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Abstract 

This paper projects Enhanced Seeker Optimization (ESO) algorithm for solving optimal reactive 

power problem. Seeker optimization algorithm (SOA) models the deeds of human search 

population based on their memory, experience, uncertainty reasoning and communication with 

each other. In Artificial Bee Colony (ABC) algorithm the colony consists of three groups of 

bees: employed bees, onlookers and scouts. All bees that are presently exploiting a food source 

are known as employed bees. The number of the employed bees is equal to the number of food 

sources and an employed bee is allocated to one of the sources. In this paper hybridization of the 

seeker optimization algorithm with artificial bee colony (ABC) algorithm has been done to solve 

the optimal reactive power problem. Enhanced Seeker Optimization (ESO) algorithm combines 

two different solution exploration equations of the ABC algorithm and solution exploration 

equation of the SOA in order to progress the performance of SOA and ABC algorithms.  At 

certain period’s seeker’s location are modified by search principles obtained from the ABC 

algorithm, also it adjust the inter-subpopulation learning phase by using the binomial crossover 

operator. In order to evaluate the efficiency of proposed Enhanced Seeker Optimization (ESO) 

algorithm it has been tested in standard IEEE 57,118 bus systems and compared to other 

specified algorithms. Simulation results clearly indicate the best performance of the proposed 

Enhanced Seeker Optimization (ESO) algorithm in reducing the real power loss and voltage 

profiles are within the limits. 
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1. Introduction

Optimal reactive power dispatch problem is one of the difficult optimization problems in power 

systems. The sources of the reactive power are the generators, synchronous condensers, 

capacitors, static compensators and tap changing transformers. The problem that has to be solved 

in a reactive power optimization is to determine the required reactive generation at various 

locations so as to optimize the objective function. Here the reactive power dispatch problem 
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involves best utilization of the existing generator bus voltage magnitudes, transformer tap setting 

and the output of reactive power sources so as to minimize the loss and to maintain voltage 

stability of the system. It involves a nonlinear optimization problem. Various mathematical 

techniques have been adopted to solve this optimal reactive power dispatch problem. These 

include the gradient method [1, 2], Newton method [3] and linear programming [4-7].The 

gradient and Newton methods suffer from the difficulty in handling inequality constraints. To 

apply linear programming, the input- output function is to be expressed as a set of linear 

functions which may lead to loss of accuracy. Recently many global optimization techniques 

have been proposed to solve the reactive power flow problem [8-10]. This paper projects 

Enhanced Seeker Optimization (ESO) algorithm for solving optimal reactive power problem. 

Seeker optimization algorithm (SOA) models the deeds of human search population [11-16] 

based on their memory, experience, uncertainty reasoning and communication with each other. 

In Artificial Bee Colony (ABC) algorithm [17-23] the colony consists of three groups of bees: 

employed bees, onlookers and scouts. All bees that are presently exploiting a food source are 

known as employed bees. The number of the employed bees is equal to the number of food 

sources and an employed bee is allocated to one of the sources. In this paper hybridization of the 

seeker optimization algorithm with artificial bee colony (ABC) algorithm has been done to solve 

the optimal reactive power problem. Enhanced Seeker Optimization (ESO) algorithm combines 

two different solution exploration equations of the ABC algorithm and solution exploration 

equation of the SOA in order to progress the performance of SOA and ABC algorithms.  At 

certain period’s seeker’s location are modified by search principles obtained from the ABC 

algorithm, also it adjust the inter-subpopulation learning phase by using the binomial crossover 

operator. In order to evaluate the efficiency of proposed Enhanced Seeker Optimization (ESO) 

algorithm it has been tested in standard IEEE 57,118 bus systems and compared to other 

specified algorithms. Simulation results clearly indicate the best performance of the proposed 

Enhanced Seeker Optimization (ESO) algorithm in reducing the real power loss and voltage 

profiles are within the limits. 

 
2. Objective Function 

 
2.1. Active Power Loss 

 
The objective of the reactive power dispatch problem is to minimize the active power loss and can 

be written in equations as follows: 

F = 𝑃𝐿 = ∑   gkk∈Nbr (Vi
2 + Vj

2 − 2ViVjcosθij)                                                                             (1) 

 

Where F- objective function, PL – power loss, gk- conductance of branch,Vi and Vj are voltages at 

buses i,j, Nbr- total number of transmission lines in power systems.  

