INTERNATIONAL JOURNAL OF RESEARCH GRANTHAALAYAH
 A knowledge Repository

Science

APPLICATIONS OF EDGE COLORING OF GRAPHS WITH RAINBOW NUMBERS PHENOMENA

Dr. B. Ramireddy ${ }^{1}$, U. Mohan Chand ${ }^{2}$, A. Sri Krishna Chaitanya ${ }^{3}$, Dr. B. R. Srinivas ${ }^{4}$
${ }^{1}$ Professor \& H.O.D, Hindu College, Guntur, (A.P.), INDIA.
${ }^{2}$ Associate Professor of Mathematics \& H.O.D, Rice Krishna Sai Prakasam Group of Institutions, Ongole, (A.P), INDIA
${ }^{3}$ Associate Professor of Mathematics \& H.O.D, Chebrolu Engineering College, Chebrolu, Guntur Dist. (A.P), INDIA
${ }^{4}$ Associate Professor of Mathematics, St. Mary's Group of Institutions, Chebrolu, Guntur Dist. (A.P), INDIA

Abstract

This paper studies the Rainbow Ramsety Number for a non empty graph and the main results are 1. The Rainbow Ramsety Number of a graph F with out isolated vertices is defined if and only if F is a forest. 2. The Rainbow Ramsety Number of two graphs F1 and F2 with out isolated vertices is defined if and only if F1 is a star or F2 is a forest..

Mathematics Subject Classification 2000: 05CXX, 05C55, 05DXX, 05D10, 04XX, 04A10

Keywords:

Rainbow Ramsety Number, forest, isolated vertices, star.
Cite This Article: Dr. B. Ramireddy, U. Mohan Chand, A. Sri Krishna Chaitanya, and Dr. B. R. Srinivas, "APPLICATIONS OF EDGE COLORING OF GRAPHS WITH RAINBOW NUMBERS PHENOMENA" International Journal of Research - Granthaalayah, Vol. 3, No. 12(2015): 163-170. DOI: https://doi.org/10.29121/granthaalayah.v3.i12.2015.2901.

1. INTRODUCTION

Basically in an edge-colored graph G that if there is a sub graph F of G all of whose edges are colored the same, then F is referred to as a monochromatic F. On the other hand, if all edges of F are colored differently, then F is referred to as a rainbow F .

2. DEFINITION

For a nonempty graph F, the Rainbow Ramsety Number RR (F) of F as the smallest positive integer n such that if each edge of the complete graph K_{n} is colored from any set of colors, then either a monochromatic F or a rainbow F is produced.

Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . \mathrm{V}_{\mathrm{n}}\right\}$ be the vertex set of a complete graph K_{n}. An edge coloring of K_{n} using positive integers for colors is called a minimum coloring if two edges $v_{i} v_{j}$ and $v_{k} v_{l}$ are colored the same if and only if
$\min \{\mathrm{i}, \mathrm{j}\}=\{\mathrm{k}, \mathrm{l}\}$
while an edge coloring of K_{n} is called a maximum coloring if two edges $u_{i} u_{j}$ and $u_{k} u_{1}$ are colored the same if and only if
$\max \{\mathrm{I}, \mathrm{j}\}=\max \{\mathrm{k}, \mathrm{l}\}$
2.1. Definion: A graph with out cycles is a forest

2.2. Theorem: Let \mathbf{F} be a graph without isolated vertices. The Rainbow Ramsey number $R R(F)$ is defined if and only if F is a forest.

Let F be a graph of order $p \geq 2$. First we show that $R R(F)$ is defined only if F is a forest. Suppose that F is not a forest. Thus F contains a cycle C , of length $\mathrm{k} \geq 3$ say. Let n be an integer with $\mathrm{n} \geq$ p and let $\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ be the vertex set of a complete graph K_{n}. Define an edge coloring c of K_{n} by $\mathrm{c}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right)=\mathrm{i}$ if $\mathrm{i}<\mathrm{j}$. Hence c is a minimum edge coloring of K_{n}. If k is the minimum positive integer such that v_{k} belongs to C , then two edges of C are colored k , implying that there is no rainbow F in K_{n}. Since any other edge in C is not colored k , it follows that F is not monochromatic either. Thus RR (F) is not defined.

