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Abstract 

The use of gold standard procedures in screening may be costly, risky or even unethical. It is, 

therefore, not admissible for large scale application. In this case, a more acceptable diagnostic 

predictor is applied to a sample of subjects alongside a gold standard procedure. The 

performance of the predictor is then evaluated using Receiver Operating Characteristic curve. 

The area under the curve, then, provides a summative measure of the performance of the 

predictor. The Receiver Operating Characteristic curve is a trade-off between sensitivity and 

specificity which in most cases are of different clinical significance. Also, the area under the 

curve is criticized for lack of coherent interpretation. In this study, we proposed the use of 

entropy as a summary index measure of uncertainty to compare diagnostic predictors. Noting 

that a diseased subject who is truly identified with the disease at a lower cut-off will also be 

identified at a higher cut-off, we substituted time variable in survival analysis for cut-offs in a 

binary predictor. We then derived the entropy of the functions of diagnostic predictors. 

Application of the procedure to real data showed that entropy was a strong measure for 

quantifying the amount of uncertainty engulfed in a set of cut-offs of binary diagnostic predictor. 
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1. Introduction

Screening among the population at risk of a disease has historically been important element of 

disease control. The use of error-free (“gold” standard) test during screening may potentially 

pose high risk, expensive or sometimes unethical for large scale application. In this case other 

acceptable diagnostic binary diagnostic predictor that sorts the subjects either as having the 

disease (diseased) or not (disease-free) is first applied across a range set of cut-off points against 

gold standard to a selected sample. Its performance is then evaluated before large scale 

application. For example, if mammography was used to screen for breast cancer, the gold 

standard would be pathological classification of tissue biopsy. At any one cut-off point, the 
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diagnostic predictor yields either a true positive (TP), false positive (FP), false negative (FN) or a 

true negative (TN) result. 

 

Traditionally, the performance of a binary diagnostic predictor has been evaluated using receiver 

operating characteristic (ROC) curve with the area under the curve (AUC) providing a 

summative measure of its performance. The ROC curve is simply a graph of true positive rate 

(sensitivity) against false positive rate (I –specificity). Two important issues arise from this 

approach. One, sensitivity (proportion of test-positive among subjects who have the disease) and 

specificity (proportion of test-negative among subjects who do not have the disease) have 

different clinical consequences. Thus, depending on clinical importance of the test, one may be 

interested in either sensitivity or specificity and not the trade-off between the two. For instance, 

where treatment is expensive or involves potentially high risk procedures, a diagnostic predictor 

with high level of sensitivity may be preferred as opposed to low false positive rate (1 – 

specificity). The other issue is that the area under the ROC curve lacks clinical interpretation. 

 

Where two or more binary predictive diagnostic predictors are available, one would like to 

quantitatively compare their sensitivities and select one diagnostic predictor over the other to roll 

out a screening program. In this paper, we describe how one would derive a descriptive summary 

measure, entropy, of the functions of a binary diagnostic predictor. The new index is an easy to 

compute. Its interpretation is based on information theory as the amount of uncertainty that the 

diagnostic predictor is able to provide within a set of consecutive cut-off points. Using a real 

data, we demonstrate how the index can be used to compare two or more diagnostic predictors. 

 

2. Methodology 

 

2.1. Study Design 

 

A simple randomized screening test design was used for the study. In this design, the study 

individuals are first classified by gold standard as “diseased” or “non-diseased”. These 

individuals are then randomly assigned for screening to one of the two or more binary classifiers 

over a set of ordered cut-offs. 

 

Let C denote the outcome of a binary predictive classifier and G be the outcome of the gold 

standard such that  

1

0

if the test result is positive

C

if the test results is negative




 



       and 

1

0

if a subject is diseased

G

if a subject is non diseased




 
 

 

Also let 1, 2, ...,i k  denote a particular value of the random variable X representing the cut-off 

point and 1, 2, ...,q s be the particular predictive classifier. 

 

The quantity 
i q

cgn  represents results of the gold standard classification and screening by the 

predictive classifier where c  and g represents the binary classifier and gold standard 

respectively. Then, the ordered tables of these values for a fixed q  form cumulative partial tables 

for given reference cells. Thus, for true positive we have 
( 1) 2 1

11 11 11 11n .. . nk q k q q qn n     . 
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Essentially, this means that if a diseased case was correctly identified at cut-off
iX  it will also be 

correctly identified at cut-off
1iX 
. Similarly for false negative we have

1 2 ( 1)

01 01 01 01n .. . nq q k q k qn n    .  

