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Abstract 

This paper proposes a swarm intelligence algorithm, called Firefly Mating Algorithm (FMA) for 

solving optimal reactive power problem. FMA uses genetic algorithm as the core of the 

algorithm. The main feature of the algorithm is a novel mating pair selection method which is 

inspired by the following two mating behaviours of fireflies in nature: (i) the mutual attraction 

between males and females causes them to mate and (ii) fireflies of both sexes are of the 

multiple-mating type, mating with multiple opposite sex partners. A female continues mating 

until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several 

females until his sperm reservoir is depleted. In order to evaluate the efficiency of the proposed 

algorithm; it has been tested on IEEE 57 bus system and simulation results reveals about the best 

performance of the proposed algorithm in reducing the real power loss. 
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1. Introduction

Reactive power optimization places an important role in optimal operation of power systems. 

Various numerical methods like the gradient method [1,2], Newton method [3] and linear 

programming [4-7] have been implemented to solve the optimal reactive power dispatch 

problem. Both   the gradient and Newton methods have the intricacy in managing inequality 

constraints. The problem of voltage stability and collapse play a   key role in power system 

planning and operation [8] Evolutionary algorithms such as genetic algorithm have been already 

projected to solve the reactive power flow problem [9-11]. Evolutionary algorithm is a heuristic 

methodology used for minimization problems by utilizing nonlinear and non-differentiable 

continuous space functions. In [12], Hybrid differential evolution algorithm is projected to 

increase the voltage stability index. In [13] Biogeography Based algorithm is projected to solve 

the reactive power dispatch problem. In [14], a fuzzy based method is used to solve the optimal 

reactive power scheduling method. In [15], an improved evolutionary programming is used to 

elucidate the optimal reactive power dispatch problem. In [16], the optimal reactive power flow 
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problem is solved by integrating a genetic algorithm with a nonlinear interior point method. In 

[17], a pattern algorithm is used to solve ac-dc optimal reactive power flow model with the 

generator capability limits. In [18-20] proposes a two-step approach to calculate Reactive power 

reserves with respect to operating constraints and voltage stability. This paper proposes a swarm 

intelligence algorithm, called Firefly Mating Algorithm (FMA), for solving optimal reactive 

power problem. FMA uses genetic algorithm as the core of the algorithm. The main feature of 

the algorithm is a novel mating pair selection method which is inspired by the following 2 

mating behaviours of fireflies in nature: (i) the mutual attraction between males and females 

causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with 

multiple opposite sex partners. A female continues mating until her spermatheca becomes full, 

and, in the same vein, a male can provide sperms for several females until his sperm reservoir is 

depleted. In order to evaluate the efficiency of the proposed algorithm; it has been tested on 

IEEE 57 bus system and simulation results reveals about the best performance of the proposed 

algorithm in reducing the real power loss. 

 

2. Problem Formulation  

 
The objective of the optimal reactive power problem is to minimize one or more objective 

functions while satisfying a number of constraints such as load flow, generator bus voltages, load 

bus voltages, switchable reactive power compensations, reactive power generation, transformer 

tap setting and transmission line flow.  

 

2.1. Minimization of Real Power Loss 

 

It is aimed in this objective that minimizing of the real power loss (Ploss) in transmission lines of 

a power system. This is mathematically stated as follows. 

 

𝑃𝑙𝑜𝑠𝑠= ∑ 𝑔𝑘(𝑉𝑖
2+𝑉𝑗

2−2𝑉𝑖 𝑉𝑗 cos𝜃𝑖𝑗
)

𝑛
𝑘=1

𝑘=(𝑖,𝑗)

                                                                                            (1) 

 
Where n is the number of transmission lines, gk is the conductance of branch k, Vi and Vj are 

voltage magnitude at bus i and bus j, and θij is the voltage angle difference between bus i and bus 

j. 

 
2.2. Minimization of Voltage Deviation 

 
It is aimed in this objective that minimizing of the 

Deviations in voltage magnitudes (VD) at load buses. This is mathematically stated as follows. 

 

Minimize VD = ∑ |𝑉𝑘 − 1.0|𝑛𝑙
𝑘=1                                                                                                    (2) 

 
Where nl is the number of load busses and Vk is the voltage magnitude at bus k. 
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2.3. System Constraints 

 
In the minimization process of objective functions, some problem constraints which one is 

equality and others are inequality had to be met. Objective functions are subjected to these 

constraints shown below. 

