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ABSTRACT

This paper studies the Rainbow Ramsety Number for a non empty graph and the main results
are 1. The Rainbow Ramsety Number of a graph F with out isolated vertices is defined if and
only if F is a forest. 2. The Rainbow Ramsety Number of two graphs F1 and F2 with out
isolated vertices is defined if and only if F1 is a star or F2 is a forest..
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1. INTRODUCTION

Basically in an edge-colored graph G that if there is a sub graph F of G all of whose edges are
colored the same, then F is referred to as a monochromatic F. On the other hand, if all edges of F
are colored differently, then F is referred to as a rainbow F.

2. DEFINITION

For a nonempty graph F, the Rainbow Ramsety Number RR (F) of F as the smallest positive
integer n such that if each edge of the complete graph K, is colored from any set of colors, then
either a monochromatic F or a rainbow F is produced.
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Let {vi, Vo, .....Vp} be the vertex set of a complete graph K,. An edge coloring of K, using
positive integers for colors is called a minimum coloring if two edges v;v; and viv, are colored
the same if and only if

min {i, j} = {k, I}

while an edge coloring of K, is called a maximum coloring if two edges uju; and uku; are
colored the same if and only if

max {l,j} = max {k,1}

2.1. Definion: A graph with out cycles is a forest

2.2. Theorem: Let F be a graph without isolated vertices. The Rainbow Ramsey number
RR (F) is defined if and only if F is a forest.

Let F be a graph of order p > 2. First we show that RR(F) is defined only if F is a forest. Suppose
that F is not a forest. Thus F contains a cycle C, of length k > 3 say. Let n be an integer with n >
p and let {vi,vo,...... ,Vn} be the vertex set of a complete graph K. Define an edge coloring c of
Kn by c(vivj) =i if i <]. Hence c is a minimum edge coloring of K. If k is the minimum positive
integer such that vy belongs to C, then two edges of C are colored k, implying that there is no
rainbow F in K, Since any other edge in C is not colored k, it follows that F is not
monochromatic either. Thus RR (F) is not defined.

For the converse, suppose that F is a forest of order p > 2. By known fact there exists and integer
n > p such that for any edge coloring of K, with positive integers, there is a complete subgraph G
of order p in K, that is either monochromatic or rainbow or has minimum or maximum coloring.
If G is monochromatic or rainbow, then K, contains a monochromatic or rainbow F. Hence we
may assume that the edge coloring of G is minimum or maximum, say the former. We show in
this case that G contains a rainbow F. If F is not a tree, then we can add edges to F to produce a
tree T of order p. Let

V(G) = {vir,Vio,...... Vip),

Where i; <iy <.... <ip, . Select some vertex v = vj, of T and label the vertices of T in the order

V = Vip, Vip-1,--.-,Vi2,Vi1

of non decreasing distance from v; that is,

d (vij, v) > d (Vij+1,V)

for every integer j with 1 <j < p — 1. Hence there exists exactly on edge of T having color i; for
each jwith 1 <j <p-1. Thus T and hence F is rainbow. The rainbow Ramsey number RR(F) is
therefore defined.

2.3. Example: For each integer k > 2, RR (Ky ) = (k - 1)* + 2.
Proof
We first show that RR(Ky ) > (k — 1)? + 2. Let

n=(k—1)* +1.
We consider two cases.
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Case 1. k is odd. Then n is odd Factor K, into "%/, = ®12/, Hamiltonian cycles each. Partition
these cycles into k — 1 sets S (1 < i < k — 1) of “/, Hamiltonian cycles each. Color each edge of
each cycle in S; with color i. then there is neither a monochromatic Ky x nor a rainbow Ky .

Case 2. K is even. Then n is even. Factor K, into n-1 = (k-1)* 1-factors. Partition these 1-factors
into k — 1 sets S; (1 <i<k-1)of k- 1 1-factors. Color each edge of each 1-factor in S; color
with i. Then there is neither a monochromatic Kj x nor a rainbow Kj k.

