
[Karagama et. al., Vol.5 (Iss.11): November, 2017]  ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

DOI: https://doi.org/10.29121/granthaalayah.v5.i11.2017.2321 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [22] 

Science 

ON LACUNARY ARITHMETIC STATISTICAL CONTINUITY FOR 

DOUBLE SEQUENCES 

M. M. Karagama 
*1

, F. B. Ladan 
2

*1, 2
Department of Mathematical Sciences, University of Maiduguri, Borno State, Nigeria 

Abstract 

In this article, we shall introduce the concept of lacunary arithmetic statistical continuity for 

double sequences and investigate some inclusion relations. 

Keywords: Summability; Arithmetic Statistical Convergence; Lacunary Arithmetic Statistical 

Convergence; Lacunary Arithmetic Statistical Continuity; Double Sequences. 

Cite This Article: M. M. Karagama, and F. B. Ladan. (2017). “ON LACUNARY ARITHMETIC 

STATISTICAL CONTINUITY FOR DOUBLE SEQUENCES.” International Journal of 

Research - Granthaalayah, 5(11), 22-26. 10.29121/granthaalayah.v5.i11.2017.2321. 

1. Introduction

The concept of statistical convergence was introduced by Fast [4] and it was further investigated 

from the sequence space point of view and linked with summability theory by Fridy [2], Connor 

[3], Fridy and Orhan [1], Šalát [5] and many others. 

While the idea of arithmetic convergence was introduced by Ruckle [9]. Yaying and Hazarika 

[8] used this concept of arithmetic convergence and introduced arithmetic statistical convergence

and lacunary arithmetic statistical convergence of single sequence. Also Yaying and Hazarika [8]

establish some sequential properties of lacunary arithmetic statistical continuity of single

sequence. The concept of statistical convergence of double sequences was introduced by

Mursaleen [6]. Using the method of Mursaleen, we shall extend the results of Yaying and

Hazarika [8] to double sequences as follows:

2. Lacunary Arithmetic Statistical Continuity (First we Noted)

Definition 2.1: (Yaying and Hazarika [2017]) A sequence  𝑥 = (𝑥𝑘) is called arithmetically 

convergent if for each 𝜀 > 0 there is an integer l such that for every integer k we have |𝑥𝑘 −

 𝑥〈𝑘,𝑙〉|  <  𝜀, where the symbol 〈𝑘, 𝑙〉 denotes the greatest common divisor of two integers k and l.

We denote the sequence space of all arithmetic convergent sequence by AC. 
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Definition 2.2: (Fridy and Orhan [1993]) Let 𝜃 = (𝑘𝑟) be a lacunary sequence. A number 

sequence 𝑥 = (𝑥𝑘) is said to be lacunary statistically convergent to 𝑙 or 𝑆𝜃-convergent to 𝑙, if, for 

each 𝜀 > 0, 

lim𝑟→∞
1

ℎ𝑟
  |{𝑘 ∈  𝐼𝑟 : |𝑥𝑘 − 𝑙| ≥ 𝜀}| = 0 

In this case, one writes 𝑆𝜃 −  lim 𝑥𝑘  = 𝑙  or 𝑥𝑘→(𝑆𝜃).The set of all lacunary statistically 

convergence sequences is denoted by 𝑆𝜃 

 
Definition 2.3: (Yaying and Hazarika [2017]) A sequence  𝑥 = (𝑥𝑘) is said to be arithmetic 

statistically convergent if for each 𝜀 > 0, there is an integer l such that   

 

                                          lim𝑛→∞
1

𝑛
|{𝑘 ∈  𝑛: |𝑥𝑘 −  𝑥〈𝑘,𝑙〉|  ≥  𝜀 }| = 0    

 
We shall use ASC to denote the set of all arithmetic statistical convergent sequences.  Thus for  

𝜀 > 0 and integer l 

 

ASC = {(𝑥𝑘): lim𝑛→∞
1

𝑛
|{𝑘 ∈  𝑛: |𝑥𝑘 − 𝑥〈𝑘,𝑙〉|  ≥  𝜀 }| = 0  } . 

 
We shall write 𝐴𝑆𝐶 − lim 𝑥𝑘  =  𝑥〈𝑘,𝑙〉 to denote the sequence (𝑥𝑘) is arithmetic statistically 

convergent to𝑥〈𝑘,𝑙〉. 

 
Definition 2.4: (Yaying and Hazarika [2017]) Let  𝜃 = (𝑘𝑟) be a lacunary sequence. The 

number sequence 𝑥 = (𝑥𝑘) is said to be lacunary arithmetic statistically convergent if for each 

𝜀 > 0  there is an integer l such that   

 

                                          lim𝑟→∞
1

ℎ𝑟
|{𝑘 ∈  𝐼𝑟: |𝑥𝑘 −  𝑥〈𝑘,𝑙〉|  ≥  𝜀 }| = 0    

We shall write  

 

𝐴𝑆𝐶𝜃  = {𝑥 = (𝑥𝑘): lim𝑟→∞
1

ℎ𝑟
|{𝑘 ∈  𝐼𝑟: |𝑥𝑘 −  𝑥〈𝑘,𝑙〉|  ≥  𝜀 }| = 0  } . 

