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Abstract 

In this paper, combination of the Q-bit evolutionary search - quantum particle swarm 

optimization (QPSO) algorithm and binary bit evolutionary search - genetic particle swarm 

optimization (GPSO) has been done to solve the reactive power problem & termed as Improved 

Quantum Algorithm (IQA). Proposed IQA can be viewed as a kind of hybridization of micro-

space based search and macro-space based search, which augments the penetrating behavior to 

augment and balance the exploration and exploitation aptitudes in the whole searching space. In 

order to evaluate the performance of the proposed IQA algorithm, it has been tested on IEEE 

57,118 bus systems and compared to other standard algorithms. 
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1. Introduction

Various mathematical techniques have been adopted to solve this optimal reactive power 

dispatch problem. These include the gradient method [1, 2], Newton method [3] and linear 

programming [4-7].The gradient and Newton methods suffer from the difficulty in handling 

inequality constraints. To apply linear programming, the input- output function is to be expressed 

as a set of linear functions which may lead to loss of accuracy. Recently Global Optimization 

techniques such as genetic algorithms have been proposed to solve the reactive power flow 

problem [8-14].  PSO is inspired by observing the bird flocking or fish school [15]. A large 

number of birds/fishes flock synchronously, change direction suddenly, and scatter and regroup 

together. Each individual, called a particle, benefits from the experience of its own and that of 

the other members of the swarm during the search for food. Comparing with genetic algorithm, 

the advantages of PSO lie on its simple concept, easy implementation and quick convergence. 

The PSO has been applied successfully to continuous nonlinear function [15], neural network 
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[16], nonlinear constrained optimization problems [17], etc. Most of the applications have been 

concentrated on solving continuous optimization problems [18]. To solve discrete 

(combinatorial) optimization problems, Kennedy and Eberhart [19] also developed a discrete 

version of PSO (DPSO), which however has seldom been utilized. DPSO essentially differs from 

the original (or continuous) PSO in two characteristics. First, the particle is composed of the 

binary variable. Second, the velocity must be transformed into the change of probability, which 

is the chance of the binary variable taking the value one. Furthermore, the relationships between 

the DPSO parameters differ from normal continuous PSO algorithms [20, 21]. Though it has 

been proved the DPSO can also be used in discrete optimization as a common optimization 

method, it is not as effective as in continuous optimization. When dealing with integer variables, 

DPSO sometimes are easily trapped into local minima [19]. Therefore, Yang et al. [22] proposed 

a quantum particle swarm optimization (QPSO) for discrete optimization in 2004. Their 

simulation results showed that the performance of the QPSO was better than DPSO and genetic 

algorithm. Recently, Yin [23] proposed a genetic particle swarm optimization (GPSO) with 

genetic reproduction mechanisms, namely crossover and mutation to facilitate the applicability 

of PSO to combinatorial optimization problem, and the results showed that the GPSO 

outperformed the DPSO for combinatorial optimization problems. QPSO uses a Q-bit, defined as 

the smallest unit of information, for the probabilistic representation and a Q-bit individual as a 

string of Q-bits. The Q-bit individual has the advantage that it can represent a linear 

superposition of states (binary solutions) in search space probabilistically [22, 24]. Thus the Q-

bit representation has a better characteristic of population diversity than other representations. 

However, the performance of simple quantum-inspired PSO is often not satisfactory and is easy 

to be trapped in local optima so as to be premature convergence. In the binary genetic particle 

swarm optimization, genetic reproduction, in particular, crossover and mutation, have been 

combined to form a discrete version particle swarm optimization, is suitable for solving 

combinatorial optimization problems. In QPSO, the representation of population is Q-bit and 

evolutionary search is in micro-space (Q-bit based representation space). Differently, in GPSO 

the representation is binary number and evolutionary search is in macro-space (binary space). It 

is quite different between QPSO and GPSO in terms of representation and evolution operators. 