For false positive we have 
( 1) 2 1

10 10 10 10n .. . nk q k q q qn n     and for true negative we have

1 2 ( 1)

00 00 0 0 0 0n . . . nq q k q k qn n    . 

 

2.2. Derivation of Entropy of the Sensitivity of a Classifier 

 

In this section, we apply the concept of survival analysis to derive the entropy of true positive 

values. In survival analysis, the objects are observed over non-negative random variable T

representing the waiting time until the event occurs. Here we substitute the time variant with cut-

off of predictor. Thus, we observe the N subjects over some ordered cut-offs. 

 

The confirmed diseased subjects n  will be distributed cumulatively across non-negative random 

variable ,X x   representing the cut-offs. Using n as the radix we can define the 

probability of “survivors” (those not yet identified yet they have the disease) across X . Let ( )f x

be the probability density function and ( )F x  be the cumulative distribution function of X  

respectively. 

By definition  ( ) PrF x X x   …………..….....…………………………….……...…… 2.1  

( )F x  gives the cumulative probability that the subject was correctly identified by cut-off x . The 

function ( )F x is the true positive rate at x such that F( ) 1   and F( ) 0  . 

 

The survival function is be given by 

 ( ) Pr 1 ( ) 1 ( )S x X x F x f x dx



       .……………………………………………... 2.2  

The survival function gives the probability that a diseased subject is not yet correctly identified 

by cut-off x .  This means in the lowest cut-off , none of the diseased subject is identified with 

the disease while in the highest cut-off  all the diseased cases will be identified as diseased. 

( )
Number of diseased cases not yet identified by cut off x

S x
confirmed number of diseased cases

 


   ………………...….. 2.3 

Equation 2.3 represents the false negatives at cut-off x . 

 

Let ( )x  be some hazard function representing the instantaneous rate of correctly identifying the 

diseased subjects within some criteria interval dx  of the predictor.  By definition

 
0

Pr /
( ) lim

dx

x X x dx X x
x

dx




   
 ……...………….………….……….…… 2.4  

The numerator of the hazard function can therefore be written as the ratio of the joint probability 

that X is in the interval ,x x dx  and X x  to the probability of the condition X x . Thus 

 
0

Pr
( ) lim

Pr( )dx

x X x dx and X x
x

X x dx




   



 ..….…………………... 2.5  

http://www.granthaalayah.com/


[Alfred et. al., Vol.6 (Iss.1): January, 2018]                                            ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

(Received: Jan 13, 2018 - Accepted: Jan 30, 2018)                                                   DOI: 10.5281/zenodo.1169035 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [443] 

 

But  Pr ( )x X x dx and X x f x dx          for small dx and   Pr( ) ( )X x S x   

Hence
 

0

Pr ( ) ( )
( ) lim

Pr( ) ( ) ( )dx

x X x dx and X x f x dx f x
x

X x dx S x dx S x




   
  


 …....………………… 2.6  

This implies 
( )

( )
( )

f x
x

S x
   is the hazard function. 

Now  ( ) 1 ( ) ( ) ( )
d d d

S x F x F x f x
dx dx dx

      ( ) ( )
d

S x f x
dx

   ……………...........….

2.7  

This means 
( )

( )
( ) lnS( )

( ) ( )

d
S x

f x ddxx x
S x S x dx




     ……………………………..…...…... 2.8  

Thus ( ) lnS( )
d

x x
dx

       ….……………..…..……………………...………………........ 2.9  

Equation 2.9  represents the proportion of change of sensitivity over interval dx . 

The survival function (false negative function) can be expressed as a function of hazard function 

(true positive function) over some cut-offs such that for 0( ) 1S x   we have 

Thus

00 0 0

( )

( ) lnS( ) lnS( ) lnS( )
( )

|
x x x x

xx x x

d
S x

ddxx dx dx x dx x x
S x dx

           .…………..…. 2.10  

It is to be noted that 0S( ) 1x   and thus ln(1) 0 . 

 
0 0

lnS( ) ( ) exp ( )

x x

x x

x dx x S x x dx 
  

     
  

  ……………….……..………...…… 2.11 

Thus 

0

( )
S( ) exp ( )

x
x

x

x x dx e





 
   

 
 
 …………………………...….…...………………. 2.12  

In this case, we have  
( )

S( )
x

x e


  where 

0

( ) ( )

x

x

x x dx    is the cumulative hazard function of 

X . 