Therefore, RR(K1x) > (k-1)> + 2. It remains to show that RR(K1,) < (k — 1)* +2. Let N = (k —
1)? + 2 and let there be given an edge coloring of Ky from any set of colors. Suppose that no
monochromatic Kjx results. Let v be a vertex of Ky. Since deg v = N — 1 and there is no
monochromatic Ky, at most k -1 edges incident with v can be colored the same. Thus there are
at least [V/,.1] = k edges incident with v that are colored differently, producing a rainbow K.

More generally, for two nonempty graphs F; and F;, the rainbow Ramsey number RR(Fy,F>) is
defined as the smallest positive integer n such that if each edge of K, is colored from any set of
colors, then there is either a monochromatic F; or a rainbow F, defined for every pair F;, F, of
non empty graphs.

3. DEFINITION

If the partite sets u&w of a complete bi partite graph contain s&t vertices. Then this graph is
denoted by K s .the graph Kj ; is called star.

3.1. Theorem: Let F; and F;, be two graphs without isolated vertices. The rainbow Ramsey
number RR (F,F,) is defined if and only if F; is a star or F; is a forest.

Proof. First, we show that RR (F1,F,) is exists only if Fy is a star or F; is a forest. Suppose that
F, is not a star and F; is not a forest. Let G be a complete graph of some order n such that V(G) =
{v1,v2,...,vn} and such that both F; and F; are sub graphs of G. Define an (n — 1) —edge coloring
on G such that the edge viv; is assigned the color i if i < j. Hence this coloring is a minimum edge
coloring of G.

Let G; be any copy of F; in G and let a be the minimum integer such that v, is a vertex of G;.
Then every edge incident with v, is colored a. since G; is not a star, some edge of G; is not
incident with v, and is therefore not colored a. Hence G; is not monochromatic. Next, let G, be
any copy of F, in G. Since G, is not a forest, G, contains a cycle C. Let b be the minimum
integer such that vy is a vertex of G, belonging to C. Since the two edges of C incident with v,
are colored b (and G, contains at least two edges colored b), G, is not a rainbow subgraph of G.
Hence RR(F1,F,) is not defined.

We now verify the converse. Let F; and F, be two graphs without isolated vertices such that
either Fy is a star or F; is a forest. We show that there exists a positive integer n such that for
every edge coloring of Ky, either a monochromatic F; or a rainbow F; results. Suppose that the
order of F; is s + 1 and the order of F; is
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t + 1for positive integers s and t. Hence F; = K;s. We now consider two cases, depending on
whether F; is a star or F; is a forest. It is convenient to begin with the case where F is a forest.

Case 1. F, is a forest. If F, is not a tree, then we may add edges to F, so that a tree G, results. If
F, is a tree, then let G, = F,. Furthermore, if F; is not complete, then we may add edges to F; so
that a complete graph G; = Kg4 results. If F; is complete, then let G; = F;. Hence G; = Kg4; and
G, is a tree of order t + 1. We now show that RR (G;,Gy) is defined by establishing the existence
of a positive integer n such that any edge coloring of K, from any set of colors results in either a
monochromatic G; or a rainbow G,. This, in turn, implies the existence of monochromatic F; or
a rainbow F,. We now consider two sub cases, depending on whether G; is a star.

Sub case 1.1. G, is a star of order t + 1, that is, G, = Ky . Therefore, in this subcase, G; = K1
and G, = Ky +. (This subcase will aid us later in the project) In this subcase, let

(s—1)(t—1)+1

n = Z (t— 1)

i=()

and let an edge coloring of K, be given from any set of colors. If K, contains a vertex incident
with t or more edges assigned distinct colors, then K, contains a rainbow G,. Hence we may
assume that every vertex of K, is incident with at most t -1 edges assigned distinct colors. Let v;
be a vertex of K. Since the degree of v; in K is n— 1, there are at least.

