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ABSTRACT 

This paper studies the Rainbow Ramsety Number for a non empty graph and the main results 

are 1. The Rainbow Ramsety Number of a graph F with out isolated vertices is defined if and 

only if F is a forest. 2. The Rainbow Ramsety Number of two graphs F1 and F2 with out 

isolated vertices is defined if and only if  F1 is a star or F2 is a forest.. 
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1. INTRODUCTION

Basically in an edge-colored graph G that if there is a sub graph F of G all of whose edges are 

colored the same, then F is referred to as a monochromatic F. On the other hand, if all edges of F 

are colored differently, then F is referred to as a rainbow F. 

2. DEFINITION

For a nonempty graph F, the Rainbow Ramsety Number RR (F) of F as the smallest positive 

integer n such that if each edge of the complete graph Kn is colored from any set of colors, then 

either a monochromatic F or a rainbow F is produced.  
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Let {v1, v2, …..Vn} be the vertex set of a complete graph Kn. An edge coloring of Kn using 

positive integers for colors is called a minimum coloring if two edges vivj and vkvl are colored 

the same if and only if  

min {i, j} = {k, l} 

while an edge coloring of Kn is called a maximum coloring if two edges uiuj and ukul are 

colored the same if and only if  

max {I,j} = max {k,l} 

 
2.1. Definion: A graph with out cycles is a forest  

 

2.2. Theorem: Let F be a graph without isolated vertices. The Rainbow Ramsey number 

RR (F) is defined if and only if F is a forest. 

 

Let F be a graph of order p > 2. First we show that RR(F) is defined only if F is a forest. Suppose 

that F is not a forest. Thus F contains a cycle C, of length k > 3 say. Let n be an integer with n > 

p and let {v1,v2,……,vn} be the vertex set of a complete graph Kn. Define an edge coloring c of 

Kn by c(vivj) = i if i < j. Hence c is a minimum edge coloring of Kn. If k is the minimum positive 

integer such that vk belongs to C, then two edges of C are colored k, implying that there is no 

rainbow F in Kn. Since any other edge in C is not colored k, it follows that F is not 

monochromatic either. Thus RR (F) is not defined. 

 
For the converse, suppose that F is a forest of order p > 2. By known fact there exists and integer 

n > p such that for any edge coloring of Kn with positive integers, there is a complete subgraph G 

of order p in Kn that is either monochromatic or rainbow or has minimum or maximum coloring. 

If G is monochromatic or rainbow, then Kn contains a monochromatic or rainbow F. Hence we 

may assume that the edge coloring of G is minimum or maximum, say the former. We show in 

this case that G contains a rainbow F. If F is not a tree, then we can add edges to F to produce a 

tree T of order p. Let 

V(G) = {vi1,vi2,……,vip), 

Where i1 < i2 < …. < ip . Select some vertex v = vip of T and label the vertices of T in the order 

v = vip, vip-1,….,vi2,vi1 

of non decreasing distance from v; that is, 

d (vij, v) > d (vij+1,v) 

for every integer j with 1 < j < p – 1. Hence there exists exactly on edge of T having color ij for 

each j with 1 < j < p -1. Thus T and hence F is rainbow. The rainbow Ramsey number RR(F) is 

therefore defined. 

 

2.3. Example: For each integer k > 2, RR (K1,k) = (k – 1)
2
  + 2. 

 

Proof 
 

We first show that RR(K1,k) > (k – 1)
2
 + 2. Let 

n = (k – 1)
2 

  + 1. 

We consider two cases. 
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Case 1. k is odd. Then n is odd Factor Kn into 
n-1

/2 = 
(K-1)2

/2  Hamiltonian cycles each. Partition 

these cycles into k – 1 sets Si (1 < i < k – 1) of  
k-1

/2 Hamiltonian cycles each. Color each edge of 

each cycle in Si with color i. then there is neither a monochromatic K1,k nor a rainbow K1,k. 

 

Case 2. k is even. Then n is even. Factor Kn into n-1 = (k-1)
2
  1-factors. Partition these 1-factors 

into k – 1 sets Si (1 < i < k – 1) of k- 1 1-factors. Color each edge of each 1-factor in Si  color 

with i. Then there is neither a monochromatic K1,k nor a rainbow K1,k. 

 

Therefore, RR(K1,k) > (k-1)
2
   + 2. It remains to show that RR(K1,k) < (k – 1)

2
 +2. Let N = (k – 

1)
2
 + 2 and let there be given an edge coloring of KN from any set of colors. Suppose that no 

monochromatic K1,k results. Let v be a vertex of KN. Since deg v = N – 1 and there is no 

monochromatic K1,k, at most k -1 edges incident with v can be colored the same. Thus there are 

at least [
N
/k-1] =  k edges incident with v that are colored differently, producing a rainbow Kl,k. 

 

More generally, for two nonempty graphs F1 and F2, the rainbow Ramsey number RR(F1,F2) is 

defined as the smallest positive integer n such that if each edge of Kn is colored from any set of 

colors, then there is either a monochromatic F1 or  a rainbow F2   defined for every pair F1, F2  of 

non empty graphs.  
 

