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Abstract 

This paper presents Improved Frog Leaping (IFL) algorithm for solving optimal reactive power 

problem.  Comprehensive exploration capability of Particle Swarm Optimization (PSO) and   

good local search ability of Frog Leaping Algorithm (FLA) has been hybridized to solve the 

reactive power problem and it overcomes the shortcomings of premature convergence. In order 

to evaluate the validity of the proposed Improved Frog Leaping (IFL) algorithm, it has been 

tested in Standard IEEE 57,118 bus systems and compared to other standard algorithms. 

Simulation results show that proposed Improved Frog Leaping (IFL) algorithm has reduced the 

real power loss considerably and voltage profiles are within the limits. 
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1. Introduction

Different numerical methods have been implemented to solve this optimal reactive power 

dispatch problem. These consist of the gradient method [1, 2], Newton method [3] and linear 

programming [4-7].The gradient and Newton methods suffer from the difficulty in handling 

inequality constraints. To apply linear programming, the input- output function is to be expressed 

as a set of linear functions which may lead to loss of accuracy. In recent times Global 

Optimization techniques such as genetic algorithms have been proposed to solve the reactive 

power flow problem [8.9]. In recent years, the problem of voltage stability and voltage collapse 

has become a major concern in power system planning and operation. To enhance the voltage 

stability, voltage magnitudes alone will not be a reliable indicator of how far an operating point 

is from the collapse point [10]. Particle Swarm Optimization (PSO) algorithm [11, 12] was 

originally an evolutionary computation technique, from observation and study of the predatory 

behaviour of birds. Frog Leaping Algorithm (FLA) [13] is swarm intelligence based sub-

heuristic computation optimization algorithm used to solve discrete combinatorial optimization 
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problem. The two algorithms are simple in concept, have less parameter, fast calculation speed, 

global search capability, and are easy to implement. This paper presents Improved Frog Leaping 

(IFL) algorithm for solving optimal reactive power problem.  Global exploration capability of 

Particle Swarm Optimization (PSO) and   good local search capability of Frog Leaping 

Algorithm (FLA) has been hybridized to solve the reactive power problem and it overcomes the 

shortcomings of premature convergence. In order to evaluate the validity of the proposed 

Improved Frog Leaping (IFL) algorithm, it has been tested in Standard IEEE 57,118 bus systems 

and compared to other standard algorithms. Simulation results show that proposed Improved 

Frog Leaping (IFL) algorithm has reduced the real power loss considerably and voltage profiles 

are within the limits. 

 

2. Objective Function 
 

Active power loss 

Main aim of the reactive power dispatch problem is to reduce the active power loss in the 

transmission network, which can be described as: 

𝐹 = 𝑃𝐿 = ∑ 𝑔𝑘𝑘∈𝑁𝑏𝑟 (𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝜃𝑖𝑗)                                                                          (1) 

Where gk: is the conductance of branch between nodes i and j, Nbr: is the total number of 

transmission lines in power systems. 

 

Voltage profile improvement 

For minimization of the voltage deviation in PQ buses, the objective function turns into: 

𝐹 = 𝑃𝐿 + 𝜔𝑣 × 𝑉𝐷                                                                                                                       (2) 

Where ωv: is a weighting factor of voltage deviation. 

VD is the voltage deviation given by: 

𝑉𝐷 = ∑ |𝑉𝑖 − 1|𝑁𝑝𝑞
𝑖=1                                                                                                                        (3) 

 

Equality Constraint  

The equality constraint of the Reactive power problem is represented by the power balance 

equation, and can be written as, where the total power generation must cover the total power 

demand and total power loss: 

𝑃𝐺 = 𝑃𝐷 + 𝑃𝐿                                                                                                                                 (4) 

 Where, 𝑃𝐺  - Total Power Generation, 𝑃𝐷-Total Power Demand, 𝑃𝐿 – Total Power Loss. 

 

Inequality Constraints  

Inequality constraints define the limitations in power system components and power system 

security. Upper and lower bounds on the active power of slack bus, and reactive power of 

generators are written as follows: 

𝑃𝑔𝑠𝑙𝑎𝑐𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘

𝑚𝑎𝑥                                                                                                            (5) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑁𝑔                                                                                                        (6) 

Upper and lower bounds on the bus voltage magnitudes are described as follows:          

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥  , 𝑖 ∈ 𝑁                                                                                                            (7) 

Upper and lower bounds on the transformers tap ratios are given as follows: 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥  , 𝑖 ∈ 𝑁𝑇                                                                                                           (8) 

Upper and lower bounds on the compensators reactive powers are written as follows: 
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𝑄𝑐
𝑚𝑖𝑛 ≤ 𝑄𝑐 ≤ 𝑄𝐶

𝑚𝑎𝑥 , 𝑖 ∈ 𝑁𝐶                                                                                                          (9) 

Where N is the total number of buses, NT is the total number of Transformers; Nc is the total 

number of shunt reactive compensators. 
 