) (s=1)(t—1
n_1 (-DG-1)
_— — I RY
— > (-1
=0
edges incident with u; that are assigned the same color, say color c;.

Let S; be the set of vertices joined to v; by edges colored c; and let v, € S;.
There are at least

S . Ls=1)¢=1%—1
|‘51i = ’ i

T Y. (t=1)

edges of the same color, say color c,, joining v, and vertices of S, where possibly ¢, = c;. Let S,
be the set of vertices in S; joined to v, by edges colored c,. Continuing in this manner, we
construct sets S;,S,,.....S¢-1y (1) and vertices,v,Vy,....v(sa)yt-1)+1 Such that 2< i < (s-1)(t-1)+1, the
vertex vj belongs to S;.; and is joined to at least

(s—1]{E—11—1
i;‘:'||' [ —

-1 > Z (t = 1)

.'_'f_l

vertices of S;_; by edges colored c;. Finally, in the set S¢s.q) - 1), the vertex
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V(s-1) t-1)+1 1S Joined to a vertex Vs 1ye-1y+2 IN Sg-1y¢-1) Dy an edge colored C(s.1)t-1)+1. Thus we have a
sequence

U1: V25 -y V(s 1)(t—1) +2

of vertices such that every edge v; vj for 1 <i<j<(s—1) (t—1) + 2 is colored c; and where the
colors ¢y, Ca,....C(s-1) (--1)+1 are not necessarily distinct. In the complete subgraph H of order (s — 1)
(t—1) + 2 induced by the vertices listed in (11.3), the vertex v (s.1) (-1)+2 IS incident with at most t
— 1 edges having distinct colors. Hence there is a set of at least.

FH —1)(t—1)+ 1]
i

t—1

Vertices in H joined to v ¢.1) (-1)+2 by edges of the same color. Let vi1,Vip,...,Vis be s of these
vertices, where i; < i, <.....<is. Then cj; = Ci» = .... = cis, and the complete subgraph of order s +
1 induced by

{Vi1, Vig,....,Vis, V(s-1) (t-1)+2}

is monochromatic.

Subcase 1.2 G, is a tree of order t+1 that is not necessarily a star. Recall that G; = Kg.1. We
proceed by induction on the positive integer t. If t =1 or t = 2, then G, is a star and the base case
of the induction follows by subcase 1.1. Suppose that RR(G1,G;) exists for G; = K 5.1 and for
every tree G, of order t + 1where t > 2. Let T be a tree of order t + 2. We show that RR(Gl,T)
exists. Let v be an end-vertex of T and let v be the vertex of T that is adjacent to v. Let T T-
v. Since T' is a tree of order t + 1, it follows by the induction hypothesis that RR(G1, T') exists,
say RR(Gy, T = p. Hence for any edge colorlng of K, from any set of colors, there is either a
monochromatic G; = K ¢ or a rainbow T'. From sub case 1.1, we know that RR(G1, Ky t+1)
exists. Suppose that RR (G1, Ki+1) = g and let n = pq in this subcase.

Let there be given an edge coloring of K, using any number of colors. Consider a partition of the
vertex set of K, into g mutually disjoint sets of p vertices each. By the induction hypothesis, the
complete subgraph induce by each set of p vertices contains either a monochromatic Ks.; or
rainbow T' . If a monochromatic K1 occurs in any of these complete subgraph Kp, then subcase
1.2 is verified. Hence we may assume that there are g pair wise mutually rainbow copies.

T, T, T

of T', where u; is the vertex in T;' ( 1<i < q ) corresponding to the vertex u in T'.