For the converse, suppose that F is a forest of order $\mathrm{p} \geq 2$. By known fact there exists and integer $\mathrm{n} \geq \mathrm{p}$ such that for any edge coloring of K_{n} with positive integers, there is a complete subgraph G of order p in K_{n} that is either monochromatic or rainbow or has minimum or maximum coloring. If G is monochromatic or rainbow, then K_{n} contains a monochromatic or rainbow F. Hence we may assume that the edge coloring of G is minimum or maximum, say the former. We show in this case that G contains a rainbow F . If F is not a tree, then we can add edges to F to produce a tree T of order p . Let
$\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2}, \ldots \ldots, \mathrm{v}_{\mathrm{ip}}\right)$,
Where $i_{1}<i_{2}<\ldots<i_{p}$. Select some vertex $v=v_{\text {ip }}$ of T and label the vertices of T in the order $\mathrm{v}=\mathrm{v}_{\mathrm{ip}}, \mathrm{v}_{\mathrm{ip}-1}, \ldots ., \mathrm{v}_{\mathrm{i} 2}, \mathrm{v}_{\mathrm{i} 1}$
of non decreasing distance from v; that is,
$\mathrm{d}\left(\mathrm{v}_{\mathrm{ij}}, \mathrm{v}\right) \geq \mathrm{d}\left(\mathrm{v}_{\mathrm{ij}+1}, \mathrm{v}\right)$
for every integer j with $1 \leq \mathrm{j} \leq \mathrm{p}-1$. Hence there exists exactly on edge of T having color i_{j} for each j with $1 \leq \mathrm{j} \leq \mathrm{p}-1$. Thus T and hence F is rainbow. The rainbow Ramsey number $\mathrm{RR}(\mathrm{F})$ is therefore defined.

2.3. Example: For each integer $k \geq 2, R R\left(K_{1, k}\right)=(k-1)^{2}+2$.

Proof

We first show that $R R\left(\mathrm{~K}_{1, \mathrm{k}}\right) \geq(\mathrm{k}-1)^{2}+2$. Let
$\mathrm{n}=(\mathrm{k}-1)^{2}+1$.
We consider two cases.

Case 1. \mathbf{k} is odd. Then n is odd Factor K_{n} into ${ }^{\mathrm{n}-1} / 2={ }^{(\mathrm{K}-1) 2} / 2$ Hamiltonian cycles each. Partition these cycles into $k-1$ sets $S_{i}(1 \leq i \leq k-1)$ of ${ }^{k-1} / 2$ Hamiltonian cycles each. Color each edge of each cycle in S_{i} with color i. then there is neither a monochromatic $K_{1, k}$ nor a rainbow $K_{1, k}$.

Case 2. \mathbf{k} is even. Then n is even. Factor K_{n} into $\mathrm{n}-1=(\mathrm{k}-1)^{2}$ 1-factors. Partition these 1-factors into $\mathrm{k}-1$ sets $\mathrm{S}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{k}-1)$ of k - 1 1-factors. Color each edge of each 1-factor in S_{i} color with i. Then there is neither a monochromatic $K_{1, k}$ nor a rainbow $K_{1, k}$.

Therefore, $R R\left(K_{1, k}\right) \geq(k-1)^{2}+2$. It remains to show that $R R\left(K_{1, k}\right) \leq(k-1)^{2}+2$. Let $N=(k-$ $1)^{2}+2$ and let there be given an edge coloring of K_{N} from any set of colors. Suppose that no monochromatic $\mathrm{K}_{1, \mathrm{k}}$ results. Let v be a vertex of K_{N}. Since deg $\mathrm{v}=\mathrm{N}-1$ and there is no monochromatic $\mathrm{K}_{1, \mathrm{k}}$, at most $\mathrm{k}-1$ edges incident with v can be colored the same. Thus there are at least $[\mathrm{N} / \mathrm{k}-1]=\mathrm{k}$ edges incident with v that are colored differently, producing a rainbow $\mathrm{K}_{1, \mathrm{k}}$.

More generally, for two nonempty graphs F_{1} and F_{2}, the rainbow Ramsey number $\mathrm{RR}\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$ is defined as the smallest positive integer n such that if each edge of K_{n} is colored from any set of colors, then there is either a monochromatic F_{1} or a rainbow F_{2} defined for every pair F_{1}, F_{2} of non empty graphs.