However, as QPSO, the performance of GPSO is also often not satisfactory and is easy to be 

trapped in local optima so as to be premature convergence. In contrast to the continuous PSO 

algorithm that has been widely studied and improved by a large body of researchers, the discrete 

PSO and its application to combinatorial optimization problems has not been as popular or 

widely studied. Therefore, it is an important topic to develop a new or improved discrete particle 

swarm optimization algorithm with applications to combinatorial optimization problems. In this 

paper, combination of the Q-bit evolutionary search - quantum particle swarm optimization 

(QPSO) algorithm and binary bit evolutionary search - genetic particle swarm optimization 

(GPSO) has been done to solve the reactive power problem & termed as Improved Quantum 

Algorithm (IQA).  The performance of (IQA) has been evaluated in standard IEEE 57,118 bus 

test systems and the results analysis shows   that our proposed approach outperforms all 

approaches investigated in this paper.  
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2. Objective Function 

 

Active power loss 

 

Main aim of the reactive power dispatch problem is to reduce the active power loss in the 

transmission network, which can be described as: 

𝐹 = 𝑃𝐿 = ∑ 𝑔𝑘𝑘∈𝑁𝑏𝑟 (𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝜃𝑖𝑗)                                                                          (1) 

 

Where gk: is the conductance of branch between nodes i and j, Nbr: is the total number of 

transmission lines in power systems. 

 

Voltage profile improvement 

 

For minimization of the voltage deviation in PQ buses, the objective function turns into: 

𝐹 = 𝑃𝐿 + 𝜔𝑣 × 𝑉𝐷                                                                                                                      (2) 

 

Where ωv: is a weighting factor of voltage deviation. 

VD is the voltage deviation given by: 

𝑉𝐷 = ∑ |𝑉𝑖 − 1|𝑁𝑝𝑞
𝑖=1                                                                                                                        (3) 

 

Equality Constraint  

 

The equality constraint of the Reactive power problem is represented by the power balance 

equation, and can be written as, where the total power generation must cover the total power 

demand and total power loss: 

𝑃𝐺 = 𝑃𝐷 + 𝑃𝐿                                                                                                                                 (4) 

  

Where, 𝑃𝐺  - Total Power Generation, 𝑃𝐷-Total Power Demand, 𝑃𝐿 – Total Power Loss. 

 

Inequality Constraints  

 

Inequality constraints define the limitations in power system components and power system 

security. Upper and lower bounds on the active power of slack bus, and reactive power of 

generators are written as follows: 

𝑃𝑔𝑠𝑙𝑎𝑐𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘

𝑚𝑎𝑥                                                                                                            (5) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑁𝑔                                                                                                        (6) 

 

Upper and lower bounds on the bus voltage magnitudes are described as follows:          

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥  , 𝑖 ∈ 𝑁                                                                                                            (7) 

 

Upper and lower bounds on the transformers tap ratios are given as follows: 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥  , 𝑖 ∈ 𝑁𝑇                                                                                                           (8) 

 

Upper and lower bounds on the compensators reactive powers are written as follows: 

𝑄𝑐
𝑚𝑖𝑛 ≤ 𝑄𝑐 ≤ 𝑄𝐶

𝑚𝑎𝑥 , 𝑖 ∈ 𝑁𝐶                                                                                                          (9) 
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Where N is the total number of buses, NT is the total number of Transformers; Nc is the total 

number of shunt reactive compensators. 

 

3. Quantum Particle Swarm Optimization (QPSO) 

 

In the quantum theory, the minimum unit that carries information is a Q-bit, which can be in any 

superposition of state 0 and 1. Let Qi (t) = (qi1(t),qi2 (t),.., qiD (t)) , qid (t)∈[0,1] , be quantum 

particle I with D bits at iteration t, where qid (t) represents the probability of d-th bit of i-th 

particle being 0 at iteration t. Let Xi (t) = (xi1(t), xi2 (t),.., xiD (t)) , xid (t)∈{0,1} be binary particle i 

with D bits at iteration t. Xi (t) is the corresponding binary particle of the quantum particle Qi (t) 

and also can be treated as a potential solution. A binary particle Xi(t) can be got from quantum 

particle Qi(t) by performing a random observation as following: 

 

𝑥𝑖𝑑(𝑡) = {
1  𝑖𝑓 𝑟𝑎𝑛𝑑() > 𝑞𝑖𝑑(𝑡)
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

                                                                                                (10) 

 

Where rand () is a random number selected from a uniform distribution in [0,1]. Let Pi(t) = ( pi1 

(t), pi2 (t),..., piD (t)) be the best solution that binary particle Xi (t) has obtained until iteration t, 

and Pg (t) = ( pg1(t), pg2 (t),..., pgD (t)) be the best solution obtained from Pi (t) in the whole 

swarm at iteration t.  

