ISSN- 2350-0530(O) ISSN- 2394-3629(P) Impact Factor: 2.035 (I2OR) DOI: 10.29121/granthaalayah.v4.i3.2016.2805

Science

INTERNATIONAL JOURNAL OF RESEARCH – GRANTHAALAYAH

A knowledge Repository

RESOLUTION OF RICCATI EQUATION BY THE METHOD DECOMPOSITIONAL OF ADOMIAN

Choucha Abdelbaki ^{*1}, Guerbati Kaddour ²

^{*1} Laboratory of Mathematics and Applied Sciences/ University of Ghardaia, ALGERIE
² Laboratory of Mathematics and Applied Sciences/ University of Ghardaia, ALGERIE

ABSTRACT

In this work, we will use the method of decompositional for Adomian solve the Riccati equation in the form:

 $u' = a(t) + b(t)u + c(t)u^2$ (1)

Keywords:

Adomian decomposition method, Adomian's polynomials, Riccati equation, Development limited.

Cite This Article: Choucha Abdelbaki, and Guerbati Kaddour, "RESOLUTION OF RICCATI EQUATION BY THE METHOD DECOMPOSITIONAL OF ADOMIAN" International Journal of Research – Granthaalayah, Vol. 4, No. 3 (2016): 209-218.

1. INTRODUCTION

The Riccati equation it is named in honor of Jacopo Francesco Riccati (1676-1754) and his son Vincenzo Riccati (1707-1775).

In general equation (1) is not solvable by quadratures, if he knows a particular solution up, the Riccati equation (1) reduces to a Bernoulli equation.

And in the 80 G. Adomian proposed a new method to solve differential equations of different types.

This method is to look for the solution in the form of a series, and decompose the non-linear operator in a series of function (polynomials Adomian) [4, 5]

K .Abbaoui and Y.Cherrault, place assumptions on the convergence of series of Adomian to the exact solution [1, 2, 3, 6].

This work mainly concerns the resolution of the Riccati equation by the Adomian method, with application examples.

2. ADOMIAN METHOD

We consider the following problem:

$$Fu = Lu + Ru + Nu = f(t)$$
⁽²⁾

as N is a nonlinear operator, and L the invertible linear portion of F. Equation (2) it gives:

$$u = g(t) - L^{-1}Ru - L^{-1}Nu$$
 (3)

Or

$$Nu = \sum_{n \ge 0} A_n t^n \tag{4}$$

with Ai are called Adomian polynomials.

and the terms of the standard solution defined by:

$$u_0 = g(t) u_{n+1} = -L^{-1}Ru_n - L^{-1}A_n$$
 (5)

with:

$$u = \sum_{n \ge 0} u_n t^n$$

3. RICCATI DIFERENTIAL EQUATION

is an ordinary differential equation of first order of the form [7]:

$$u' = a(t) + b(t)u + c(t)u^2$$
(6)

or a , b and c are continuous functions defined on an open interval I of R. In general there is no solution by quadrature, but if he knows a particular solution, a Riccati equation is reduced by substitution in a Bernoulli equation.

3.1. RESOLUTION KNOWING A PARTICULAR SOLUTION

If it is possible to find a particular solution u_p, So the general solution is of the form:

$$u = u_p + y \tag{7}$$

By replacing u by $u_p + y$ in equation (6) We obtain:

$$(u_p + y)' = a(t) + b(t)(u_p + y) + c(t)(u_p + y)^2$$
(8)

and as (u_p is a particular solution):

$$u_p' = a(t) + b(t)u_p + c(t)u_p^2$$

In was :

$$y' - (b(t) + 2c(t)u_p)y = c(t)y^2$$
(9)

is a Bernoulli equation, transformation is used: z = 1/ySo:

$$z' + (b(t) + 2c(t)u_p)z = -c(t)$$
(10)

It is a non-homogeneous linear equation.

