2𝐼𝑛𝑡 → 2𝐷𝑒𝑠                                                                                                       (17) 

 

ii. Then the intentions to be devoted to obtain by filtering and selecting the best options using 

the following function: 

 

𝑓𝑖𝑙𝑡𝑒𝑟 ∶ 2𝐵𝑒𝑙 × 2𝐼𝑛𝑡 × 2𝐷𝑒𝑠 → 2𝐼𝑛𝑡                                                                                             (18) 

 

The agent updates its belief through a belief reassess function defined as: 

 

𝑏𝑟𝑓 ∶  2𝐵𝑒𝑙 × 𝑝𝑒𝑟 → 2𝐵𝑒𝑙                                                                                                           (19) 

          

Where "𝑝𝑒𝑟"is a set of percept in the operating environment. 

 

Practically, a particle agent within the swarm will arrive at a substitute by first deliberating on the 

available options, and then build decisions by acting on the best alternatives. A Particle agent starts 

by having a particular set of beliefs which are accumulated in a belief database, and then executed 

to intentions for actions based on the initial beliefs and desires. As time steps forward, the beliefs 

about the actual world may be refined, and the agent’s desires and intentions may also be redefined 

to imitate the changes in the belief database. After an agent deliberates and creates intentions to 

which it is committed, the agent needs to plan how to achieve the intentions based on the current 

state of the environment (agent’s belief) and the actions that are available to it. This is means-ends 
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reasoning. So, a particle agent perceives its atmosphere and then adjusts its belief database 

appropriately, upon which it derives its intentions, and then uses realistic reasoning to take a deed 

that alters the actual world, which advances the structure towards a potential solution. 

 
The properties of the traditional Particle Swarm Optimization (PSO) model make it a suitable 

candidate for Multi-Agent System (MAS) implementation. In the MAS-based PSO, we model into 

MAS the suitable qualities of the traditional PSO and then initiate concepts that progress on the 

overall systems performance as an optimization method. Agents within MAS deem problems by 

weighing conflicting considerations for and against challenging options, where the applicable 

considerations are provided by what the agent desires or values and what the agent believes. An 

agent takes deed by first deliberating on what state of affairs to achieve from the available options, 

which represents its Intentions that modify its state of mind. Then the agent reasons on how to 

attain the chosen state of affairs, which results in a plan of how best to accomplish the option. By 

so doing, intellect is built into the system. 

 

The fundament for the development of PSO is hypothesis that a potential solution to an 

optimization problem is treated as a bird without quality and volume, which is called a particle, 

coexisting and evolving simultaneously based on knowledge sharing with neighbouring particles. 

While flying through the problem search space, each particle modifies its velocity to find a better 

solution (position) by applying its own flying experience (i.e. memory having best position found 

in the earlier flights) and experience of neighbouring particles (i.e. best-found solution of the 

population). Particles update their positions and velocities as shown below: 

 
𝑣𝑡+1

𝑖 = 𝜔𝑡 . 𝑣𝑡
𝑖 + 𝑐1. 𝑅1 . (𝑝𝑡

𝑖 − 𝑥𝑡
𝑖) + 𝑐2. 𝑅2. (𝑝𝑡

𝑔
− 𝑥𝑡

𝑖)                                                                                     (20)            
 

𝑥𝑡+1
𝑖 =  𝑥𝑡

𝑖 + 𝑣𝑡+1
𝑖                                                                                                                         (21) 

 

Where 𝑥𝑡
𝑖 represents the current position of particle i in solution space and subscript t indicates an 

iteration count; 𝑝𝑡
𝑖 is the best-found position of particle i up to iteration count t and represents the 

cognitive contribution to the search velocity 𝑣𝑡
𝑖  . Each component of 𝑣𝑡

𝑖 can be clamped to the 

range to control excessive roaming of particles outside the search space; 𝑝𝑡
𝑔

 is the global best-

found position among all particles in the swarm up to iteration count t and forms the social 

contribution to the velocity vector; 𝑟1 and 𝑟2 are random numbers uniformly distributed in the 

interval (0,1), where𝑐1  and𝑐2  are the cognitive and social scaling parameters, respectively;𝜔𝑡 is 

the particle inertia, which is reduced dynamically to decrease the search area in a gradual fashion. 

 

The agent chooses more talented neighbours based on its previous knowledge and experience. The 

requirements of the agent increases in the direction of more promising neighbours and it updates 

its beliefs, and subsequently gets attracted towards more promising regions. 

 

Description 1: We define the state of environment in which the agent’s search space may be as 

follows: 

𝐸 = {𝑃1, 𝑃2, . . , 𝑃𝑁}                                                                                                                                                                        (22) 

 

Where 𝑃𝑖 = (𝑃𝑖1, 𝑃𝑖2, . . , 𝑃𝑖𝑛)𝑇 are the best positions ever visited by each particle agent, 

representing the 
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present state ( i  = 1,2,..,N  , N being the population size and n the current iteration counter ). 