 
Load flow equality constraints: 

 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉
𝑖 ∑ 𝑉𝑗

𝑛𝑏
𝑗=1

[
𝐺𝑖𝑗 cos 𝜃𝑖𝑗

+𝐵𝑖𝑗 sin 𝜃𝑖𝑗
] = 0, 𝑖 = 1,2… . , 𝑛𝑏                                                        (3) 

 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 𝑉𝑖 ∑ 𝑉𝑗
𝑛𝑏
𝑗=1

[
𝐺𝑖𝑗 cos 𝜃𝑖𝑗

+𝐵𝑖𝑗 sin 𝜃𝑖𝑗
] = 0, 𝑖 = 1,2… . , 𝑛𝑏                                                            (4) 

 
where, nb is the number of buses, PG and QG are the real and reactive power of the generator, PD 

and QD are the real and reactive load of the generator, and Gij and Bij are the mutual conductance 

and susceptance between bus i and bus j. 

 

Generator bus voltage (VGi) inequality constraint: 

 

𝑉𝐺𝑖 
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑛𝑔                                                                                                           (5) 

 
Load bus voltage (VLi) inequality constraint: 

 

𝑉𝐿𝑖 
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑛𝑙                                                                                                          (6) 

 
Switchable reactive power compensations (QCi) inequality constraint: 

 

𝑄𝐶𝑖 
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑛𝑐                                                                                                        (7) 

 
Reactive power generation (QGi) inequality constraint: 

 

𝑄𝐺𝑖 
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑛𝑔                                                                                                        (8) 

 
Transformers tap setting (Ti) inequality constraint: 

 

𝑇𝑖 
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑛𝑡                                                                                                            (9) 

 
Transmission line flow (SLi) inequality constraint: 

 

𝑆𝐿𝑖 
𝑚𝑖𝑛 ≤ 𝑆𝐿𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑛𝑙                                                                                                                    (10) 

 
Where, nc, ng and nt are numbers of the switchable reactive power sources, generators and 

transformers.  
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3. Firefly Algorithm  

 
This section describes the original firefly algorithm. Firefly algorithm (FA) is a reliable and 

efficient metaheuristic algorithm capable of solving many real-world problems such as 

scheduling, optimization problems in dynamic environments, and economic load dispatch 

problem. This algorithm is influenced by the flashing behaviour of fireflies to attract one another. 

It is constructed based on three rules [21]: (i) All fireflies are unisex so that one firefly is 

attracted to all other fireflies. (ii) The attractiveness of a firefly is proportional to its brightness. 

For any two fireflies, the dimmer one is attracted by (and thus moves towards) the brighter one. 

However, if there are no fireflies brighter than a given firefly, that firefly will move randomly. 

(iii) The brightness of a firefly decreases as the distance from it increases. This is because light is 

absorbed when it passes through the medium. Therefore, the brightness (also attractiveness) of 

the firefly 𝑗 seen by the firefly 𝑖 is defined in (11). 

 

𝛽𝑗(𝑟) = 𝛽𝑗(0)𝑒
−𝛾𝑟2

                                                                                                                    (11) 

 

𝑟 = ‖𝑥𝑖 − 𝑥𝑗‖ =  √∑ (𝑥𝑖 − 𝑥𝑘)2𝑑
𝑘=1                                                                                            (12) 

 
where 𝛾 is a light absorption coefficient of the medium, 𝑟 is the Euclidean distance between the 

firefly 𝑖 and the firefly 𝑗, 𝛽𝑗(0) is the brightness of the firefly 𝑗 at 𝑟=0, and 𝑥𝑖 and 𝑥𝑗 are the 

locations of the fireflies 𝑖 and 𝑗, respectively. If the firefly 𝑗 is the brighter one, the value of its 

attractiveness regulates the movement of the firefly 𝑖 according to the following equation: 

 

𝑥𝑖 = 𝑥𝑖 + [𝛽𝑗(𝑟)](𝑥𝑖 − 𝑥𝑗) + 𝛼 (𝑟𝑎𝑛𝑑)                                                                                     (13) 

 
Where 𝛼 is a randomization parameter and rand is a uniform random number in the range [−0.5, 

0.5]. The function of the second term in (13) is to move the firefly 𝑖 towards the firefly 𝑗. The 

function of the third term in (13) is to move the solution away from a local optimum when such 

incident takes place. 

 
4. Genetic Algorithm  

 
Genetic algorithm (GA) is an optimization technique inspired by the process of natural selection. 

GA starts with an initial population which consists of a number of randomly generated 

chromosomes. A new population is created from the current one by means of 3 genetic operators: 

selection, crossover, and mutation. The selection operator stochastically chooses chromosomes 

to be included in the mating pool; the ones with higher fitness values are more likely to be 

chosen. Crossover operator selectively chooses some genes from the chromosomes of the parents 

and combines them into the offspring. Mutation operator randomly changes some genes of the 

offspring. This evolution process is repeatedly performed until any of the stopping criteria is met. 