 
2.2. Voltage profile improvement 

 
To minimize the voltage deviation in PQ buses, the objective function (F) can be written as: 

F = 𝑃𝐿 + ωv × VD                                                                                                                          (2) 

 

Where VD - voltage deviation,ωv- is a weighting factor of voltage deviation. 
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And the Voltage deviation given by: 

VD = ∑ |Vi − 1|Npq
i=1                                                                                                                          (3) 

 

Where Npq- number of load buses 

 
2.3. Equality Constraint  

 
 The equality constraint of the problem is indicated by the power balance equation as follows: 

 
PG = PD + PL                                                                                                                                    (4) 

 
Where PG- total power generation, PD  - total power demand. 

 
2.4. Inequality Constraints  

 
The inequality constraint implies the limits on components in the power system in addition to the 

limits created to make sure system security. Upper and lower bounds on the active power of slack 

bus (Pg), and reactive power of generators (Qg) are written as follows: 

Pgslack
min ≤ Pgslack ≤ Pgslack

max                                                                                                                (5) 

Qgi
min ≤ Qgi ≤ Qgi

max , i ∈ Ng                                                                                                            (6) 

 

Upper and lower bounds on the bus voltage magnitudes (Vi) is given by:          

Vi
min ≤ Vi ≤ Vi

max , i ∈ N                                                                                                                (7) 

 

Upper and lower bounds on the transformers tap ratios (Ti) is given by: 

Ti
min ≤ Ti ≤ Ti

max , i ∈ NT                                                                                                              (8) 

 

Upper and lower bounds on the compensators (Qc) is given by: 

Qc
min ≤ Qc ≤ QC

max , i ∈ NC                                                                                                            (9) 

 

Where N is the total number of buses, Ng is the total number of generators,  NT is the total number 

of Transformers,Nc is the total number of shunt reactive compensators. 

 
3. Seeker Optimization Algorithm 

 
Seeker optimization algorithm (SOA) models the deeds of human search population based on 

their memory, experience, uncertainty reasoning and communication with each other. Therefore 

the individual of this population is called seeker or searcher. In the SOA, the total population is 

equally categorized into three subpopulations according to the directories of the seekers. All the 

seekers in the same subpopulation constitute a neighborhood which symbolizes the social 

component for the social sharing of information. Seeker i has the following attributes: the current 

Position𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . , 𝑥𝑖𝐷),the dimension of the problem D, the iteration number t, the 

personal best position pi,best so far, and the neighborhood best position gbest so far. The algorithm 

uses exploration direction and step length to update the positions of seekers. In the SOA, the 

search direction is determined by seeker’s egotistic behaviour, altruistic behaviour and pro-
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activeness behaviour, while step length is given by ambiguity reasoning behaviour. Search 

direction 𝛼𝑖𝑗  and step length dij are separately computed for each individual i on each dimension 

j at each iteration t, where 𝛼𝑖𝑗  ≥ 0 and dij ∈ {−1; 0; 1}. At each iteration the position of each 

seeker is modernized by: 

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝛼𝑖𝑗(𝑡). 𝑑𝑖𝑗                                                                                                (10) 

                                                                                                       

Where i = 1,2,.., SN; j = 1,2,..,D (SN is the number of seekers). Also, at each iteration, the 

current positions of the poorest two individuals of each subpopulation are swapped with the best 

ones in each of the other two subpopulations, which are called inter-subpopulation learning. 