 

𝑞𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) = 𝛼 ∙ 𝑃𝑖𝑑(𝑡) + 𝛽 ∙ (1 − 𝑃𝑖𝑑(𝑡))                                                                             (11) 

 

𝑞𝑔𝑜𝑙𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) = 𝛼 ∙ 𝑃𝑖𝑑(𝑡) + 𝛽 ∙ (1 − 𝑃𝑖𝑑(𝑡))                                                                           (12) 

 

𝑞𝑖𝑑(𝑡 + 1) = 𝑐1 ∙ 𝑞𝑖𝑑(𝑡) + 𝑐2 ∙ 𝑞𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡(𝑡) + 𝑐3 ∙ 𝑞𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡(𝑡)                                              (13) 

 

Where α + β = 1 , 0 <α ,β < 1 are control parameters. The smaller of α  , the bigger of the appear 

probability of the desired item. c1 + c2 + c3 = 1 , 0 < c1,c2 ,c3 < 1 represent the degree of the belief 

on oneself, local best solution and global best solution, respectively. In order to keep the 

diversity in particle swarm and further improve QPSO performance, we incorporated a mutation 

operator into the QPSO. The mutation operator independently changes the Q-bit of an individual 

with a mutation probability p as following: 

qid (t) = 1− qid (t) , if rand( ) < p                                                                                                  (14) 

 

4. Genetic Particle Swarm Optimization (GPSO) 

 

Denote by N the number of particles in the swarm. The GPSO with genetic recombination for the 

d-th bit of particle i is described as follows: 
 

xid (t +1) = w(0,w1 )rand(xid (t)) + w(w1,w2 )rand( pid (t)) + w(w2 ,1)rand ( pgd (t))                    (15) 

      

where 0 < w1 < w2 < 1, w( ) and rand() are a threshold function and a probabilistic bit flipping 

function, respectively, and they are defined as follows: 

𝑤(𝑎, 𝑏) = {
1 𝑖𝑓 𝑎 ≤  𝑟1 ≤  𝑃𝑚     
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

                                                                                             (16)      
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𝑟𝑎𝑛𝑑(𝑦) = {
1 − 𝑦 𝑖𝑓 𝑟2 ≤ 𝑝𝑚                    
𝑦    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

                                                                                  (17) 

 

Where r1 and r2 are the random numbers uniformly distributed in [0,1]. Thus, only one of the 

three terms on right hand side of Eq. (15) will remain dependent on the value r1 , and rand(y) 

mutates the binary bit y with a small mutation probability pm . The updating rule of the genetic 

PSO is analogue to the genetic algorithm in two aspects. First, the particle derives its single bit 

from the particle xid , pid and pgd . This operation corresponds to a 3-way uniform crossover 

among X i , Pi and Pg , such that the particle can exchange building blocks (segments of ordering 

or partial selections of elements) with personal and global experiences. Second, each bit attained 

in this way will be flipped with a small probability pm , corresponding to the binary mutation 

performed in genetic algorithms. As such, genetic reproduction, in particular, crossover and 

mutation, has been added to the particle swarm optimization. This new genetic version, named 

GPSO, is very likely more suitable for solving combinatorial optimization problems than the 

original one. 

 

5. Improved Quantum Algorithm (IQA) 

 

It is concluded from ‘‘No Free Lunch’’ theorem [25] that there is no any method can solve all the 

problems optimally, so that hybrid optimization algorithms have gained wide research in recent 

years [26, 27]. Based on the description of last section, it can be seen that it is quite different 

between QPSO and GPSO in terms of representation and evolution operators. In QPSO, the 

representation of population is Q-bit and evolutionary search is in micro-space (Q-bit based 

representation space). Differently, in GPSO the representation is binary number and evolutionary 

search is in macro-space (binary space). We consider the hybridization of QPSO and GPSO to 

develop hybrid QPSO characterized the principles of both quantum computing and evolutionary 

computing mechanisms. 

 

Algorithm for solving reactive power dispatch problem. 