We solve the homogeneous equation, then use the method of variation of constants, we find the general solution of the Bernoulli equation.

$$y = \frac{1}{z} = e^{\int (b(s) + 2c(t)u_p)ds} (k - \int c(t) e^{\int (b(s) + 2c(t)u_p)ds} dt)^{-1}$$
(11)

the more general solution of the Riccati equation given by:

$$u = u_p + \frac{1}{z}$$

$$u = u_p + e^{\int (b(s) + 2c(t)u_p)ds} (k - \int c(t) e^{\int (b(s) + 2c(t)u_p)ds} dt)^{-1}$$
(12)

3.2. RESOLUTION BY THE METHOD ADOMIAN

Consider the following problem:

$$u' = a(t) + b(t)u + c(t)u^{2}$$

$$u(0) = u_{0}$$
(13)

the Adomian method is used to solve the Riccati equation in the problem (13). We have:

$$u' = a(t) + b(t)u + c(t)u^2$$

and we ask:

$$L = D^{1} = \frac{d}{dt} \Longrightarrow L^{-1} = \int_{0}^{t} ds$$

$$Ru = b(t)u$$

$$Nu = u^{2}$$
(14)

such as:

$$Nu = u^2 = \sum_{n \ge 0} A_n t^n$$

With A_i : polynomials Adomian of the function $u^2[4,5]$.

$$L^{-1}u' = L^{-1}a(t) + L^{-1}b(t)u + L^{-1}c(t)u^{2}$$

$$u(t) - u(0) = L^{-1}a(t) + L^{-1}b(t)u + L^{-1}c(t)u^{2}$$

 $u(t) - u(0) = L^{-1}a(t) + L^{-1}b(t)u + L^{-1}c(t)u^{2}$ Using the D,L in the neighborhood of 0 of functions a, b and c:

$$a(t) = \sum_{n \ge 0} a_n t^n$$
$$b(t) = \sum_{n \ge 0}^{n \ge 0} b_n t^n$$
$$c(t) = \sum_{n \ge 0}^{n \ge 0} c_n t^n$$

and we obtain:

$$\sum_{n\geq 0} u_n t^n = u(0) + L^{-1} \sum_{n\geq 0} a_n t^n + L^{-1} \sum_{n\geq 0} b_n t^n \cdot \sum_{n\geq 0} u_n t^n + L^{-1} \sum_{n\geq 0} c_n t^n \cdot \sum_{n\geq 0} A_n t^n$$

$$= u(0) + \sum_{n\geq 0} \frac{a_n}{n+1} t^{n+1} + \sum_{n\geq 0} \frac{1}{n+1} t^{n+1} \left(\sum_{k=0}^n b_k u_{n-k} \right) + \sum_{n\geq 0} \frac{1}{n+1} t^{n+1} \left(\sum_{k=0}^n c_k A_{n-k} \right)$$
$$= u(0) + \sum_{n\geq 1} \frac{1}{n} (a_{n-1} + \sum_{k=0}^{n-1} b_k u_{n-1-k} + \sum_{k=0}^{n-1} c_k A_{n-1-k}) t^n$$
and the solution given by:

and the solution given by:

$$u_0 = u(0)$$

$$u_n = (\frac{1}{n})(a_{n-1} + \sum_{k=0}^{n-1} b_k \, u_{n-1-k} + \sum_{k=0}^{n-1} c_k \, A_{n-1-k})$$
(15)

4. APPLICATION EXAMPLES

4.1. EXAMPLE1

We consider the following problem (Riccati equation):

$$u' = -t + (2t - 1)u + (1 - t)u^{2}$$

$$u(0) = 2$$
(16)

with the particular solution $u_p = 1$

4.1.1. DIRECT RESOLUTION

We have the following equation according to (7), (9) and (10) with the transformation z = 1/u: z' + z = t - 1 (17)

it is a first-order non-homogeneous equation, and the solution given by: $z(t) = t - 2 + ke^{-t}$ (18)

$$u(t) = 1 + \frac{1}{t - 2 + 3e^{-t}}$$
(19)

the D, L of the solution function is: We have:

$$e^{t} = \sum_{n \ge 0} \frac{(-t)^{n}}{n!} = 1 - t + \left(\frac{1}{2}\right) \cdot t^{2} - \left(\frac{1}{6}\right) \cdot t^{3} + \left(\frac{1}{24}\right) t^{4} - \cdots$$

and

$$t - 2 + 3e^{-t} = 1 - 2t + \left(\frac{3}{2}\right) \cdot t^2 - \left(\frac{1}{2}\right) \cdot t^3 + \left(\frac{1}{8}\right) \cdot t^4 + o(t^4)$$

the polynomial $(f_1(t) = 1)$ by the polynomial $(f_2(t) = t - 2 + 3e^{-t})$,

Dividing the polynomial $(f_1(t) = 1)$ by the we obtain:

$$\frac{1}{t-2+3e^{-t}} = 1 + 2t + \left(\frac{5}{2}\right) \cdot t^2 + \left(\frac{5}{2}\right) \cdot t^3 + \left(\frac{17}{8}\right) \cdot t^4 + o(t^4)$$

So the order of D,L. 4 in the neighborhood of 0 of the solution function u(t) is:

$$u(t) = 1 + 2t + \left(\frac{5}{2}\right) \cdot t^2 + \left(\frac{5}{2}\right) \cdot t^3 + \left(\frac{17}{8}\right) \cdot t^4 + o(t^4)$$
(20)

4.1.2. RESOLUTION BY THE METHOD ADOMIAN

Consider the Riccati equation:

 $u' = -t + (2t - 1)u + (1 - t)u^2$ Applying the method of Adomian with F = L + R + N as:
(21)

$$L = D^{1} = \frac{d}{dt}$$
$$Ru = (2t - 1)u$$
$$Nu = (1 - t)u^{2}$$

We have

$$L = D^1 = \frac{d}{dt} \Longrightarrow L^{-1} = \int_0^t . \, ds$$

Is applied L^{-1} in equation (21) we obtain:

$$L^{-1}u' = L^{-1}(-t) + L^{-1}Ru + L^{-1}Nu$$

$$u(t) - u(0) = L^{-1}(-t) + L^{-1}((2t-1)u(t)) + L^{-1}((1-t)u^{2})$$

$$\sum_{n\geq 0} u_{n}t^{n} = u(0) - \frac{1}{2}t + \sum_{n\geq 0} \frac{2u_{n}}{n+2}t^{n+2} - \sum_{n\geq 0} \frac{u_{n}}{n+1}t^{n+1} + \sum_{n\geq 0} \frac{A_{n}}{n+1}t^{n+1} - \sum_{n\geq 0} \frac{A_{n}}{n+2}t^{n+2}$$

$$\sum_{n\geq 0} u_{n}t^{n} = u(0) - \frac{1}{2}t + \sum_{n\geq 2} \frac{2u_{n-2}}{n}t^{n} - \sum_{n\geq 1} \frac{u_{n-1}}{n}t^{n} + \sum_{n\geq 1} \frac{A_{n-1}}{n}t^{n} - \sum_{n\geq 2} \frac{A_{n-2}}{n}t^{n}$$

$$\sum_{n\geq 0} u_{n}t^{n} = u(0) - \frac{1}{2}t + \sum_{n\geq 1} \frac{1}{n}(A_{n-1} - u_{n-1})t^{n} + \sum_{n\geq 2} \frac{1}{n}(2u_{n-1} - A_{n-1})t^{n}$$

So the coeffcients of the series solution Adomian is given by:

$$\begin{cases} u_0 = u(0) = 2\\ u_1 = A_0 - u_0\\ u_2 = \frac{1}{2}(A_1 - u_1 + 2u_0 - A_0) - \frac{1}{2}\\ & \ddots\\ u_n = \frac{1}{2}(A_{n-1} - u_{n-1} + 2u_{n-2} - u_{-2}), \forall n \ge 3. \end{cases}$$