 

Algorithm of Seeker optimization  

 

Create SN positions uniformly and arbitrarily in the exploration space; 

t = 0;       

Appraise all the seekers and save the historical best position; 

Repeat 

Calculate search direction and step length for each 

Seeker; 

Modernize each seeker’s position  

Estimate all the seekers and save the historical best position; 

Implement the inter-subpopulation learning operation; 

t = t + 1; 

Until t = Tmax 

 
3.1. Design of the Search Direction 

 
Seeker supportive behaviour types that are modeled are: egoistic, altruistic and pro-active 

behaviour. Seeker’s behaviour is considered egoistic if he believes that he should go toward his 

personal best position pi;bes through intellectual learning. For reaching the desired goal, by 

altruistic behaviour, seekers want to communicate with each other and adjust their behaviors in 

response to other seekers in the same neighborhood region. If a seeker wants to alter his 

exploration direction and exhibit goal-directed behaviour according to his previous behaviour, 

then it is considered that his behaviour is pro-active. The expression for exploration direction di, 

which models these types of behaviour, for the i
th 

seeker is: 

𝑑𝑖 = 𝜔. 𝑠𝑖𝑔𝑛(𝑝𝑖,𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝑟1. (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝑟2. (𝑥𝑖(𝑡1)) − 𝑥𝑖(𝑡2)                                      (11)                                                                           

 

Where the function sign ( ) is a signum function on each dimension of the input vector, 𝜔is the 

inertia weight, t1, t2∈ {t, t – 1, t − 2},x(t1) and x(t2) are the best and the worst positions in the set 

x(t), x(t − 1), x(t − 2) respectively, and r1 and r2 are real numbers chosen consistently and 

arbitrarily in the range [0,1]. The balance between global and local exploration and exploitation 

is provided by reducing the value of inertia weight. Here, inertia weight is linearly decreased 

from 0.9 to 0.1 during a run. 
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3.2. Design of the Step Size 

 
Fuzzy reasoning is used to produce the step length because the uncertain reasoning of human 

searching. The ambiguity rule of intelligent search is described as “If {function value is small}, 

then {search radius is small}”. The linear membership function was used for “step length”. The 

vector 𝜇𝑖 which is the grade of membership from cloud model and fuzzy set theory needs to be 

planned in order to compute the step length. It is inverse proportional to the objective function 

value of xi. Hence, the best position so far has the maximum 𝜇𝑚𝑎𝑥 = 1.0 ,while other positions 

have a 𝜇 < 1.0,  and the worst position so far has the minimum 𝜇𝑚𝑖𝑛The expression is presented 

as: 

𝜇𝑖 = 𝜇𝑚𝑎𝑥 −
𝑆−𝐼𝑖

𝑆−1
 . (𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛)                                 (12) 

 
Where S denotes the size of the subpopulation to which the seekers belong, Ii is the sequence 

number of xi after sorting the objective function values in ascending order. Besides the vector 

𝜇𝑖we need to calculate vector 𝛿𝑖 by: 

𝛿𝑖 = 𝜔. 𝑎𝑏𝑠(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)                                                                                                         (13) 

 

Where the absolute value of the input vector as the corresponding output vector is represented by 

the symbol abs (), xmax and xmin are the positions of the best and the worst seeker in the 

subpopulation to which the i
th 

seeker belongs, respectively. In order to introduce the arbitrariness 

in each variable and to progress the local search capability, the following equation is introduced 

to convert 𝜇𝑖into a vector with elements as given by: 

𝜇𝑖𝑗 = 𝑟𝑎𝑛𝑑(𝜇𝑖, 1), 𝑗 = 1,2, . . , 𝐷                                                                                                 (14) 

 

The equation used for creating the step length 𝛼𝑖for i
th 

seeker is: 

𝛼𝑖 = 𝛿𝑖. √−1𝑛(𝜇𝑖)                                                                                                                      (15) 

 
4. Artificial Bee Colony Algorithm 

 
In Artificial Bee Colony (ABC) algorithm the colony of artificial bees consists of three groups of 

bees: employed bees, onlookers and scouts. All bees that are presently exploiting a food source 

are known as employed bees. The number of the employed bees is equal to the number of food 

sources and an employed bee is allocated to one of the sources. Each food source is a possible 

solution for the problem and the nectar amount of a food source signifies the quality of the 

solution represented by the fitness value. Onlookers are those bees that are waiting in the hive for 

the employed bees to share information about the food sources presently being exploited by 

them, while scouts are those bees that are penetrating for new food sources arbitrarily. The 

number of onlooker and employed bees is the same. Onlookers are assigned to a food source 

based on probability. Like the employed bees, onlookers compute a new solution from its food 

source. After certain number of cycles, if food source cannot be further developed, it is 

abandoned and swapped by arbitrarily generated food source. This is called exploration 

procedure and it is performed by the scout bees. Hence, employed and onlooker bees carry out 

exploitation procedure, while scout bees perform exploration. Short pseudo code of the ABC 

algorithm is given below: 
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Initialize the population of solutions 