The commonly used stopping criteria are as follows: (i) a predefined number of iterations is 

reached, (ii) the best solution does not improve for a predefined number of iterations, and (iii) a 

large percentage of the chromosomes in the population is the same. 
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5. Firefly Mating Algorithm  

 
There are over 2,000 species of fireflies around the world, but most of them are found in the 

tropical zone. They live under the water when they are larvae and on the ground and in the air 

when they are adults. Fireflies are social animals. They stay in a swarm on tree branches and lay 

eggs on the ground around the trees. The fascinating thing when observing fireflies is their light 

flash. The light emitted from their abdomens is a cold light through chemical reactions within 

their bodies. Fireflies emit flashing light for communication, luring preys, repelling predators, 

and attracting mates. Note that this research only focuses on the mating behaviour of the firefly; 

therefore, the detailed relation of the flashing light signal to the mate selection process is further 

discussed in the next paragraph. In the mating season, female fireflies release pheromones into 

the air to signal their readiness to mate. The pheromones are carried away in the direction 

controlled by the wind [22]. Male fireflies follow the pheromone trail and approach the females 

from a downwind direction [22]. More males are attracted to females who release more 

pheromones. Males then fly around the trees that the females perch on and flash courtship signal 

to attract females [23]. Females are more attracted to brighter males and response to those males 

by flashing their own lights. Then many rounds of mating take place during the night [24]. Males 

mate until they run out of sperm in their sperm reservoir while females can hold only a certain 

amount of sperms in their spermatheca. Sperms from fitter males are more likely to be chosen to 

fertilize a female’s eggs; this is due to the following two explanations: (i) females have ways to 

discard low-quality sperms, including destroying them by their internally produced chemicals 

[25, 26]; (ii) one male’s seminal fluid can incapacitate rival males’ sperm within the female 

reproductive tract [25-28]. It is nature’s way of selective breeding. 

 
FMA incorporates a new mating feature, inspired by the mating behaviour of fireflies in nature, 

into GA. FMA consists of three main processes: (i) a male selects a female according to the level 

of her released pheromone that he senses which changes according to wind speed and direction; 

(ii) a female selects a male according the light intensity of his flash; and (iii) a male or a female 

mates repeatedly until he runs out of sperms or her spermatheca is full, producing more able 

offspring for the next generation. This algorithm proceeds from the first step to the last in the 6 

following steps.  

 
5.1. Initialization 

 
An initial population of 𝑁 fireflies is randomly generated; half are assigned as males and the 

other half are females. Each firefly consists of 𝑑 genes (which is equal to the number of variables 

in the problem). Additionally, the sizes of each female’s spermatheca and each male’s sperm 

reservoir, which are real numbers between 0 and 1, are randomly generated. Lastly, the fitness 

value of each firefly is calculated.  

 
5.2. Selection of Mating Pairs  

 
This step features a new method for determining the mating pairs. Unlike in the GA where 

mating pairs are selected by using a roulette wheel selection technique, our proposed algorithm 

introduces a new selection method based on a process of firefly mate selection. First, male 

fireflies are drawn to a female’s location by following the pheromone that the female releases. 
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Second, the female selects males based on their brightness. Finally, mating pairs are formed 

based on the mutual attraction of each pair. By introducing this concept to the algorithm, it 

provides a way to overcome the problem of getting stuck in local optima, as is often the case 

with the roulette wheel selection technique.  

 
5.2.1. Determination of Female Sex Appeal 

 
 Female sex appeal is directly proportional to the amount of pheromone released by the female. 

The pheromone released by the female firefly diffuses downwind and reaches each male firefly 

in unequal amounts depending on 2 factors: (i) the distance and (ii) the speed and direction of the 

wind. In this subsection, therefore, the male fireflies determine the concentration level of each 

female’s pheromone reaching them. A highly fit female that is farther away from a male can get 

selected by the male if her highly concentrated pheromone gets carried along by a high speed 

wind towards the male. The concentration level of the female 𝑖’s pheromone reaching the male 𝑗, 
𝑃𝑗𝑖, is calculated by using, 

 

𝑃𝑗𝑖 = 𝑓𝑖 × (�⃗⃗�  . �⃗⃗⃗� )                                                                                                                      (14) 

 

Where 𝑓𝑖 is the fitness value of a female firefly 𝑖, �⃗⃗�  is the wind vector which is randomly 

generated in each iteration, and   𝐷⃗⃗  ⃗ . is the difference vector between the position vector of a 

male and that of the female. 