3. Particle Swarm Optimization Algorithm 

 

Particle swarm optimization algorithm is an optimization algorithm based on group and fitness. 

The system initializes particles (representing potential solutions) as a set of random solutions, 

which has two features of position and velocity. The fitness values of particles are decided by 

particle positions. Particles move in the solution space; the moving direction and distance are 

determined by the speed vector and new speed , position are updated from personal best position 

pbest, global best position gbest and the current particle velocity; particles search and pursue the 

optimal particle based on fitness values in the solution space, and gradually converge to the 

optimal solution. Assuming in a d-dimensional search space, there is a group composed of n 

particles, where of generation t particle i(i = 1, 2, ... , n), position coordinates 

𝑥𝑖
𝑡 = (𝑥𝑖1, 𝑥𝑖2, . . , 𝑥𝑖𝑑), velocity 𝑣𝑖

𝑡 = (𝑣𝑖1, 𝑣𝑖2, … 𝑣𝑖𝑑) personal best position 

𝑝𝑖
𝑡 = (𝑝𝑖1, 𝑝𝑖2, . . , 𝑝𝑖𝑑) and global best position 𝑝𝑔

𝑡 = (𝑝𝑔1, 𝑝𝑔2, . . , 𝑝𝑔𝑑).For particle i dimension d 

generation t, its iterative formula can be expressed as: 

 

𝑣𝑖𝑑
𝑡+1 = 𝜔𝜗𝑖𝑑

𝑡 + 𝑐1𝑟1(𝑝𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2𝑟2(𝑝𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 )                                                                   (10) 

 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝜗𝑖𝑑
𝑡+1                                                                                                                      (11) 

 

Where, 𝜗𝑖𝑑
𝑡  - current velocity, 

𝜗𝑖𝑑
𝑡+1 - New speed of particle r after iteration t, 

𝜔- Inertia weight, 

𝑐1,𝑐2 - Acceleration (learning) factors, 

𝑟1,𝑟2 − Uniformly distributed random numbers between 0 and 1, 

𝑥𝑖𝑑
𝑡  -current position of particle i , 

 𝑥𝑖𝑑
𝑡+1-new position of particle i after iteration t. 

 

4. Frog Leaping Algorithm 

 

Frog leaping algorithm is a biological evolution algorithm based on swarm intelligence. The 

algorithm simulates a group of frogs in the wetland passing thought and foraging by 

classification of ethnic groups. In the execution of the algorithm, F frogs are generated at first to 

form a group, for N-dimensional optimization problem, frog i of the group is represented as 

𝑋𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, . . , 𝑥𝑖
𝑁) then individual frogs in the group are sorted in descending order according 

to fitness values, to find the global best solution Px. The group is divided into m ethnic groups, 

each ethnic group including n frogs, satisfying the relation F = m × n. The rule of ethnic group 

division is: the first frog into the first sub-group, the second frog into the second sub-group, frog 

m into sub-group m, frog m + 1 into the first sub-group again, frog m + 2 into the second sub-

group, and so on, until all the frogs are divided, then find the best frog in each sub-group, 

denoted by Pb; get a worst frog correspondingly, denoted by Pw. Its iterative formula can be 

expressed as: 
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𝐷 = 𝑟𝑎𝑛𝑑( ) ∗ (𝑃𝑏 − 𝑃𝜔)                                                                                                            (12)  

 

𝑃𝑛𝑒𝑤_−𝜔 = 𝑃𝜔 + 𝐷𝑖, −𝐷𝑚𝑎𝑥  ≤ 𝐷𝑖 ≤  𝐷𝑚𝑎𝑥                                                                                (13) 

  

Where rand ( ) represents a random number between 0 and 1, 

Pb represents the position of the best frog, 

Pw represents the position of the worst frog, 

D represents the distance moved by the worst frog, 

𝑃𝑛𝑒𝑤_−𝜔 is the improved position of the frog, 

Dmax represents the step length of frog leaping. 