Calculate the population 

t = 0; 

Repeat 

Employed bee phase 

Compute probabilities for onlookers 

Onlooker bee phase 

Scout bee phase 

Remember the best solution achieved so far 

t = t + 1; 

Until t = Tmax 

 

In employed bee phase an update procedure is performed for each solution in order to produce a 

new-fangled solution: 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑. (𝑥𝑖𝑗 − 𝑥𝑘𝑗)                                                                                                     (16) 

 
Where k = 1,2,..,SN, j = 1,2,..,D are arbitrarily chosen indexes, k i, and rand is a random 

number between [-1,1] (SN is the number of solutions, D is the dimension of the problem). Then, 

a grasping selection is done between xi and vi, which completes the modernize process. The main 

dissimilarity between the employed bee phase and the onlooker bee phase is that every solution 

in the employed bee phase involves the update procedure, while only the selected solutions have 

the opportunity to update in the onlooker bee phase. An inactive solution refers to a solution that 

does not change over a certain number of generations. In scout bee phase one of the most 

sluggish solutions is selected and swapped by a new arbitrarily created solution. 

 
5. Enhanced Seeker Optimization Algorithm 

 
Enhanced Seeker Optimization (ESO) algorithm combines two different solution exploration 

equations of the Artificial Bee Colony (ABC) algorithm and solution exploration equation of the 

Seeker optimization algorithm (SOA) in order to progress the performance of SOA and ABC 

algorithms. Also, algorithm implements the modified inter-subpopulation learning using the 

binomial crossover operator. Therefore, Enhanced Seeker Optimization (ESO) algorithm has 

changed the phase of updating seeker’s positions and inter-subpopulation learning phase. The 

initialization phase remained the same as in SOA. Excluding common control parameters 

(solution number and maximum number of iterations), the Enhanced Seeker Optimization (ESO) 

algorithm keeps control parameter Subpop N (subpopulation number) from SOA, while it does 

not include any other control parameter from the ABC algorithm. The introduced modifications 

are described as follows. 

 
5.1. Adjustment of Updating Seeker’s Positions 

 
In the first 55% of iterations the Enhanced Seeker Optimization (ESO) algorithm is searching for 

candidate solutions using exploration formula of ABC which is given by Eq. (16). After each 

candidate solution is formed and then appraised, its performance is compared with the old 

solution and a greedy selection mechanism is engaged as the selection operation between the old 

and the new candidate. If the new solution has better function value than the old candidate 
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solution, it swaps the old one in the memory. In the continuing iterations, ESO chooses between 

search equation Eq. (10) which is used in SOA and the variant of ABC search equation which 

can be described as: 

𝑣𝑖𝑗 = {
𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑𝑖. (𝑥𝑖𝑗 − 𝑥𝑘𝑗), 𝑖𝑓𝑅𝑗 < 0.5

𝑥𝑖𝑗              , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                              (17) 

 
Where Rj is a random number within [0, 1), k is randomly chosen index from the whole 

population and has to be different from i, and randi is a random number between [-1, 1] and j = 

1,2, ..,D. The similar search equation is used in the ABC algorithm extended for constrained 

optimization problems, but the main difference is that in the Eq. (17) the value randi is kept fixed 

for every j = 1,2, ..,D. Also this modification is used in order to improve the ABC algorithm for 

the engineering optimization problems. The distinction between the Eq. (16) and the Eq. (17) is 

in the number of the optimization parameters which will be changed. In the basic ABC, while 

producing a new solution, vi, changing only one parameter of the parent solution xi results in a 

slow convergence rate. In order to overcome this disadvantage, we set the probability of 

changing the optimization parameter to 0.5. Also, in these iterations, the greedy selection 

mechanism is not used between the old and the new candidate solution. Hence, the diversity in 

the population is increased. 