 
We shall write 𝐴𝑆𝐶𝜃  − lim 𝑥𝑘  =  𝑥〈𝑘,𝑙〉 to denote the sequence (𝑥𝑘) is lacunary arithmetic 

statistically convergent to𝑥〈𝑘,𝑙〉. 

 
Definition 2.5: (Yaying and Hazarika [2017]) A function 𝑓 defined on a subset  𝐸 𝑜𝑓 ℝ  is said 

to be lacunary arithmetic statistical continuous if it preserves lacunary arithmetic statistical 

convergence i.e. if 

      

𝐴𝑆𝐶𝜃  −  lim 𝑥𝑘  =  𝑥〈𝑘,𝑙〉  Implies   𝐴𝑆𝐶𝜃  −  lim 𝑓(𝑥𝑘 ) = 𝑓(𝑥〈𝑘,𝑙〉). 

 

Theorem 2.1: (Yaying and Hazarika [2017]) Let ( 𝑓𝑚) , 𝑚 ∈ ℕ be sequence of   𝐴𝑆𝐶𝜃 

continuous functions defined on a subset of E of ℝ and 𝑓𝑚 , be uniformly convergent to a 

function f, then f is  𝐴𝑆𝐶𝜃 continuous. 
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Theorem 2.2: (Yaying and Hazarika [2017]) The set of all  𝐴𝑆𝐶𝜃 continuous functions defined 

are on a subset E of  ℝ is a closed subset of all continuous function on E,  i.e.  𝐴𝑆𝐶𝜃(𝐸) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
  𝐴𝑆𝐶𝜃(𝐸) , where  𝐴𝑆𝐶𝜃(𝐸) denotes the set of all  𝐴𝑆𝐶𝜃 continuous functions defined on E and 

 𝐴𝑆𝐶𝜃(𝐸) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  denotes the closure of  𝐴𝑆𝐶𝜃(𝐸).  

 

We shall now use the concept of statistical convergence to extend above concept and result to 

double sequences, using Analogy; 

 
3.  Lacunary Arithmetic Statistical Continuity For Double Sequences 

 
Definition 3.1: A function 𝑓 defined on a subset  𝐷 𝑜𝑓 ℝ  is said to be lacunary arithmetic 

statistical continuous for double sequences if it preserves lacunary arithmetic statistical 

convergence for double sequences i.e. if 

      

𝐴𝑆𝐶𝜃𝑟,𝑠
 −  lim 𝑥𝑘,𝑚  =  𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉 Implies𝐴𝑆𝐶𝜃𝑟,𝑠

 −  lim 𝑓(𝑥𝑘,𝑚  ) =  𝑓(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉). 

 

Where the symbol 〈𝑘, 𝑙, 𝑚, 𝑛〉 denotes the greatest common divisor of four integers k , l, m and n. 

We shall write 𝐴𝑆𝐶𝜃𝑟,𝑠
 continuous function to denote lacunary arithmetic statistical continuous 

for double sequences. It is easy to see that the sum and the difference of two 𝐴𝑆𝐶𝜃𝑟,𝑠
 continuous 

functions is 𝐴𝑆𝐶𝜃𝑟,𝑠
 continuous. Also the composition of two 𝐴𝑆𝐶𝜃𝑟,𝑠

 continuous functions is 

again 𝐴𝑆𝐶𝜃𝑟,𝑠
 continuous. In the classical case, it is known that the uniform limit of sequentially 

continuous function is sequentially continuous, now we see that the uniform limit of 𝐴𝑆𝐶𝜃𝑟,𝑠
 

continuous functions is also 𝐴𝑆𝐶𝜃𝑟,𝑠
 continuous. 

 
Theorem 3.1: Let ( 𝑓𝑘,𝑚) , 𝑘, 𝑚 ∈ ℕ be sequence of  𝐴𝑆𝐶𝜃𝑟,𝑠

 continuous functions defined on a 

subset of D of ℝ and 𝑓𝑘,𝑚 , be uniformly convergent to a function f, then f is 𝐴𝑆𝐶𝜃𝑟,𝑠
 continuous. 