3. DEFINITION

If the partite sets $u \& w$ of a complete bi partite graph contain s\&t vertices. Then this graph is denoted by $\mathrm{K}_{\mathrm{s}, \mathrm{t}}$.the graph $\mathrm{K}_{1, \mathrm{t}}$ is called star.

3.1. Theorem: Let F_{1} and F_{2} be two graphs without isolated vertices. The rainbow Ramsey number $R R\left(F_{1}, F_{2}\right)$ is defined if and only if F_{1} is a star or F_{2} is a forest.

Proof. First, we show that $R R\left(F_{1}, F_{2}\right)$ is exists only if F_{1} is a star or F_{2} is a forest. Suppose that F_{1} is not a star and F_{2} is not a forest. Let G be a complete graph of some order n such that $V(G)=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and such that both F_{1} and F_{2} are sub graphs of G. Define an ($\mathrm{n}-1$) -edge coloring on G such that the edge $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$ is assigned the color i if $\mathrm{i}<\mathrm{j}$. Hence this coloring is a minimum edge coloring of G.

Let G_{1} be any copy of F_{1} in G and let a be the minimum integer such that v_{a} is a vertex of G_{1}. Then every edge incident with v_{a} is colored a. since G_{1} is not a star, some edge of G_{1} is not incident with v_{a} and is therefore not colored a. Hence G_{1} is not monochromatic. Next, let G_{2} be any copy of F_{2} in G. Since G_{2} is not a forest, G_{2} contains a cycle C. Let b be the minimum integer such that v_{b} is a vertex of G_{2} belonging to C. Since the two edges of C incident with v_{b} are colored b (and G_{2} contains at least two edges colored b), G_{2} is not a rainbow subgraph of G. Hence $R R\left(F_{1}, F_{2}\right)$ is not defined.

We now verify the converse. Let F_{1} and F_{2} be two graphs without isolated vertices such that either F_{1} is a star or F_{2} is a forest. We show that there exists a positive integer n such that for every edge coloring of K_{n}, either a monochromatic F_{1} or a rainbow F_{2} results. Suppose that the order of F_{1} is $s+1$ and the order of F_{2} is
$t+1$ for positive integers s and t. Hence $F_{1}=K_{1, s}$. We now consider two cases, depending on whether F_{1} is a star or F_{2} is a forest. It is convenient to begin with the case where F_{2} is a forest.

Case 1. F_{2} is a forest. If F_{2} is not a tree, then we may add edges to F_{2} so that a tree G_{2} results. If F_{2} is a tree, then let $G_{2}=F_{2}$. Furthermore, if F_{1} is not complete, then we may add edges to F_{1} so that a complete graph $G_{1}=K_{s+1}$ results. If F_{1} is complete, then let $G_{1}=F_{1}$. Hence $G_{1}=K_{s+1}$ and G_{2} is a tree of order $t+1$. We now show that $R R\left(G_{1}, G_{2}\right)$ is defined by establishing the existence of a positive integer n such that any edge coloring of K_{n} from any set of colors results in either a monochromatic G_{1} or a rainbow G_{2}. This, in turn, implies the existence of monochromatic F_{1} or a rainbow F_{2}. We now consider two sub cases, depending on whether G_{2} is a star.

Sub case 1.1. G_{2} is a star of order $t+1$, that is, $G_{2}=K_{1, t}$. Therefore, in this subcase, $G_{1}=K_{s+1}$ and $G_{2}=K_{1, t}$. (This subcase will aid us later in the project) In this subcase, let

$$
n=\sum_{i=0}^{(s-1)(t-1)+1}(t-1)^{i}
$$

and let an edge coloring of K_{n} be given from any set of colors. If K_{n} contains a vertex incident with t or more edges assigned distinct colors, then K_{n} contains a rainbow G_{2}. Hence we may assume that every vertex of K_{n} is incident with at most $t-1$ edges assigned distinct colors. Let v_{1} be a vertex of K_{n}. Since the degree of v_{1} in K_{n} is $n-1$, there are at least.