 

In the SOA search equation which is used in Enhanced Seeker Optimization (ESO) algorithm, 

the Eq. (13) for calculating vector 𝛿𝑖 is changed. It has been concluded that the vector 𝛿is a 

sensitive parameter and that proposed calculation of its values was not suitable for optimization 

of multimodal functions. In order to overcome this obstacle, 𝛿𝑖 is calculated by: 

𝛿 = 𝜔. 𝑎𝑏𝑠(𝑥𝑚𝑎𝑥 − 𝑥𝑟𝑎𝑛𝑑)                                                                                                         (18) 

 
Where xrand are the positions of the seekers in the same subpopulation where the solution i 

belongs. Also, in order to further increase the diversity of the solutions, and the population, in the 

Enhanced Seeker Optimization (ESO) algorithm the inertia weight parameter w is linearly 

decreased from 0.9 to 0.7 during a run. 

 
The Enhanced Seeker Optimization (ESO) algorithm included a new control parameter which is 

called behavior rate (BR) in order to select the exploration equation in the following way: if an 

arbitrary number between [0,1] is less then BR the SOA search equation is used, otherwise the 

Eq. (17) is performed. 

 
5.2. Modification of Inter-Subpopulation Learning 

 
In the modified inter-subpopulation learning the positions of seekers with the lowest objective 

function values of each subpopulation l are united with the positions of seekers with the highest 

objective function values of (l+t) mod Subpop N subpopulations respectively, where t = 1,2,3,.., 

NSC. NSC denotes the number of the worst seekers of each population which are combined with 

the best seekers. The appropriate seekers are united using the following binomial crossover 

operator as expressed in: 

𝑥𝑙𝑛𝑗𝑤𝑜𝑟𝑠𝑡 = {
𝑥𝑖𝑗

, 𝑏𝑒𝑠𝑡 , 𝑖𝑓𝑅𝑗 < 0.5

𝑥𝑙𝑛𝑗, 𝑤𝑜𝑟𝑠𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                        (19) 
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In Eq. (19) Rj is random number within [0,1], 

𝑥𝑙𝑛𝑗𝑤𝑜𝑟𝑠𝑡is denoted as the j
th 

variable of the n
th 

worst position in the l
th 

sub population, 𝑥𝑖𝑗
, 𝑏𝑒𝑠𝑡 is 

the j
th

 variable of the best position in the i
th 

subpopulation. It can be concluded that in the 

Enhanced Seeker Optimization (ESO) algorithm have two new control parameters in comparison 

with the original Seeker optimization algorithm (SOA): the behavior rate (BR) and the number of 

seekers of each subpopulation for combination (NSC). Behavior rate parameter controls which of 

the exploration equations for producing new population will be used. In the inter-subpopulation 

learning of SOA it has been noticed that it may not always bring the benefits for multimodal 

functions since it may attract all agents towards a local optimal solution. Hence, in order to 

provide better equilibrium between exploitation and exploration capabilities of the algorithm, the 

described modifications are introduced. 

 
6. Simulation Results  

 
Proposed Enhanced Seeker Optimization (ESO) algorithm has been tested in standard IEEE-57 

bus power system. The reactive power compensation buses are 18, 25 and 53. Bus 2, 3, 6, 8, 9 

and 12 are PV buses and bus 1 is selected as slack-bus. The system variable limits are given in 

Table 1.  

The preliminary conditions for the IEEE-57 bus power system are given as follows: 

Pload = 12.012 p.u. Qload = 3.016 p.u. 

The total initial generations and power losses are obtained as follows: 

∑ 𝑃𝐺 = 12.5042 p.u. ∑ 𝑄𝐺  = 3.3214 p.u. 

Ploss = 0.25628 p.u. Qloss = -1.2012 p.u. 

Table 2 shows the various system control variables & Table 3, gives the comparison of optimum 

results. 