 

Now the expectation of X  is given by [ ]E X  . By definition

0

0 0

( ) ( ) ( )
d

xf x dx xf x dx x S x dx
dx


  



      …………...…….. 2.13 

0

0

( )
d

x S x dx
dx




   . Equation 2.13 represent the mean cut-off point. 

Integrating 
0

( )
d

x S x dx
dx



  by parts udv uv vdu    

we have  0

00
0 0

( ) ( ) ( ) ( ) ( )
x

x

d
u x S x dx xS x S x dx xS x S x dx

dx

 
 


        
     
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Now (0) 1S  and ( ) 0S   . Then 0

0

( )S x dx


  …………………………….……….…. 2.14  

Putting it in simple terms, the mean of X is the integral of the survival function ( )S x . The 

survival function ( )S x in our case is the false negative function. 

 

It is then possible to link the expectation of X  and the hazard function.  Thus 

0 ( )

0 0

( ) xS x dx e dx
 

   …………..…………………………...….….…………..3.15  

 

Suppose now that ( )x is changed by 100 %  to become ( )(1 )x  . We show how this 

translates into changes in expectation of X . First ( )S x becomes
*( )S x . 

* 1

0

( ) exp ( )(1 ) ( )S x x dx S x  



 

    
 
 ……………………………………….………. 2.16  

* 1( ) ( )S x S x   

Then the new expectation of the false negative function becomes 

* * 1

0 0

( ) ( )S x dx S x 
 

   ………………………….………....………...……………… 2.17  

* 1

0

( )S x 


   

To find the effect of   on the expectation of X  we find the derivative of 
*   with respect to . 

In this case 
*

1

0

ln ( ). ( )
d

S x S x dx
d







  ……………………...……………………………………….... 2.18  

 and within the neighborhood of 0   we get  
*

0

ln ( ). ( )
d

S x S x dx
d







  …………………………...………...…………...….……...…….. 2.19  

Now 
*

0

ln ( ). ( )S x S x dx








   implying *

0

ln ( ). ( )S x S x dx 


     

*

0

0

ln ( ). ( )

( )

( )

S x S x dx

H X

S x dx














   




…………………..……..………...………….... 2.20  

The quantity

ln ( ). ( )

( )

( )

S x S x dx

H X

S x dx

 




……...……………………..……………….….. 2.21 
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is the entropy of the survival function (false negatives). In general, the entropy of any probability 

density function ( )f x is given by

ln ( ). ( ) ln ( ). ( )

( )

( )( )

F x F x dx F x F x

H X

F xF x dx

 

  
 



. It is similar 

to Shannon entropy  ( ) log P(X) ( ) log ( )b i b i

i

H X E p x p x     except that F( )x is a 

cumulative distribution function of X and that the former is weighted with 
1

F( )x dx

 

For  2b   the unit of entropy is bit, for b e the unit of entropy is nat and for 10b   the 

entropy unit is dit (or digit). 

In the event ( ) 0ip x   for some i  the value of the corresponding summand 0log 0b is taken to be 

0  which is consistent with lim
0

log( ) 0
p

p p
 

 . 

 

Entropy is a measure of the uncertainty in a random variable (Martin et al, 2011). It can be as 

low as zero ( ( ) 0H X  ) if the sensitivity of the classifier was 100% for all values of X . In this 

case, the ROC curve would be a straight line on the upper side from   0,1  to  1,1 . The highest 

value of ( )H X can be got from the criteria defining a horizontal line from  0,0  to  1,1 . The 

closer H is to zero the better the sensitivity of the predictor. When ( ) 0H X  , the classifier is 

perfect and taking the subjects through the entire criteria provides no information.  

 

Just like partial area under the ROC curve, partial entropy can be computed for a set of cut-offs if 

known to be of clinical importance. In this case we integrate with the interval of under 

consideration. 

 

3. Application of Entropy to Real Data 
 

We compared sensitivities of two classifiers measuring the carbohydrate antigen 19-9 (CA 19-9). 

Elevated levels of CA 19-9 (> 37 U/mL) has been found to be associated with gastrointestinal 

carcinomas particularly in pancreatic cancer. We thus, bench marked our cut-off point at 40 U/m 

and weighted cut-off above 40 U/Ml nearly twice to spread the possibility of cancer detection. 