3.  DEFINITION 

 

If the partite sets u&w of a complete bi partite graph contain s&t vertices. Then this graph is 

denoted by K s,t.the graph K1,t is called star. 

 

3.1. Theorem: Let F1 and F2 be two graphs without isolated vertices. The rainbow Ramsey 

number RR (F1,F2) is defined if and only if F1 is a star or F2 is a forest. 

 

Proof. First, we show that RR (F1,F2) is exists only   if F1 is a star or F2 is a forest. Suppose that 

F1 is not a star and F2 is not a forest. Let G be a complete graph of some order n such that V(G) = 

{v1,v2,…,vn} and such that both F1 and F2 are sub graphs of G. Define  an (n – 1) –edge coloring 

on G such that the edge vivj is assigned the color i if i < j. Hence this coloring is a minimum edge 

coloring of G. 

 

Let G1 be any copy of F1 in G and let a be the minimum integer such that va is a vertex of G1. 

Then every edge incident with va is colored a. since G1 is not a star, some edge of G1 is not 

incident with va and is therefore not colored a. Hence G1 is not monochromatic. Next, let G2 be 

any copy of F2 in G. Since G2 is not a forest, G2 contains a cycle C. Let b be the minimum 

integer such that vb is a vertex of G2 belonging to C. Since the two edges of C incident with vb 

are colored b (and G2 contains at least two edges colored b), G2 is not a rainbow subgraph of G. 

Hence RR(F1,F2) is not defined. 

 

We now verify the converse. Let F1 and F2 be two graphs without isolated vertices such that 

either F1 is a star or F2 is a forest. We show that there exists a positive integer n such that for 

every edge coloring of Kn, either a monochromatic F1 or a rainbow F2 results. Suppose that the 

order of F1 is s + 1 and the order of F2 is 
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 t + 1for positive integers s and t. Hence F1 = K1,s. We now consider two cases, depending on 

whether F1 is a star or F2 is a forest. It is convenient to begin with the case where F2 is a forest. 

 

Case 1. F2 is a forest. If F2 is not a tree, then we may add edges to F2 so that a tree G2 results. If 

F2 is a tree, then let G2 = F2. Furthermore, if F1 is not complete, then we may add edges to F1 so 

that a complete graph G1 = Ks+1 results. If F1 is complete, then let G1 = F1. Hence G1 = Ks+1 and 

G2 is a tree of order t + 1. We now show that RR (G1,G2) is defined by establishing the existence 

of a positive integer n such that any edge coloring of Kn from any set of colors results in either a 

monochromatic G1 or a rainbow G2. This, in turn, implies the existence of monochromatic F1 or 

a rainbow F2. We now consider two sub cases, depending on whether G2 is a star. 

 

Sub case 1.1. G2 is a star of order t + 1, that is, G2 = K1,t. Therefore, in this subcase, G1 = Ks+1 

and G2 = K1,t. (This subcase will aid us later in the project) In this subcase, let 

 

 
 

and let an edge coloring of Kn be given from any set of colors. If Kn contains a vertex incident 

with t or more edges assigned distinct colors, then Kn contains a rainbow G2. Hence we may 

assume that every vertex of Kn is incident with at most t -1 edges assigned distinct colors. Let v1 

be a vertex of Kn. Since the degree of v1 in Kn is n – 1, there are at least. 

 
edges incident with u1 that are assigned the same color, say color c1.  
Let S1 be the set of vertices joined to v1 by edges colored c1 and let v2  S1. 

There are at least 

 
 

edges of the same color, say color c2, joining v2 and vertices of S1, where possibly c2 = c1. Let S2 

be the set of vertices in S1 joined to v2 by edges colored c2. Continuing in this manner, we 

construct sets S1,S2,…..S(s-1) (t-1) and vertices,v1,v2,….v(s-1)(t-1)+1 such that 2≤ i ≤ (s-1)(t-1)+1, the 

vertex vi belongs to Si-1 and is joined to at least 

 
 

vertices of Si - 1 by edges colored ci. Finally, in the set S(s-1) (t – 1), the vertex  
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v(s-1) (t-1)+1 is joined to a vertex v(s-1)(t-1)+2 in S(s-1)(t-1) by an edge  colored c(s-1)(t-1)+1. Thus we have a 

sequence 

 
 

of vertices such that every edge vi vj for 1 ≤ i < j ≤ (s – 1) (t – 1) + 2 is colored ci and where the 

colors c1, c2,….c(s-1) (t-1)+1 are not necessarily distinct. In the complete subgraph H of order (s – 1) 

(t – 1) + 2 induced by the vertices listed in (11.3), the vertex v (s-1) (t-1)+2 is incident with at most t 

– 1 edges having distinct colors. Hence there is a set of at least. 

 
 

Vertices in H joined to v (s-1) (t-1)+2 by edges of the same color. Let vi1,vi2,…,vis be s of these 

vertices, where i1 < i2 <…..< is . Then ci1 = ci2 = …. = cis, and the complete subgraph of order s + 

1 induced by 

{vi1, vi2,….,vis, v(s-1) (t-1)+2} 

is monochromatic. 