 

In the execution of the algorithm, if the updated𝑃𝑛𝑒𝑤_−𝜔  is in the feasible solution space, 

calculate the corresponding fitness value of   𝑃𝑛𝑒𝑤_−𝜔, if the corresponding fitness value of 

𝑃𝑛𝑒𝑤_−𝜔 is worse than the corresponding fitness value of Pw, then use Pw to replace Pb in 

equation (12) and re-update 𝑃𝑛𝑒𝑤_−𝜔; if there is still no improvement, then randomly generate a 

new frog to replace Pw; repeat the update process until satisfying stop conditions. 

 

5. Improved Frog Leaping (IFL) Algorithm 

 

Exploration and exploitation has been a contradiction in the search process of swarm intelligence 

algorithms. Exploration stresses searching for a new search region in the global range, and 

exploitation is focused on fine search in local search area. Although particle swarm optimization 

algorithm is simple and its optimization performance is good, in the entire iterative process, 

exploration capability is strong and exploitation capability is weak in early period, at this time if 

particles fall on the neighbourhood of the best particle, they may flee the neighbourhood of the 

best particle, due to too strong exploration capability; exploration capability is weak and 

exploitation capability is strong in later period, at this time if particles encounter local optima, 

the speed of all particles may be rapidly reduced to zero instead of flying, leading to convergence 

of particle swarm to local optima; the iterative mechanism and ethnic group division lead to 

strong exploitation and weak exploration in early period, and strong exploration and weak 

exploitation in later period. Based on the above analysis, in the update process of the algorithm, 

in order to ensure the diversity of particles, particle swarm and frog group sharing part of the 

particles, we propose particle sharing based particle swarm frog leaping hybrid optimization 

algorithm. The idea is as follows: divide the total number of particles N into two sub-groups of 

numbers N1 and N2, where the first sub-group uses shuffled frog leaping algorithm to optimize, 

the second sub-group uses the standard particle swarm optimization algorithm to optimize, and 

N, N1 and N2 satisfy N ≤ N1 + N2, so the number of shared particles is N1 + N2 - N. 

 
1) Initialize groups and parameters. Initialize group total number of particles N, total 

number of frogs N1, number of sub-groups m, number of frogs in each sub-group n 

(parameters satisfying N1 = m × n), number of updates It within frog group sub-group, 

number of particles N2 of particle swarm (parameters satisfying N ≤ N1 + N2), inertia 

weight 𝜔, acceleration factor c1, deceleration factor c2, the maximum number of 

iterations Iter Max and other parameters. 

2) Evaluate the initial fitness values of the particles, save the initial best positions and the 

initial best fitness values, and sort all N particles in ascending order according to fitness 
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values; N1 particles counted from front to back belong to the frog group, and N2 particles 

counted from back to front belong to the particle swarm. 

3) Sort N1 frogs in ascending order and divide them into sub-groups according to the sub-

group division rule. 

4) Determine the best fitness individual Pb and the worst fitness individual Pw of each 

subgroup in frog group, and the group best individual Px, improve the worst solution 

within a specified number of iterations It according to equations (12) and (13). 

5) Sort particles of the group in ascending order according to fitness values, re-mix the 

particles to form a new group, and sort the N particles in ascending order according to 

fitness values; N1 particles counted from front to back belong to the frog group, and N2 

particles counted from back to front belong to the particle swarm. Calculate the new 

speed of each particle according to equation (10), calculate the new position of each 

particle according to equation (11), limiting the maximum values of the new speed and 

position of each particle; update each particle’s personal best fitness value and personal 

best position; update the global best fitness value and the global best position. 

6) Sort particles of the group in ascending order according to fitness values, and re-mix the 

particles to form a new group. 

7) If stop conditions are satisfied (the number of iterations exceeds the maximum allowable 

number of iterations or the optimal solution is obtained), the search stops, and output the 

position and fitness value of the first particle of the group; otherwise, return to step (c) to 

continue the search. 

 

6. Simulation Results  
 

At first Improved Frog Leaping (IFL) algorithm has been tested in standard IEEE-57 bus power 

system. The reactive power compensation buses are 18, 25 and 53. Bus 2, 3, 6, 8, 9 and 12 are 

PV buses and bus 1 is selected as slack-bus. The system variable limits are given in Table 1.  

The preliminary conditions for the IEEE-57 bus power system are given as follows: 

Pload = 12.129 p.u. Qload = 3.060 p.u. 

The total initial generations and power losses are obtained as follows: 

∑ 𝑃𝐺 = 12.470 p.u. ∑ 𝑄𝐺  = 3.3161 p.u. 