$$
\frac{n-1}{t-1}=\sum_{i=0}^{(s-1)(t-1)}(t-1)^{i}
$$

edges incident with u_{1} that are assigned the same color, say color c_{1}.
Let S_{1} be the set of vertices joined to v_{1} by edges colored c_{1} and let $v_{2} \in S_{1}$.
There are at least

$$
\frac{\left|S_{1}\right|-1}{t-1} \geq \sum_{i=0}^{(s-1)(t-1)-1}(t-1)^{i}
$$

edges of the same color, say color c_{2}, joining v_{2} and vertices of S_{1}, where possibly $\mathrm{c}_{2}=\mathrm{c}_{1}$. Let S_{2} be the set of vertices in S_{1} joined to v_{2} by edges colored c_{2}. Continuing in this manner, we construct sets $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots . . \mathrm{S}_{(\mathrm{s}-1)}(\mathrm{t}-1) \mathrm{and}$ vertices, $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{(\mathrm{s}-1)(\mathrm{t}-1)+1}$ such that $2 \leq \mathrm{i} \leq(\mathrm{s}-1)(\mathrm{t}-1)+1$, the vertex v_{i} belongs to S_{i-1} and is joined to at least

$$
\frac{\left|S_{1}\right|-1}{t-1} \geq \sum_{i=0}^{(s-1)(t-1)-1}(t-1)^{i}
$$

vertices of S_{i-1} by edges colored c_{i}. Finally, in the set $S_{(s-1)(t-1)}$, the vertex
$\mathrm{v}_{(\mathrm{s}-1)(\mathrm{t}-1)+1}$ is joined to a vertex $\mathrm{v}_{(\mathrm{s}-1)(\mathrm{t}-1)+2}$ in $\mathrm{S}_{(\mathrm{s}-1)(\mathrm{t}-1)}$ by an edge colored $\mathrm{c}_{(\mathrm{s}-1)(\mathrm{t}-1)+1}$. Thus we have a sequence

$$
v_{1}, v_{2}, \ldots, v_{(s-1)}(t-1)+2
$$

of vertices such that every edge $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$ for $1 \leq \mathrm{i}<\mathrm{j} \leq(\mathrm{s}-1)(\mathrm{t}-1)+2$ is colored c_{i} and where the colors $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{(\mathrm{s}-1)}(\mathrm{t}-1)+1$ are not necessarily distinct. In the complete subgraph H of order $(\mathrm{s}-1)$ $(\mathrm{t}-1)+2$ induced by the vertices listed in (11.3), the vertex $\mathrm{v}_{(\mathrm{s}-1)(\mathrm{t}-1)+2}$ is incident with at most t -1 edges having distinct colors. Hence there is a set of at least.

$$
\left\lceil\frac{(s-1)(t-1)+1}{t-1}\right\rceil=s
$$

 vertices, where $i_{1}<i_{2}<\ldots . .<i_{s}$. Then $c_{i 1}=c_{i 2}=\ldots .=c_{i s}$, and the complete subgraph of order $s+$ 1 induced by
$\left\{\mathrm{v}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2}, \ldots . ., \mathrm{v}_{\mathrm{is}}, \mathrm{v}_{(\mathrm{s}-1)}(\mathrm{t}-1)+2\right\}$
is monochromatic.

Subcase $1.2 G_{2}$ is a tree of order $t+1$ that is not necessarily a star. Recall that $G_{1}=K_{s+1}$. We proceed by induction on the positive integer t. If $t=1$ or $t=2$, then G_{2} is a star and the base case of the induction follows by subcase 1.1. Suppose that $R R\left(G_{1}, G_{2}\right)$ exists for $G_{1}=K_{s+1}$ and for every tree G_{2} of order $t+1$ where $t \geq 2$. Let T be a tree of order $t+2$. We show that $R R\left(G_{1}, T\right)$ exists. Let v be an end-vertex of T and let v be the vertex of T that is adjacent to v . Let $\mathrm{T}^{1}=\mathrm{T}-$ v. Since T^{1} is a tree of order $t+1$, it follows by the induction hypothesis that $R R\left(G_{1}, T^{1}\right)$ exists, say $\operatorname{RR}\left(G_{1}, T^{1}\right)=p$. Hence for any edge coloring of K_{p} from any set of colors, there is either a monochromatic $G_{1}=K_{s+1}$ or a rainbow T^{1}. From sub case 1.1, we know that $R R\left(G_{1}, K_{1, t+1}\right)$ exists. Suppose that $R R\left(\mathrm{G}_{1}, \mathrm{~K}_{1, \mathrm{t}+1}\right)=\mathrm{q}$ and let $\mathrm{n}=\mathrm{pq}$ in this subcase.