 
5.2.2. Determination of Male Sex Appeal  

 
In this subsection, the female fireflies determine the appeal of each male in their vicinity. Similar 

to the original FA, the appeal of a male firefly is directly proportional to his brightness. Thus, by 

imitating (11), the appeal of the male firefly 𝑗 seen by the female firefly 𝑖 is calculated according 

to the following equation: 

 

𝐴𝑖𝑗 = 𝑓𝑗𝑒
−𝛾𝑟2

                                                                                                                              (15) 

 
Where 𝐴𝑖𝑗 is the appeal of the male firefly 𝑗 seen by the female firefly 𝑖, 𝛾 is a constant in the 

range [0, 1], 𝑟 is the Euclidean distance between the male and the female (calculated according 

to (12)), and 𝑓𝑗 is the fitness value of the male firefly 𝑗. 
 

5.2.3. Calculation of the Mutual Attraction 

 
According to the degree of mutual attraction, a number of males and females are paired together 

as potential parents. A pair whose mutual attraction value is the highest among all pairs is 

selected as the first mating pair. The mutual attraction between the female firefly 𝑖 and the male 

firefly 𝑗, MA𝑖𝑗, is defined as  

 
𝑀𝐴𝑖𝑗 = 𝐴𝑖𝑗 + 𝑃𝑗𝑖                                                                                                                          (16) 
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After each mating, the numbers of sperms in the male’s sperm reservoir and in the female’s 

spermatheca are updated. The update procedure is described in the next subsection. Next, the 

pair with the next highest value is selected if its male member still has some sperms left in the 

sperm reservoir and the female’s sperm bucket has not become full yet. 

 
5.2.4. Update Procedure for Male’s Sperm Reservoir and Female’s Spermatheca 

 
 At the beginning, the number of sperms in each male’s sperm reservoir and the size of each 

female’s spermatheca are randomly initialized within the range [0, 1]. When pair of male and 

female mates, sperms is transferred from the male’s sperm reservoir to the female’s spermatheca, 

and the number of sperms in the male’s sperm reservoir is reduced. For each mating, the number 

of sperms a male gives to the female he chose depends on her fitness. The number of sperms that 

a male can transfer to the female he chose is calculated by the following equation:  

 
η𝑖𝑗 = 𝛿𝑗 × 𝑓𝑖                                                                                                                                (17) 

 
Where 𝜂𝑖𝑗 is the number of sperms transferred to the female at the time of mating, 𝛿𝑗 is the 

number of sperms in the sperm reservoir, and 𝑓𝑖 is the fitness value of a female firefly 𝑖. It stands 

to reason that a fitter female should get more sperms because, then, she would produce more 

offspring that are fitter than those produced by other females. After mating, the number of 

sperms in each male’s sperm reservoir and the space of each female’s spermatheca are checked. 

Once a male runs out of sperm or a female’s spermatheca is full, he/she will be disqualified from 

mating in the next round. Equations (18) and (19) are used to update the number of sperms in a 

male’s sperm reservoir and a female’s spermatheca, respectively.  

 

𝛿𝑗
𝑛𝑒𝑤 = 𝛿𝑗

𝑜𝑙𝑑 − η
𝑖𝑗

                                                                                                                       (18) 

 

𝜔𝑖
𝑛𝑒𝑤 = 𝜔𝑖

𝑜𝑙𝑑 + η
𝑖𝑗

                                                                                                                      (19) 

 
Mating goes on until there is no qualified firefly left to form the mating pair.  

 
5.3. Crossover Operation 

 
When a male and female mates, some of their genes are crossed over to form two new offspring. 

One of the two following cases is applied with a specific crossover procedure as follows.  

 
Case 1. If the parents have never been mated before, the 2-point crossover operator is used to 

create the offspring. The 2-point crossover operator starts from randomly selecting a start 

position and an end position in the parent chromosomes to be crossed over, and then the genes 

between these two positions are crossed over and placed in the same position in the 

chromosomes of the two offspring, each having the original genes from each parent before the 

crossover.  

Case 2. If either of the parents has been mated before, the 𝑛-point crossover operator is used to 

create the offspring. The 𝑛-point crossover operator starts from randomly selecting 𝑛/2 pairs of 

back-to-back start and end positions, then crossing over the genes from the parents between each 

pair of start and end position. The rest of the genes are retained.  
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5.4. Mutation Operation 

 
After an incipient offspring is produced from mating, some of its genes are randomly changed 

(mutated) to new values within the range of the variables. The mutation is performed in order to 

promote diversity of the population and to help avoid getting stuck in local optima.  