1. Initialize. 

1.1 Set t = 0 , and initialize the QP(t). 

1.2 Make BP(t) by observing the states of QP(t). 

1.3 Evaluate the BP(t), and update the local best solutions and the global best solution. 

1.4 Store BP(t) into Parent(t). 

 

2. Repeat until a given maximal number of iterations (MaxIter) is achieved. 

2.1 Set t = t +1. 

2.2 Update QP(t) using QPSO. 

2.3 Make BP(t) by observing the states of QP(t). 

2.4 Evaluate the BP(t). 

2.5 Select better one between BP(t) and Parent(t-1) for each individual to update BP(t). 

2.6 Update the local best solutions and the global best solution. 

2.7 Update BP(t) using GPSO for a given maximal number of iteration (gMaxIter). 

2.8 Evaluate the BP(t), and update the local best solutions and the global best solution. 
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In the main loop the above procedure, firstly, quantum swarm is evolved by the evolution 

mechanism of the QPSO (Step 2.2). After one generation evolution of quantum swarm, a random 

observation is performed on quantum swarm (Step 2.3). Thus, binary swarm is made by the 

random observation and prepares to be evolved by the evolution mechanism of the GPSO in 

succession. Note that the individuals to perform GPSO are based on all the individuals resulted 

by QPSO in current generation and all the individuals resulted by GPSO in last generation (Step 

2.5). That is, if a binary individual in the population resulted by QPSO in current generation is 

worse than the corresponding binary individual in the population resulted by GPSO in last 

generation, then the worse one is replaced by the better one. This selection process is something 

like the (μ +λ ) selection in evolutionary algorithm [28]. The selection in the hybrid algorithm is 

helpful to reserve better solutions and speed up the evolution process. After the one or more 

generation GPSO evolution of binary swarm (Step 2.7), the best solutions that each particle has 

obtained and the best solution that obtained from the whole swarm are recorded and transferred 

to quantum swarm to guide a new generation evolution of quantum swarm (Step 2.8). In the 

hybrid algorithm, the best solutions that each binary particle has obtained and global best 

solution of whole swarm can also be considered as additional swarm individuals. They not only 

guide the evolution of quantum swarm, but also guide evolution of binary swarm observed from 

quantum swarm. Therefore, quantum swarm co-evolves with binary swarm and the information 

of evolution is exchanged between them by the best solutions and global best solution. With the 

hybridization of different representation spaces and various particle swarm optimization 

operators, it can not only enrich the searching behaviour but also enhance and balance the 

exploration and exploitation abilities to avoid being trapped in local optima. Moreover, to 

balance the effort of QPSO and GPSO, different parameters can be used, such as population size. 

On the other hand, the initial inspiration for the PSO was the coordinated movement of swarms 

of animals in nature, for example schools of fish or flocks of birds. It reflects the cooperative 

relationship among the individuals within a swarm. However, in natural ecosystems, many 

species have developed cooperative interactions with other species to improve their survival. 

Such cooperative co-evolution is called symbiosis [29]. According to the different symbiotic 

interrelationships, symbiosis can be classified into three main categories: mutualism (both 

species benefit by the relationship), commensalism (one species benefits while the other species 

is not affected), and parasitism (one species benefits and the other is harmed) [30]. The co-

evolution between quantum swarm and binary swarm in the proposed hybrid algorithm is similar 

to the mutualism model, where both swarms benefit from each other. 

 

6. Simulation Results  

 

At first Improved Quantum Algorithm (IQA) has been tested in standard IEEE-57 bus power 

system. The reactive power compensation buses are 18, 25 and 53. Bus 2, 3, 6, 8, 9 and 12 are 

PV buses and bus 1 is selected as slack-bus. The system variable limits are given in Table 1.  

The preliminary conditions for the IEEE-57 bus power system are given as follows: 

Pload = 12.110 p.u. Qload = 3.031 p.u. 

The total initial generations and power losses are obtained as follows: 

∑ 𝑃𝐺 = 12.4521 p.u. ∑ 𝑄𝐺  = 3.3128 p.u. 

Ploss = 0.25801 p.u. Qloss = -1.2072 p.u. 

Table 2 shows the various system control variables i.e. generator bus voltages, shunt 

capacitances and transformer tap settings obtained after optimization which are within the 
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acceptable limits. In Table 3, shows the comparison of optimum results obtained from proposed 

methods with other optimization techniques. These results indicate the robustness of proposed 

approaches for providing better optimal solution in case of IEEE-57 bus system. 