Let there be given an edge coloring of K_{n} using any number of colors. Consider a partition of the vertex set of K_{n} into q mutually disjoint sets of p vertices each. By the induction hypothesis, the complete subgraph induce by each set of p vertices contains either a monochromatic $\mathrm{K}_{\mathrm{s}+1}$ or rainbow T^{1}. If a monochromatic $\mathrm{K}_{\mathrm{s}+1}$ occurs in any of these complete subgraph K_{p}, then subcase 1.2 is verified. Hence we may assume that there are q pair wise mutually rainbow copies.
$\mathrm{T}_{1}{ }^{1}, \mathrm{~T}_{2}{ }^{1}, \ldots ., \mathrm{T}_{\mathrm{q}}{ }^{1}$
of T^{1}, where u_{i} is the vertex in $T_{i}^{1}(1 \leq i \leq q)$ corresponding to the vertex u in T^{1}.
Let H be the complete subgraph of order q induced by $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{q}}\right\}$. Since RR $\left(\mathrm{K}_{\mathrm{s}+1}, \mathrm{~K}_{1, t+1}\right)=\mathrm{q}$, it follows that either H contains a monochromatic K_{s+1} or a rainbow $K_{1, t+1}$. If H contains a monochromatic $\mathrm{K}_{\mathrm{s}+1}$, then once again, the proof of subcase 1.2 is complete. So we may assume that H contains a rainbow $K_{1, t+1}$. Let u_{j} be the center of a rainbow star $K_{1, t+1}$ in H. At least one of the $t+1$ colors of the edges of $K_{1, t+1}$ is different from the colors of the t edges of T_{j}^{1} Adding the edge having this color at u_{j} in T_{j}^{1} produces a rainbow copy of T.

Case 2. F_{1} is a star. Denote F_{1} by G_{1} as well and so $G_{1}=K_{1, \text { s. }}$. If F_{2} is complete, then let $G_{2}=F_{2}$. If F_{2} is not complete, then we may add edges to F_{2} so that a complete graph $G_{2}=K_{t+1}$ results. We verify that $R R\left(G_{1}, G_{2}\right)$ exists by establishing the existence of a positive integer n such that for any edge coloring of K_{n} from any set of colors, either a monochromatic G_{1} or a rainbow G_{2} results. This then shows that K_{n} will have a monochromatic F_{1} or a rainbow F_{2}. For positive integers p and r with $\mathrm{r}<\mathrm{p}$, let

$$
p^{(r)}=\frac{p!}{(p-r)!}=p(p-1) \cdots(p-r+1)
$$

Now let n be an integer such that $\mathrm{s}-1$ divides $\mathrm{n}-1$ and

$$
n \geq 3+\frac{(s-1)(t+2)^{(4)}}{8}
$$

Then $\mathrm{n}-1=(\mathrm{s}-1) \mathrm{q}$ for some positive integer q . Let there be given an edge coloring of K_{n} from any set of colors and suppose that no monochromatic $\mathrm{G}_{1}=\mathrm{K}_{1, s}$ occurs. We show that there is a
rainbow $\mathrm{G}_{2}=\mathrm{K}_{\mathrm{t}+1}$. Observe that the total number of different copies of $\mathrm{K}_{\mathrm{t}+1}$ in K_{n} is $\binom{n}{t+1}$ implying the existence of at least one rainbow $\mathrm{K}_{\mathrm{t}+1}$.