 

Description 2: Each particle agent has a range of actions at its disposal, which are the 

consequences of agent’s invocation. If we generally define the set of actions as 𝐴𝑐 = {𝛼, 𝛼 ′, . . }, 

then specifically, the ith particle agent in the system has these actions: 

 

𝐴𝐶𝑖 = {𝑉, 𝑋, 𝑁∗, 𝜎, 𝐶}                                                                                                                  (23) 

 

Where 𝑉 and 𝑋 are the velocity and position functions respectively of the agent within the main 

neighbourhood, 𝑁∗is the prospective neighbourhood vector described earlier, which is an action 

that computes the values for the belief database and updates same, and 𝐶 is a communicator which 

the agent uses to communicate with other agents, thereby separating the social activities of the 

Multi-Agent System (MAS) from the individual agent’s activities. 𝜎 is a recap function that 

permits an agent to appraise its history from the last time stamp in order to decide whether or not 

to change neighbourhood. 

 

Particle agents in the explore space have single-minded commitments, because an agent continues 

to maintain an intension of recuperating the fitness values within a particular neighbourhood until 

it believes either that the intension has been achieved, or else it is no longer a more reasonable 

option to remain in that neighbourhood, in which case it is sensible for the agent to move away to 

a more promising neighbourhood. We presume that the size of neighbourhoods can vary because 

there may be increase or decrease in population, agents can move from one neighbourhood to 

another, or any other unforeseen factor. 

 

Description 3: A run 𝑟 , of an agent in an environment is a sequence of interleaved environment 

states and actions. If we let be the set of all such runs, then we have: 

 

𝑅 = {𝑟, 𝑟′, . . }                                                                                                                               (24) 

 

Let 𝑅𝐴𝐶 be the subset of these that end with an action and 𝑅𝐸  be the subset of these that end with 

an environment state. 

 

Description 4: When a particle agent invokes an action on an environment, it transforms the 

environment state, and this effect is modelled by the state transformer function defined as: 

 

𝜏: 𝑅𝐴𝐶 → 2𝐸                                                                                                                                 (25) 

 

Where 2𝐸  power set of E. 

 

This means that from runs which end with actions taken by a particle agent, the structure will 

always end up in a particular environment state; taking an action by a particle agent on a previous 

environment state moves the environment to another state. 

Description 5: We define an environment as a tuple: 

 

𝜉 = 〈𝐸, 𝜃𝐷 , 𝜏, 𝑇, 𝜂〉                                                                                                                       (26) 
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Where 𝐸 is the set of environment states, 𝜃𝐷 is an initial state, 𝜏  is a state transformer function, 𝑇 

is theactive topology in the environment, and 𝜂 is a set of neighbourhoods defined as 𝜂 =
{𝑛1, 𝑛2, . . , 𝑛𝑘} , where K is the total number of neighbourhoods. 

 

Description 6: In MAS, the agents drive the system. The state of the environment emerges as a 

result of the agents’ actions – based on the behaviours and interactions among the agents. Since 

actions are produced by agents when they execute in the system, we model agents as function of 

execution, which yield an action (whose effect is the state transformer function). 

Thus, a particle agent is defined as: 

 

𝐴: 𝑅𝐸 → 𝐴𝑐                                                                                                                                  (27) 

 

So if an action, say the position update function 𝑋 ∈ 𝐴𝑐 , 𝐴′ is desired of a particle agent, the agent 

produces this action by executing on an existing run ending with environment state, say 𝑟′ , which 

is its current position, as follows: 

 

𝑋 = 𝐴′(𝑟′)                                                                                                                                 (28) 

 

This leaves the run to end with an action. The effect of taking this action, which is modelled by 

the state transformer function, 𝜏 is to produce a new environment state. 

 

Description 7: We define Swarm S to be the set of all agents, as follows: 

  

𝑆 = {𝐴1, 𝐴2, . . , 𝐴𝑁}                                                                                                                     (29) 

 

And the Swarm System is thus defined as (𝑆, 𝜉) , where 𝑅 is the set of all runs. 

 

Having established the definitions and the relationships above, we now explain the algorithms that 

aid practical reasoning particle agents to perform within the swarm. Particle agents require 

planning ahead and envisaging better fitness values with other neighbourhoods within the same 

iteration by sharing information with agents outside the main locality. The particle agents thus 

uphold single-minded commitments of achieving better fitness values by making realistic 

reasoning and dynamically alternating neighbours in the explore process. Within every iteration, 

an agent calculate several fitness values in parallel and keeps the history for future reference, and 

as time progresses, the agent sticks to neighbours that capitulate improved fitness values. So the 

best global behaviour emerges as the agents interact. As earlier explained, Practical reasoning = 

deliberation + means-ends reasoning Deliberation = option generation function and Filtering 

function. 

 
Means-end reasoning = planning 

 

These components of the practical reasoning are obtained below. The environment state as initially 

perceived by particle agents, denoted by equation (22), represents the initial belief of the agents. 

So B = Bo = {P1, P2, . . , PN} The agents will initially look at the state of affairs to achieve as their 

initial intentions. The desired state of affair at the beginning is to apply the velocity function of 

equation (20) and then take a move using the position function of equation (21). 
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These are initialized in  𝐼 = 𝐼𝑜 . 