  

Table 1: Variable Limits 

Reactive Power Generation Limits  

Bus no  1 2 3 6 8 9 12 

Qgmin -1.4 -.015 -.02 -0.04 -1.3 -0.03 -0.4 

Qgmax 1 0.3 0.4 0.21 1 0.04 1.50 

Voltage And Tap Setting Limits 

vgmin Vgmax vpqmin Vpqmax tkmin tkmax 

0.9 1.0 0.91 1.05 0.9 1.0 
 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcmin 0 0 0 

Qcmax 10 5.2 6.1 
 

 

Table 2: Control variables obtained after optimization 

Control Variables  IQA 

 

V1 1.1 

V2 1.032 

V3 1.031 

V6 1.029 

V8 1.025 

V9 1.009 

V12 1.019 

Qc18 0.0665 

Qc25 0.200 

Qc53 0.0471 

T4-18 1.009 

T21-20 1.048 

T24-25 0.868 

T24-26 0.872 

T7-29 1.059 

T34-32 0.879 

T11-41 1.019 

T15-45 1.039 

T14-46 0.910 

T10-51 1.020 

T13-49 1.060 

T11-43 0.910 

T40-56 0.900 

T39-57 0.950 

T9-55 0.950 
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Table 3: Comparison results 

S.No. Optimization Algorithm Finest Solution Poorest Solution Normal Solution 

1 NLP [31] 0.25902 0.30854 0.27858 

2 CGA [31] 0.25244 0.27507 0.26293 

3 AGA [31] 0.24564 0.26671 0.25127 

4 PSO-w [31] 0.24270 0.26152 0.24725 

5 PSO-cf [31] 0.24280 0.26032 0.24698 

6 CLPSO [31] 0.24515 0.24780 0.24673 

7 SPSO-07 [31] 0.24430 0.25457 0.24752 

8 L-DE [31] 0.27812 0.41909 0.33177 

9 L-SACP-DE [31] 0.27915 0.36978 0.31032 

10 L-SaDE [31] 0.24267 0.24391 0.24311 

11 SOA [31] 0.24265 0.24280 0.24270 

12 LM [32] 0.2484 0.2922 0.2641 

13 MBEP1 [32] 0.2474 0.2848 0.2643 

14 MBEP2 [32] 0.2482 0.283 0.2592 

15 BES100 [32] 0.2438 0.263 0.2541 

16 BES200 [32] 0.3417 0.2486 0.2443 

17 Proposed IQA 0.22086 0.23108 0.22106 

 

Then Improved Quantum Algorithm (IQA) has been tested in standard IEEE 118-bus test system 

[33] .The system has 54 generator buses, 64 load buses, 186 branches and 9 of them are with the 

tap setting transformers. The limits of voltage on generator buses are 0.95 -1.1 per-unit., and on 

load buses are 0.95 -1.05 per-unit. The limit of transformer rate is 0.9 -1.1, with the changes step 

of 0.025. The limitations of reactive power source are listed in Table 4, with the change in step 

of 0.01. 

 

Table 4: Limitation of reactive power sources 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 

The statistical comparison results of 50 trial runs have been list in Table 5 and the results clearly 

show the better performance of proposed Improved Quantum Algorithm (IQA)   in reducing the 

real power loss.  

 

Table 5: Comparison results 

Active power loss (MW) BBO [34] ILSBBO/ 

strategy1 [34] 

ILSBBO/ 

strategy1 [34] 

Proposed IQA 

Min 128.77 126.98 124.78 117.90 

Max 132.64 137.34 132.39 121.97 

Average  130.21 130.37 129.22 120.01 
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7. Conclusion 

 

In this paper Combination of the Q-bit evolutionary search - quantum particle swarm 

optimization (QPSO) algorithm and binary bit evolutionary search - genetic particle swarm 

optimization (GPSO) termed as Improved Quantum Algorithm (IQA) has been used to solve 

reactive power dispatch problem. The effectiveness of the proposed method has been  

demonstrated  by testing it in IEEE 57,118 bus system and simuation results reveals about the 

reduction of real power loss when compared with other standard algorithms and also volatge 

profiles are within the limits . 
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