 
5.5. Selection of the Population for the Next Generation 

 
 After all offspring are mutated, the 𝑁 best fireflies out of the combined population of parents 

and offspring are selected to replace the old population of parents; in effect, only the more 

effective fireflies are selected to be the population of the next generation. The selection is done 

by sorting members by their fitness values and then selecting only the members with the higher 

fitness values that make up the total number of members of the initial population.  

 
5.6. Termination 

 
 After the selection of a new population for the next generation, the current iteration is 

completed. The algorithm then moves on to perform the next iteration until the specified 

maximum number of iterations is reached or the best solution does not improve for a predefined 

number of iterations. 

 
6. Simulation Results  

 
Proposed firefly mating algorithm (FMA) has been tested in standard IEEE-57 bus power 

system. The reactive power compensation buses are 18, 25 and 53. Bus 2, 3, 6, 8, 9 and 12 are 

PV buses and bus 1 is selected as slack-bus. The system variable limits are given in Table 1.  

The preliminary conditions for the IEEE-57 bus power system are given as follows: 

Pload= 12.016 p.u. Qload = 3.018 p.u. 

The total initial generations and power losses are obtained as follows: 

∑𝑃𝐺 = 12.5510 p.u. ∑𝑄𝐺  = 3.3202 p.u. 

Ploss= 0.25710 p.u. Qloss = -1.2018 p.u. 

 

Table 2 shows the various system control variables & Table 3, shows the comparison of 

optimum results.  

Table 1: Variable limits 

Reactive Power Generation Limits 

Bus no  1 2 3 6 8 9 12 

Qgmin -1.4 -.015 -.02 -0.04 -1.3 -0.03 -0.4 

Qgmax 1 0.3 0.4 0.21 1 0.04 1.50 

Voltage And Tap Setting Limits 

vgmin Vgmax vpqmin Vpqmax tkmin tkmax 

0.9 1.0 0.91 1.05 0.9 1.0 
 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcmin 0 0 0 

Qcmax 10 5.2 6.1 
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Table 2: Control variables obtained after optimization 

Control Variables  FMA 

V1 1.1 

V2 1.030 

V3 1.032 

V6 1.031 

V8 1.025 

V9 1.011 

V12 1.020 

Qc18 0.0670 

Qc25 0.200 

Qc53 0.0470 

T4-18 1.010 

T21-20 1.060 

T24-25 0.880 

T24-26 0.874 

T7-29 1.061 

T34-32 0.882 

T11-41 1.023 

T15-45 1.031 

T14-46 0.912 

T10-51 1.020 

T13-49 1.060 

T11-43 0.910 

T40-56 0.900 

T39-57 0.950 

T9-55 0.950 

 

Table 3: Comparison results 

S.No. Optimization Algorithm Finest Solution Poorest Solution Normal Solution 

1 NLP [29] 0.25902 0.30854 0.27858 

2 CGA [29] 0.25244 0.27507 0.26293 

3 AGA [29] 0.24564 0.26671 0.25127 

4 PSO-w [29] 0.24270 0.26152 0.24725 

5 PSO-cf [29] 0.24280 0.26032 0.24698 

6 CLPSO [29] 0.24515 0.24780 0.24673 

7 SPSO-07 [29] 0.24430 0.25457 0.24752 

8 L-DE [29] 0.27812 0.41909 0.33177 

9 L-SACP-DE [29] 0.27915 0.36978 0.31032 

10 L-SaDE [29] 0.24267 0.24391 0.24311 

11 SOA [29] 0.24265 0.24280 0.24270 

12 LM [30] 0.2484 0.2922 0.2641 

13 MBEP1 [30] 0.2474 0.2848 0.2643 

14 MBEP2 [30] 0.2482 0.283 0.2592 

15 BES100 [30] 0.2438 0.263 0.2541 

16 BES200 [30] 0.3417 0.2486 0.2443 

17 Proposed FMA 0.22192 0.23116 0.22204 
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7. Conclusion  

 
In this paper, Firefly Mating Algorithm (FMA) successfully solved optimal reactive power 

problem. The main feature of the algorithm is a novel mating pair selection method which is 

inspired by the following two mating behaviours of fireflies in nature: (i) the mutual attraction 

between males and females causes them to mate and (ii) fireflies of both sexes are of the 

multiple-mating type, mating with multiple opposite sex partners. A female continues mating 

until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several 

females until his sperm reservoir is depleted. In order to evaluate the efficiency of the proposed 

algorithm; it has been tested on IEEE 57 bus system and simulation results reveals about the best 

performance of the proposed algorithm in reducing the real power loss. 
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