Let H be the complete subgraph of order g induced by {us,us,....,ug}. Since RR (K1, Kit+1) = 0,
it follows that either H contains a monochromatic K ., or a rainbow Kj 4. If H contains a
monochromatic Ks.1, then once again, the proof of subcase 1.2 is complete. So we may assume
that H contains a rainbow Kj ;. Let Uj be the center of a rainbow star Ky 41 in H. At least one of
the t + 1 colors of the edges of Kl w1 IS different from the colors of the t edges of TJ Adding the
edge having this color at u;in TJ produces a rainbow copy of T.
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Case 2. F; is a star. Denote F; by Gy as well and so G; = Ky . If F, is complete, then let G, = F».
If F ,is not complete, then we may add edges to F, so that a complete graph G, = Ky, results. We
verify that RR (G;, Gy) exists by establishing the existence of a positive integer n such that for
any edge coloring of K, from any set of colors, either a monochromatic G; or a rainbow G,
results. This then shows that K, will have a monochromatic F; or a rainbow F,. For positive
integers p and r with r<p, let

g0 = B i Y By
(p__?,,),-—p(p L o (Bl B,

Now let n be an integer such that s — 1 divides n-1 and

- & 1‘;_ .—-..;l.lf.j}

=34 ( IEJ_“_}_
&

Then n—1 = ('s-1)q for some positive integer g. Let there be given an edge coloring of K, from
any set of colors and suppose that no monochromatic G; = Kj s occurs. We show that there is a

H
. : ) . . <z+1 )
rainbow G, = K. Observe that the total number of different copies of K in K, is

implying the existence of at least one rainbow Ki.;.

First consider the number of copies of K, containing adjacent edges uv and uw that are colored
the same. There are n possible choice for the vertex u. suppose that there are a; edges incident

with u that are colored i for 1 <i < k. Then
A.

Zu.,- =75 — 1,

1=1

Where, by assumption, 1 < a; < s — 1 for each i. For each color i(1 < i < k), the number of

(i

different choices for v and w where uv and uw are colored i is (‘ . Hence the number of
different choices for u and w where uv and uw are colored the same is

> (%)

since the maximum value of this sum occurs when each a; is as large as possible, the largest
value of this sum is when each a; is s — 1 and when k = g, that is, there are at most
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n—3

choices for v and w such that uv and uw are colored the same. Since there are (‘f ' 2>choices

for the remaining t — 2 vertices of K4, it follows that there are at most

- fs=1\(n—-3
" 2 )(g..-‘)

copies of K4 containing two adjacent edges that are colored the same.

We now consider copies of Ky in which there two nonadjacent edges, say e = xy and f = wz,
2

colored the same. There are /choices for e and n — 2 choices for one vertex, say w, that is

incident with f. The vertex w is incident with at most s — 1 edges having the same color as e and

not adjacent to e. Since there are four ways of counting such a pair of edges in this way (namely

e and either w or z, or f and either x or y), there are at most

() =2)(s—1)
1 - 3

nin—1)(n—2)(s—1)

’

n—4

Ways to choose nonadjacent edges of the same color and (’ - :‘> ways to choose the remaining t -
3 vertices of K. Hence there are at most.

n(n—1)(n—-2)(s—1)n—4
5 t—3

Copies of Ky containing two nonadjacent edges that are colored the same. Therefore, the
number of non-rainbow copies of K. is at most

{g ]} frp—3 nln—1)n—2)s—1){n ——'.j
.I..-.fj-k , Li": B 2) + 3 I\I. -3,
i

‘=1 (s—=1)(s=2) fn—2% fn—3"
51 2 \n—2) \f—-1,

nlm — 1 —2%s—1) /n—3% /n—4)
_I_ﬂr. l;lkn-_,z;r,.-g l,l(u 3 L.: J
8 =3 Wt =3

n O\ [s— 20+ D (s=1+ 1]

= ry .
2n — 2) 8(n—3)

5

(s = 1)(t+ 1) (s lillin'-l_”':ﬂ

t+ 1

i o AT

b4+ ]j  2(n—13) ' S(n—3)
)
J

(=1t + )™ +2) ]

Bn—3)

+ 41

[(s— DE+2)M] ( n ‘)
L 8m-3) T )
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Where the final inequality follows from known theorem, the rainbow Ramsey number is defined
if and only if F is a forest hence there is a rainbow K.q in Kp,.
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