First consider the number of copies of $\mathrm{K}_{\mathrm{t}+1}$ containing adjacent edges uv and uw that are colored the same. There are n possible choice for the vertex u. suppose that there are a_{i} edges incident with u that are colored i for $1 \leq \mathrm{i} \leq \mathrm{k}$. Then

$$
\sum_{i=1}^{k} a_{i}=n-1
$$

Where, by assumption, $1 \leq \mathrm{a}_{\mathrm{i}} \leq \mathrm{s}-1$ for each i . For each color $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{k})$, the number of different choices for v and w where uv and uw are colored i is $\binom{a_{i}}{2}$. Hence the number of different choices for u and w where uv and uw are colored the same is

$$
\sum_{i=1}^{k}\binom{a_{i}}{2}
$$

since the maximum value of this sum occurs when each a_{i} is as large as possible, the largest value of this sum is when each a_{i} is $\mathrm{s}-1$ and when $\mathrm{k}=\mathrm{q}$, that is, there are at most

$$
\sum_{i=1}^{q}\binom{s-1}{2}=q\binom{s-1}{2}
$$

choices for v and w such that uv and uw are colored the same. Since there are $\binom{n-3}{t-2}$ choices for the remaining $t-2$ vertices of $\mathrm{K}_{\mathrm{t}+1}$, it follows that there are at most

$$
n q\binom{s-1}{2}\binom{n-3}{t-2}
$$

copies of $\mathrm{K}_{\mathrm{t}+1}$ containing two adjacent edges that are colored the same.
We now consider copies of K_{t+1} in which there two nonadjacent edges, say $e=x y$ and $f=w z$,
colored the same. There are
choices for e and $\mathrm{n}-2$ choices for one vertex, say w , that is incident with f . The vertex w is incident with at most $\mathrm{s}-1$ edges having the same color as e and not adjacent to e. Since there are four ways of counting such a pair of edges in this way (namely e and either w or z, or f and either x or y), there are at most

$$
\frac{\binom{n}{2}(n-2)(s-1)}{4}=\frac{n(n-1)(n-2)(s-1)}{8}
$$

Ways to choose nonadjacent edges of the same color and $\binom{n-4}{t-3}$ ways to choose the remaining t 3 vertices of K_{t+1}. Hence there are at most.

$$
\frac{n(n-1)(n-2)(s-1)}{8}\binom{n-4}{t-3}
$$

Copies of $\mathrm{K}_{\mathrm{t}+1}$ containing two nonadjacent edges that are colored the same. Therefore, the number of non-rainbow copies of $\mathrm{K}_{\mathrm{t}+1}$ is at most

$$
\begin{aligned}
& n q\binom{s-1}{2}\binom{n-3}{t-2}+\frac{n(n-1)(n-2)(s-1)}{8}\binom{n-4}{t-3} \\
= & n\left(\frac{n-1}{s-1}\right) \frac{(s-1)(s-2)}{2}\left(\frac{n-2}{n-2}\right)\binom{n-3}{t-2} \\
& \quad+\frac{n(n-1)(n-2)(s-1)}{8}\left(\frac{n-3}{n-3}\right)\binom{n-4}{t-3} \\
= & \binom{n}{t+1}\left[\frac{(s-2)(t+1)^{(3)}}{2(n-2)}+\frac{(s-1)(t+1)^{(4)}}{8(n-3)}\right] \\
< & \binom{n}{t+1}\left[\frac{(s-1)(t+1)^{(3)}}{2(n-3)}+\frac{(s-1)(t+1)^{(4)}}{8(n-3)}\right] \\
= & \binom{n}{t+1}\left[\frac{(s-1)(t+1)^{(3)}(t+2)}{8(n-3)}\right] \\
= & \binom{n}{t+1}\left[\frac{(s-1)(t+2)^{(4)}}{8(n-3)}\right] \leq\binom{ n}{t+1},
\end{aligned}
$$

Where the final inequality follows from known theorem, the rainbow Ramsey number is defined if and only if F is a forest hence there is a rainbow K_{t+1} in K_{n}.

4. REFERENCES

[1] B.Bollobas \& A.J.Harris, list colorings of graphs. Graphs combin.1(1985) 115-127
[2] G.Chartrand, G.L.Johns, K.A.McKeon, and P.Zhang, Rainbow Connection in Graphs. Math. Bohem.
[3] G.Chartrand, G.L.Johns, K.A.McKeon, and P.Zhang, Rainbow Connectivity of a Graphs. Networks.
[4] C.A.Christen and S.M.Selkow, some perfect coloring properties of Graphs.
[5] J.Combin.Theory Ser. B27 (1979) 49-59.
[6] S.Fiorini \& R.J.Wilson, edge colorings of graphs.Pitman,London (1977).