 

Lucid Particle Swarm Optimization (LPSO) algorithm for solving optimal reactive power 

problem  

 

B = Bo; // Initial beliefs 

I = Io; //initial intentions 

While true do 

Get next percept ρ of the swarm by making a call to communicator C; 

B ← brf (B, ρ); 

D ← option (B, I); 

I ← filter (B, D, I); 

π ← plan(B, I, Ac) ; 

Whi1e not (empty (π) or succeeded (I, B) or impossible (I, B)) do 

α ← head(π); 

Execute (α); 

π ← tail(π); 

Get next percept ρ of the swarm by 

Making a call to communicator C; 

B ← brf (B, ρ); 

If reconsider (I, B) then 

D ← option (B, I); 

I ← filter (B, D, I); 

End-if 

If not sound (π, I, B) then 

π ← plan(B, I, Ac) ; 

End-if 

End-whi1e 

End-whi1e 

 

5. Simulation Results  

 
At first Lucid Particle Swarm Optimization (LPSO) algorithm has been tested in standard IEEE 

118-bus test system [33]. The system has 54 generator buses, 64 load buses, 186 branches and 9 

of them are with the tap setting transformers. The limits of voltage on generator buses are 0.95 -

1.1 per-unit., and on load buses are 0.95 -1.05 per-unit. The limit of transformer rate is 0.9 -1.1, 

with the changes step of 0.025. The limitations of reactive power source are listed in Table 1, with 

the change in step of 0.01. 

 

 
 

Table 1: Limitation of reactive power sources 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 
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QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 

The statistical comparison results have been listed in Table 2 and the results clearly show the better 

performance of proposed LPSO approach. 

 

Table 2: Comparison results 

Active power loss (p.u) BBO 

[34] 

ILSBBO/ 

strategy1 

[34] 

ILSBBO/ 

strategy1 

[34] 

Proposed 

LPSO 

Min 128.77 126.98 124.78 102.48 

Max 132.64 137.34 132.39 108.26 

Average  130.21 130.37 129.22 104.02 

 

Then the Lucid Particle Swarm Optimization (LPSO) algorithm has been tested in practical 191 

test system and the following results have been obtained. In Practical 191 test bus system – Number 

of Generators = 20, Number of lines = 200, Number of buses = 191 Number of transmission lines 

= 55. Table 3 shows the optimal control values of practical 191 test system obtained by LPSO 

method. And table 4 shows the results about the value of the real power loss by obtained by Lucid 

Particle Swarm Optimization (LPSO) algorithm. 

 
Table 3: Optimal Control values of Practical 191 utility (Indian) system by LPSO method 

VG1 1.100  VG 11 0.900 

VG 2 0.720 VG 12 1.000 

VG 3 1.010 VG 13 1.000 

VG 4 1.010 VG 14 0.900 

VG 5 1.100 VG 15 1.000 

VG 6 1.100 VG 16 1.000 

VG 7 1.100 VG 17 0.900 

VG 8 1.010 VG 18 1.000 

VG 9 1.100 VG 19 1.100 

VG 10 1.010 VG 20 1.100 

                               

T1 1.000  T21 0.900  T41 0.900 

T2 1.000 T22 0.900 T42 0.900 

T3 1.000 T23 0.900 T43 0.910 

T4 1.100 T24 0.900 T44 0.910 

T5 1.000 T25 0.900 T45 0.910 

T6 1.000 T26 1.000 T46 0.900 

T7 1.000 T27 0.900 T47 0.910 

T8 1.010 T28 0.900 T48 1.000 

T9 1.000 T29 1.010 T49 0.900 

T10 1.000 T30 0.900 T50 0.900 

T11 0.900 T31 0.900 T51 0.900 

T12 1.000 T32 0.900 T52 0.900 

http://www.granthaalayah.com/


[Lenin *, Vol.6 (Iss.4): April 2018]                                                          ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

(Received: Mar 11, 2018 - Accepted: Apr 30, 2018)                                                  DOI: 10.5281/zenodo.1248188 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [322] 

 

T13 1.010 T33 1.010 T53 1.000 

T14 1.010 T34 0.900 T54 0.900 

T15 1.010 T35 0.900 T55 0.900 

T19 1.020 T39 0.900   

T20 1.010 T40 0.900   

 

Table 4: Optimum real power loss values obtained for practical 191 utility (Indian) system by 

LPSO method 

Real power Loss 

(MW) 

LPSO 

Min 134.082 

Max 138.246 

Average 136.864 
 

6. Conclusion  

 
In this paper, Lucid Particle Swarm Optimization (LPSO) algorithm has been successfully solved 

optimal reactive power problem. In the proposed algorithm Self-Sufficiency is achieved by the use 

of communicators that separate an agent’s individual operation from that of the swarm, thereby 

making the system more robust. The proposed Lucid Particle Swarm Optimization (LPSO) 

algorithm has been tested on standard IEEE 118 & practical 191 bus test systems and simulation 

results show clearly about the premium performance of the proposed algorithm in reducing the 

real power loss. 
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