Or A_i are polynomials of Adomian of u^2 function [4,5]

$$\begin{cases} A_0 = u_0^2 \\ A_1 = 2u_0u_1 \\ A_2 = u_1^2 + 2u_0u_2 \\ A_3 = 2u_1u_2 + 2u_0u_3 \\ A_4 = u_2^2 + 2u_1u_3 + 2u_0u_4 \\ A_5 = 2u_2u_3 + 2u_1u_4 + 2u_0u_5 \\ & \ddots \\ & \ddots \end{cases}$$

$$\begin{cases} u_0 = 2\\ u_1 = 2\\ u_2 = \frac{5}{2}\\ u_3 = \frac{5}{2}\\ u_4 = \frac{17}{8}\\ \vdots \end{cases}$$

So:

Finally the solution series is:

$$u(t) = 2 + 2t + \frac{5}{2}t^2 + \frac{5}{2}t^3 + \frac{17}{8}t^4 + \cdots.$$
 (23)

And we note that the results (19) and (22) are equal.

4.2.EXAMPLE2

We consider the following problem (Riccati equation):

$$\begin{cases} (1+t^2)u' = u^2 - 1\\ u(0) = 2 \end{cases}$$
(24)

with the particular solution: $u_p = 1$.

4.2.1. DIRECT RESOLUTION

We have the following equation according to (7), (9) and (10) with the transformation $z = \frac{1}{u}$:

$$z' = \frac{2}{1+t^2} z = \frac{-1}{1+t^2}$$
(25)

it is a first-order non-homogeneous equation, and the solution given by:

$$z(t) = -\frac{1}{2} + ke^{2 \arctan t}$$
(26)

and the solution of the problem (16) with the initial condition given by:

$$u(t) = 1 + \frac{1}{\frac{-1}{2} + 3e^{2} \arctan t} = 1 + \frac{2}{3e^{2} \arctan t_{-1}}$$
(27)

the D, L of the solution function is we have:

$$\arctan t = t - \frac{1}{3}t^3 + o(t^4)$$

So:

$$e^{2\arctan t} = e^{2t - \frac{2}{3}t^3 + o(t^4)}$$

if we pose: $v = 2t - \frac{2}{3}t^3 + o(t^4)$

Then:

$$e^{v} = 1 + v + \frac{1}{2}v^{2} + o(v^{2})$$

from where:

$$e^{\nu} = 1 + (2t - \frac{2}{3}t^3) + \frac{1}{2}(2t - \frac{2}{3}t^3)^2 + o(t^4)$$
$$= 1 - 2t + 2t^2 - \frac{2}{3}t^3 + \frac{4}{3}t^4 + o(t^4)$$

So we have:

$$3e^{\nu} - 1 = 2 - 6t + 6t^2 - 2t^3 - 4t^4 + o(t^4)$$
⁽²⁸⁾

Dividing the polynomial $(f_1(t) = 2)$ by the polynomial $(f_2(t) = 3e^{2 \arctan t} - 1)$, we obtain:

$$\frac{2}{3e^{2}\arctan t - 1} = 1 + 3t + 6t^{2} + 10t^{3} + 17t^{4} + o(t^{4})$$

So the order of D, L 4 to neighborhood of the origin of the solution function u(t) is:

$$u(t) = 2 + 3t + 6t^{2} + 10t^{3} + 17t^{4} + o(t^{4})$$
⁽²⁹⁾

4.2.2. RESOLUTION BY THE METHOD ADOMIAN

Consider the Riccati equation:

$$u' = \frac{-1}{1+t^2} + \frac{1}{1+t^2} u^2 \tag{30}$$

Applying the method of Adomian with F = L + R + N as:

$$\begin{cases} L = D^1 = \frac{d}{dt} \\ Nu = \frac{1}{1+t^2}u^2 \end{cases}$$

We have :

$$L = \frac{d}{dt} \Longrightarrow L^{-1} = \int_{0}^{t} ds$$

Applying the operator L^{-1} in equation (30) we obtain:

$$L^{-1}u' = L^{-1}\left(\frac{-t}{1+t^2}\right) + L^{-1}Nu$$

$$\Leftrightarrow u(t) - u(0) = L^{-1}\left(\frac{-t}{1+t^2}\right) + L^{-1}\left(\frac{1}{1+t^2}u^2(t)\right)$$
(31)