Table 1: Variable Limits 

Reactive Power Generation Limits 

Bus no  1 2 3 6 8 9 12 

Qgmin -1.4 -.015 -.02 -0.04 -1.3 -0.03 -0.4 

Qgmax 1 0.3 0.4 0.21 1 0.04 1.50 

Voltage And Tap Setting Limits 

vgmin Vgmax vpqmin Vpqmax tkmin tkmax 

0.9 1.0 0.91 1.05 0.9 1.0 
 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcmin 0 0 0 

Qcmax 10 5.2 6.1 
 

 

Table 2: Control variables obtained after optimization 

Control Variables  ESO 

 

V1 1.1 

V2 1.038 

V3 1.047 

V6 1.036 
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V8 1.031 

V9 1.018 

V12 1.024 

Qc18 0.0659 

Qc25 0.201 

Qc53 0.0450 

T4-18 1.010 

T21-20 1.058 

T24-25 0.879 

T24-26 0.811 

T7-29 1.050 

T34-32 0.882 

T11-41 1.023 

T15-45 1.040 

T14-46 0.910 

T10-51 1.020 

T13-49 1.060 

T11-43 0.910 

T40-56 0.900 

T39-57 0.950 

T9-55 0.950 

 

Table 3: Comparison results 

S.No. Optimization Algorithm Finest Solution Poorest Solution Normal Solution 

1 NLP [24] 0.25902 0.30854 0.27858 

2 CGA [24] 0.25244 0.27507 0.26293 

3 AGA [24] 0.24564 0.26671 0.25127 

4 PSO-w [24] 0.24270 0.26152 0.24725 

5 PSO-cf [24] 0.24280 0.26032 0.24698 

6 CLPSO [24] 0.24515 0.24780 0.24673 

7 SPSO-07 [24] 0.24430 0.25457 0.24752 

8 L-DE [24] 0.27812 0.41909 0.33177 

9 L-SACP-DE [24] 0.27915 0.36978 0.31032 

10 L-SaDE [24] 0.24267 0.24391 0.24311 

11 SOA [24] 0.24265 0.24280 0.24270 

12 LM [25] 0.2484 0.2922 0.2641 

13 MBEP1 [25] 0.2474 0.2848 0.2643 

14 MBEP2 [25] 0.2482 0.283 0.2592 

15 BES100 [25] 0.2438 0.263 0.2541 

16 BES200 [25] 0.3417 0.2486 0.2443 

17 Proposed ESO 0.22102 0.23118 0.22134 

 

Proposed Enhanced Seeker Optimization (ESO) algorithm has been tested in standard IEEE 118-

bus test system [26] .The system has 54 generator buses, 64 load buses, 186 branches and 9 of 

them are with the tap setting transformers. The limits of voltage on generator buses are 0.95-1.1 
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per-unit., and on load buses are 0.95-1.05 per-unit. The limit of transformer rate is 0.9-1.1, with 

the changes step of 0.025. The limitations of reactive power source are listed in Table 4, with the 

change in step of 0.01. 

 
Table 4: Limitation of reactive power sources 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 

The statistical comparison results have been list in Table 5 and the results clearly show the better 

performance of proposed Enhanced Seeker Optimization (ESO) algorithm. 

 
Table 5: Comparison results 

Active power loss (MW) BBO 

[27] 

ILSBBO/ 

strategy1 

[27] 

ILSBBO/ 

strategy1 

[27] 

Proposed 

ESO 

Min 128.77 126.98 124.78 116.32 

Max 132.64 137.34 132.39 122.74 

Average  130.21 130.37 129.22 118.46 

 

7. Conclusion 

 
In this paper Enhanced Seeker Optimization (ESO) algorithm successfully solved the optimal 

reactive power problem. Enhanced Seeker Optimization (ESO) algorithm combines two different 

solution exploration equations of the ABC algorithm and solution exploration equation of the 

Seeker optimization algorithm (SOA) in order to progress the performance of SOA & Artificial 

Bee Colony (ABC) algorithm.  At certain period’s seeker’s location are modified by search 

principles obtained from the ABC algorithm, also it adjust the inter-subpopulation learning phase 

by using the binomial crossover operator. In order to evaluate the efficiency of proposed 

Enhanced Seeker Optimization (ESO) algorithm it has been tested in standard IEEE 57,118 bus 

systems and compared to other specified algorithms. Simulation results clearly indicate the best 

performance of the proposed Enhanced Seeker Optimization (ESO) algorithm in reducing the 

real power loss and voltage profiles are within the limits. 
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