Ploss = 0.25870 p.u. Qloss = -1.2071 p.u. 

Table 2 shows the various system control variables i.e. generator bus voltages, shunt 

capacitances and transformer tap settings obtained after optimization which are within the 

acceptable limits. In Table 3, shows the comparison of optimum results obtained from proposed 

methods with other optimization techniques. These results indicate the robustness of proposed 

approaches for providing better optimal solution in case of IEEE-57 bus system. 

  

Table 1: Variable Limits 
 

Reactive Power Generation Limits  

Bus no  1 2 3 6 8 9 12 

Qgmin -1.4 -.015 -.02 -0.04 -1.3 -0.03 -0.4 

Qgmax 1 0.3 0.4 0.21 1 0.04 1.50 

Voltage And Tap Setting Limits 

vgmin Vgmax vpqmin Vpqmax tkmin tkmax 
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0.9 1.0 0.91 1.05 0.9 1.0 
 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcmin 0 0 0 

Qcmax 10 5.2 6.1 
 

 

Table 2: Control variables obtained after optimization 

Control Variables  IFL 

V1 1.1 

V2 1.030 

V3 1.032 

V6 1.020 

V8 1.021 

V9 1.006 

V12 1.011 

Qc18 0.0660 

Qc25 0.200 

Qc53 0.0471 

T4-18 1.006 

T21-20 1.041 

T24-25 0.860 

T24-26 0.871 

T7-29 1.051 

T34-32 0.872 

T11-41 1.012 

T15-45 1.030 

T14-46 0.910 

T10-51 1.020 

T13-49 1.060 

T11-43 0.910 

T40-56 0.900 

T39-57 0.950 

T9-55 0.950 

 

Table 3: Comparison results 

S.No. Optimization Algorithm Finest Solution Poorest Solution Normal Solution 

1 NLP [14] 0.25902 0.30854 0.27858 

2 CGA [14] 0.25244 0.27507 0.26293 

3 AGA [14] 0.24564 0.26671 0.25127 

4 PSO-w [14] 0.24270 0.26152 0.24725 

5 PSO-cf [14] 0.24280 0.26032 0.24698 

6 CLPSO [14] 0.24515 0.24780 0.24673 

7 SPSO-07 [14] 0.24430 0.25457 0.24752 

8 L-DE [14] 0.27812 0.41909 0.33177 

9 L-SACP-DE [14] 0.27915 0.36978 0.31032 
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10 L-SaDE [14] 0.24267 0.24391 0.24311 

11 SOA [14] 0.24265 0.24280 0.24270 

12 LM [15] 0.2484 0.2922 0.2641 

13 MBEP1 [15] 0.2474 0.2848 0.2643 

14 MBEP2 [15] 0.2482 0.283 0.2592 

15 BES100 [15] 0.2438 0.263 0.2541 

16 BES200 [15] 0.3417 0.2486 0.2443 

17 Proposed IFL 0.22064 0.23016 0.22248 

 

Then Improved Frog Leaping (IFL) algorithm has been tested in standard IEEE 118-bus test 

system [16].The system has 54 generator buses, 64 load buses, 186 branches and 9 of them are 

with the tap setting transformers. The limits of voltage on generator buses are 0.95 -1.1 per-unit., 

and on load buses are 0.95 -1.05 per-unit. The limit of transformer rate is 0.9 -1.1, with the 

changes step of 0.025. The limitations of reactive power source are listed in Table 4, with the 

change in step of 0.01. 

 

Table 4: Limitation of reactive power sources 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 

The statistical comparison results of 50 trial runs have been list in Table 5 and the results clearly 

show the better performance of proposed Improved Frog Leaping (IFL) algorithm in reducing 

the real power loss.  

 

Table 5: Comparison results 

Active power loss (MW) BBO 

[17] 

ILSBBO/ 

strategy1 

[17] 

ILSBBO/ 

strategy1 

[17] 

Proposed 

IFL 

Min 128.77 126.98 124.78 117.86 

Max 132.64 137.34 132.39 119.54 

Average  130.21 130.37 129.22 118.42 

 

7. Conclusion 

 

In this paper a novel approach Improved Frog Leaping (IFL) algorithm used to solve reactive 

power problem, considering various generator constraints, has been successfully applied.The 

performance of the proposed Improved Frog Leaping (IFL) algorithm has been  has been tested 

in standard IEEE 57,118 bus systems and simuation results reveal about the reduction of real 

power loss when compared with other standard reported algorithms and volatge profiles are 

within the limits. 
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