 
Proof 3.1: Let 𝜀 > 0 and (𝑥𝑘,𝑚  ) be any 𝐴𝑆𝐶𝜃𝑟,𝑠

 convergent sequence on a subset D of ℝ. By the 

uniform convergence of  𝑓𝑘,𝑚 , there exist 𝑁 ∈  ℕ such that |𝑓𝑘,𝑚(𝑥) − 𝑓(𝑥)|  ≤  
𝜀

3
 for all 

𝑘, 𝑚 ∈ 𝑁 and for all𝑥 ∈ 𝐷. Since  𝑓𝑁 is continuous on D, we have for an integer𝑙, 𝑛. 
  

lim
𝑟,𝑠→∞

1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥𝑘,𝑚) − 𝑓𝑁(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  

𝜀

3
}| = 0 

 

On the other hand, for an integer 𝑙, 𝑛 we have  
 

{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓(𝑥𝑘,𝑚) − 𝑓(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  
𝜀

3
} ⊂ {𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥𝑘,𝑚) − 𝑓(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  

𝜀

3
} 

∪ {𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉) − 𝑓𝑁(𝑥𝑘,𝑚)|  ≥  
𝜀

3
} ∪ {𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥𝑘,𝑚) − 𝑓(𝑥𝑘,𝑚)|  ≥  

𝜀

3
} 
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Thus it follows from the above inclusion that 
 

lim𝑟,𝑠→∞
1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓(𝑥𝑘,𝑚) − 𝑓(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  𝜀}|    ≤    

lim𝑟,𝑠→∞
1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉) − 𝑓(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  

𝜀

3
}|  +   lim𝑟,𝑠→∞

1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈

 𝐼𝑟,𝑠: |𝑓𝑁(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉) − 𝑓𝑁(𝑥𝑘,𝑚)|  ≥  
𝜀

3
}|    +   lim𝑟,𝑠→∞

1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥𝑘,𝑚) − 𝑓(𝑥𝑘,𝑚)|  ≥  

𝜀

3
}| 

 
Thus, 𝑓 𝑖𝑠 𝐴𝑆𝐶𝜃𝑟,𝑠

 continuous. ∎ 

 
Theorem 3.2: The set of all  𝐴𝑆𝐶𝜃𝑟,𝑠

 continuous functions defined on a subset D of  ℝ is a closed 

subset of all continuous function on D,  i.e.   𝐴𝑆𝐶𝜃𝑟,𝑠
(𝐷) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =    𝐴𝑆𝐶𝜃𝑟,𝑠

(𝐷) , where   𝐴𝑆𝐶𝜃𝑟,𝑠
(𝐷) 

denotes the set of all  𝐴𝑆𝐶𝜃𝑟,𝑠
 continuous functions defined on D and   𝐴𝑆𝐶𝜃𝑟,𝑠

(𝐷) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   denotes the 

closure of   𝐴𝑆𝐶𝜃𝑟,𝑠
(𝐷). 

 

Proof 3.2: Let f be any element of   𝐴𝑆𝐶𝜃𝑟,𝑠
(𝐷)  .Then there exist a sequence of points in 

 𝐴𝑆𝐶𝜃𝑟,𝑠
(𝐷) such that𝑙𝑖𝑚𝑓𝑘,𝑚 = 𝑓. Now let (𝑥𝑘,𝑚) be any 𝐴𝑆𝐶𝜃𝑟,𝑠

 convergent sequence in D. 

Since (𝑓𝑘,𝑚) converges to f, there exist a positive integer N such that  

 

|𝑓(𝑥) −  𝑓𝑘,𝑚(𝑥)|  ≤  
𝜀

3
 , ∀ 𝑘, 𝑚 ≥ 𝑁 and ∀ 𝑥 ∈ 𝐷 

 
Now 𝑓𝑁 is 𝐴𝑆𝐶𝜃𝑟,𝑠

 continuous on D, so we have for an integer 𝑙, 𝑛  

 

lim
𝑟,𝑠→∞

1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥𝑘,𝑚) − 𝑓𝑁(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  

𝜀

3
}| = 0 

 
On the other hand, for an integer 𝑙, 𝑛 we have  

 

{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓(𝑥𝑘,𝑚) − 𝑓(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  
𝜀

3
} 

 

⊂   |{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉) − 𝑓(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  
𝜀

3
}| 

 

∪  {𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉) − 𝑓𝑁(𝑥𝑘,𝑚)|  ≥  
𝜀

3
} 

 

∪ {𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥𝑘,𝑚) − 𝑓(𝑥𝑘,𝑚)|  ≥  
𝜀

3
} 

 
From the above inclusion we can write  

 

lim
𝑟,𝑠→∞

1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓(𝑥𝑘,𝑚) − 𝑓(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  𝜀}| 

 

≤    lim𝑟,𝑠→∞
1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉) − 𝑓(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉)|  ≥  

𝜀

3
}| 
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+   lim𝑟,𝑠→∞
1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥〈 〈𝑘,𝑙〉,〈𝑚,𝑛〉 〉) − 𝑓𝑁(𝑥𝑘,𝑚)|  ≥  

𝜀

3
}| 

 

+   lim𝑟,𝑠→∞
1

ℎ𝑟,𝑠
|{𝑘, 𝑚 ∈  𝐼𝑟,𝑠: |𝑓𝑁(𝑥𝑘,𝑚) − 𝑓(𝑥𝑘,𝑚)|  ≥  

𝜀

3
}| = 0 

 
Thus f is 𝐴𝑆𝐶𝜃𝑟,𝑠

 continuous, so 𝑓 ∈  𝐴𝑆𝐶𝜃𝑟,𝑠
(𝐷) which gives us our required result. ∎ 
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