 

Subcase 1.2 G2 is a tree of order t+1 that is not necessarily a star. Recall that G1 = Ks+1. We 

proceed by induction on the positive integer t. If t =1 or t = 2, then G2 is a star and the base case 

of the induction follows by subcase 1.1. Suppose that RR(G1,G2) exists for G1 = K s+1  and for 

every tree G2 of order t + 1where t ≥ 2. Let T be a tree of order t + 2. We show that RR(G1,T) 

exists. Let v be an end-vertex of T and let v be the vertex of T that is adjacent to v. Let T
l
 = T – 

v. Since T
l
 is a tree of order t + 1, it follows by the induction hypothesis that RR(G1, T

l
) exists, 

say RR(G1, T
l
) = p. Hence for any edge coloring of Kp from any set of colors, there is either a 

monochromatic G1 = K s+1 or a rainbow T
l
. From sub case 1.1, we know that RR(G1, K1,t+1) 

exists. Suppose that RR (G1, K1,t+1) = q and let n = pq in this subcase.  

 

Let there be given an edge coloring of Kn using any number of colors. Consider a partition of the 

vertex set of Kn into q mutually disjoint sets of p vertices each. By the induction hypothesis, the 

complete subgraph induce by each set of p vertices contains either a monochromatic Ks+1 or 

rainbow T
l
 . If a monochromatic Ks+1 occurs in any of these complete subgraph Kp, then subcase 

1.2 is verified. Hence we may assume that there are q pair wise mutually rainbow copies. 

 

T1
l
, T2

l
,…..,Tq

l
 

 

of T
l
, where ui is the vertex in Ti

l
 ( 1≤ i ≤ q ) corresponding to the vertex u in T

l
.  

Let H be the complete subgraph of order q induced by {u1,u2,….,uq}. Since RR (Ks+1, K1,t+1) = q, 

it follows that either H contains a monochromatic K s+1 or a rainbow K1,t+1. If H contains a 

monochromatic Ks+1, then once again, the proof of subcase 1.2 is complete. So we may assume 

that H contains a rainbow K1,t+1. Let uj be the center of a rainbow star K1,t+1 in H. At least one of 

the t + 1 colors of the edges of K1,t+1 is different from the colors of the t edges of Tj
l
 Adding the 

edge having this color at uj in Tj
l
 produces a rainbow copy of T. 
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Case 2. F1 is a star. Denote F1 by G1 as well and so G1 = K1, s. If F2 is complete, then let G2 = F2. 

If F 2is not complete, then we may add edges to F2 so that a complete graph G2 = Kt+1 results. We 

verify that RR (G1, G2) exists by establishing the existence of a positive integer n such that for 

any edge coloring of Kn from any set of colors, either a monochromatic G1 or a rainbow G2 

results. This then shows that Kn will have a monochromatic F1 or a rainbow F2. For positive 

integers p and r with   r < p, let 

 
Now let n be an integer such that s – 1 divides n-1 and  

 
Then n – 1 = ( s -1)q for some positive integer q. Let there be given an edge coloring of Kn from 

any set of colors and suppose that no monochromatic G1 = K1,s occurs. We show that there is a 

rainbow G2 = Kt+1. Observe that the total number of different copies of Kt+1 in Kn is 

implying the existence of at least one rainbow Kt+1. 

 

First consider the number of copies of Kt+1 containing adjacent edges uv and uw that are colored 

the same.  There are n possible choice for the vertex u. suppose that there are ai edges incident 

with u that are colored i for 1 < i < k. Then  

 
Where, by assumption, 1 < ai < s – 1 for each i. For each color i(1 < i < k), the number of 

different choices for v and w where uv and uw are colored i is . Hence the number of 

different choices for u and w where uv and uw are colored the same is 

 
since the maximum value of this sum occurs when each ai is as large as possible, the largest 

value of this sum is when each ai is s – 1 and when k = q, that is, there are at most  
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choices for v and w such that uv and uw are colored the same. Since there are choices 

for the remaining t – 2 vertices of Kt+1,  it follows that there are at most 

 
copies of Kt+1 containing two adjacent edges that are colored the same. 

We now consider copies of Kt+1 in which there two nonadjacent edges, say e = xy and f = wz, 

colored the same. There are choices for e and n – 2 choices for one vertex, say w, that is 

incident with f. The vertex w is incident with at most s – 1 edges having the same color as e and 

not adjacent to e. Since there are four ways of counting such a pair of edges in this way (namely 

e and either w or z, or f and either x or y), there are at most 

 

Ways to choose nonadjacent edges of the same color and ways to choose the remaining t -

3 vertices of Kt+1. Hence there are at most. 

 

 
Copies of Kt+1 containing two nonadjacent edges that are colored the same. Therefore, the 

number of non-rainbow copies of Kt+1 is at most 
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Where the final inequality follows from known theorem, the rainbow Ramsey number is defined 

if and only if F is a forest hence there is a rainbow Kt+1 in Kn. 
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