Our cut-offs thus ranged between X >110 and X >0 at arbitrarily interval of 10 U/mL. Entropies 

of the true positive functions of both diagnostic predictors were estimated as H1 ( X )se 0.3079 

and H 2 ( X )se 0.7535. The results of entropy show that diagnostic predictor 2 delivered more 

than twice the information delivered by diagnostic predictor 1. Overall, thus, diagnostic predictor 

1 was twice likely to correctly identify a subject with a disease compared to diagnostic predictor 

2. 
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4. Conclusion 
 

Entropy enjoys variety of interpretation and therefore used in a wide range of disciplines to 

measure the degree of randomness in a system. Using a simple screening design, we substituted 

time variable in survival analysis for cut-offs in binary diagnostic predictor and demonstrated 

how disorder in a binary predictor can be assessed using entropy of any of its four functions; true 

positive rate, false positive rate, false negative rate and true negative rate. Depending on the 

clinical importance of these functions, their entropies can be used to compare the amount of 

uncertainty that the diagnostic predictors derives across a set of cut-off or criteria. 

 

References 

 
[1] Adams, N. M., & Hand, D. J. (1999). Comparing diagnostic predictors when the misallocation 

costs are uncertain. Pattern Recognition, 32, 1139–1147. 

[2] Akobeng, A.K. (2006). Understating diagnostic tests 1: Sensitivity, specificity and predictive 

values. Act Pediatric, 96, 338-341.doi:10.1111/j.1651-2227. 2006. 00180.x. 

[3] Bradley, P. A. (1997). The use of the area under the ROC curve in the evaluation of machine 

learning algorithms. The Pennsylvania State University, 30(7), 1145--1159. doi: 10.1016/ S0031-

3203(96)00142-2.x. 

[4] Cheng, H., & Macaluso, M. (1996). Comparison of the accuracy of two tests with a confirmatory 

procedure limited to positive results. Epidemiology, 8, 104–106. 

[5] Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–

874. doi:10.1016/j.patrec.2005.10.010.x 

[6] Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors 

in conservation presence/absence models. Environmental Conservation, 24(1), 38–49. 

[7] Griner, P., Mayewski, R. J., Mushlin, A. I., & Greenlan, P. (1981). Selection and interpretation of 

diagnostic tests and procedures: Principles and applications. Annals of Internal Medicine, 94, 

557–592. 

[8] Halligan, S., Douglas, G. A., & Mallet, S.(2015). Disadvantages of using the area under the 

receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an 

alternative approach. European Radiology, 25(4), 932–939. doi: 10.1007/s00330-014-3487-0. x. 

[9] Hanley, A. J. (1989). Receiver Operating Characteristics (ROC) Methodology the State of the 

Art. 

[10] Critical Reviews in Diagnostic Imaging, 29(3), 307-335. doi:  10.1007/s00330-014-3487-0.x. 

[11] Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating 

characteristic (ROC) curve. Radiology, 143(1), 29–36. doi: 10.1148/7063747.x 

[12] Kumar, R., & Indrayan, A. (2011). Receiver operating characteristic (ROC) curve for medical 

researchers. Indian Pediatrics, 48(4), 277–287. 

[13] Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: A misleading measure of the 

performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–

151. doi: 10.1111/j.1466-8238.2007.00358.x. 

[14] Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and Prediction 

(1st ed.). United Kingdom: Oxford University Press. 

[15] Pepe, M.S. (2000) Receiver operating characteristic methodology. Journal of the American 

Statistical Association, 95, 308–311. 

[16] Rothman, K. J. (1986). Modern Epidemiology. Boston; Brown and Company. 

[17] Swets, J. A., Dawes, R. M., & Monahan, J. (2000). Better decisions through science. Scientific 

American, 283(4), 82–87. 

[18] Thompson, M. L., & Zucchini, W. (1989). On the statistical analysis of ROC curves. Statistics in 

Medicine. 8(10), 1277-1290. 

http://www.granthaalayah.com/


[Alfred et. al., Vol.6 (Iss.1): January, 2018]                                            ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

(Received: Jan 13, 2018 - Accepted: Jan 30, 2018)                                                   DOI: 10.5281/zenodo.1169035 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [447] 

 

[19] Walter, S. D. (2005). The partial area under the summary ROC curve. Statistical Medicine, 

24(13), 2025–2540. doi: 10.1002/sim.2103.x. 

[20] Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A 

fundamental evaluation tool in clinical medicine. Clinical Chemistry. 39(4), 561–577. 

 

http://www.granthaalayah.com/
https://www.researchgate.net/journal/0009-9147_Clinical_Chemistry