$$\begin{split} \sum_{n\geq 0} u_n t^n &= u(0) + L^{-1} \sum_{n\geq 0} (-1)^{n+1} t^{2n} + L^{-1} \sum_{n\geq 0} (-1)^n t^{2n} \cdot \sum_{n\geq 0} A_n t^n \\ \sum_{n\geq 0} u_n t^n &= u(0) + L^{-1} \sum_{n\geq 0} (-1)^{n+1} t^{2n} + L^{-1} \sum_{n\geq 0} (-1)^n t^{2n} \cdot (\sum_{n\geq 0} A_{2n} t^{2n} + \sum_{n\geq 0} A_{2n+1} t^{2n+1}) \\ \sum_{n\geq 0} u_n t^n &= u(0) + \sum_{n\geq 0} \frac{(-1)^{n+1}}{2n+1} t^{2n+1} + \sum_{n\geq 0} \frac{(-1)^n}{2n+1} t^{2n+1} \cdot (\sum_{k=0}^n (-1)^k A_{2(n-k)}) \\ &+ \sum_{n\geq 0} \frac{(-1)^n}{2n+2} t^{2n+2} \cdot (\sum_{k=0}^n (-1)^k A_{2(n-k)-1}) \end{split}$$

So the coefficients of the series solution Adomian is given by:

$$u_0 = u(0) = 2$$

$$\begin{split} u_{2n+1} &= \frac{1}{2n+1} \left((-1)^{n+1} + \sum_{k=0}^{n} (-1)^{k} A_{2(n-k)} \right), \forall n \geq 0 \\ \\ u_{2n+1} &= \frac{1}{2n+2} \left(\sum_{k=0}^{n} (-1)^{k} A_{2(n-k)-1} \right), \forall n \geq 0 \end{split}$$

Or Ai are polynomials of Adomian of the function u^2 [4,5]. Then:

$$\begin{cases} u_0 = 2\\ u_1 = (-1)^1 + (-1)^0 A_0 = -1 + 4 = 3\\ u_2 = \frac{1}{2} A_1 = \frac{1}{2} \cdot 12 = 6\\ u_3 = \frac{1}{3} ((-1)^2 + A_2 + (-1)^1 A_0) = \frac{1}{3} (1 + 33 - 4) = 10\\ u_4 = \frac{1}{4} (A_3 + (-1)A_1) = \frac{1}{4} (80 - 12) = 17 \end{cases}$$

Finally the solution series is:

$$u(t) = 2 + 3t + 6t^{2} + 10t^{3} + 17t^{4} + \dots$$
(32)

And we note that the results (29) and (32) are equal.

5. CONCLUSION

Despite generally, there is no Resolution of Riccati equation, but the method of decomposition Adomian always given an approximate solution in the form of a convergent series.

6. REFERENCES

- [1] K. Abbaoui Y.Cherruault G.Adomian et R.Rach, Further Remarks on Conuergence of Decomposition Method, Computing. International Journal of Bio-Medical, 38, 1995, 89-93.
- [2] K. Abbaoui Y.Cherruauit, The Decompositon Method Applied to the Cauchy Problem, Kybernetes. Vol. 28, No., 1999, pp. 68-74.
- [3] K.Abbaoui Y.Cherruault, New Ideas for proving convergence of decomposition Methods, computers mmath.applic.vol.29, No7, 1995, pp.103-108.
- [4] M.M. Hosseini, H.Nasabzadeh, On the convergence of Adomian decomposition method, Applied Mathematics and Computation 182, 2006, pp. 536-543.
- [5] Gallica, Supplément de l'encyclopédie de Diderot, Tome4, p648, 1983
- [6] G. Adomian Nonlinear Stochastic Operator Equation, Copyright, by Academic Press .Int, 1986.
- [7] G.Adomian, solving frontier of physics: the Decompsition method, Kluwer Academic Publishers, 1994