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ABSTRACT 

In 1742, Leonhard Euler invented the generating function for P(n). Godfrey Harold Hardy said 

Srinivasa Ramanujan was the first, and up to now the only, Mathematician to discover any such 

properties of P(n). In 1916, Ramanujan defined the generating functions for   X(n),Y(n) . In 

2014, Sabuj developed the generating functions for .  In 2005, George E. Andrews found the 

generating functions for    In 1916, Ramanujan showed the generating functions for  ,  ,   and  

. This article shows how to prove the Theorems with the help of various auxiliary functions 

collected from Ramanujan’s Lost Notebook. In 1967, George E. Andrews defined the generating 

functions for P1r (n) and P2r (n). In this article these generating functions are discussed 

elaborately. This article shows how to prove the theorem P2r (n) = P3r (n) with a numerical 

example when n = 9 and r = 2. In 1995, Fokkink, Fokkink and Wang defined the   in terms of , 

where   is the smallest part of partition . In 2013, Andrews, Garvan and Liang extended the 

FFW-function and defined the generating function for FFW (z, n) in differnt way. 
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1. INTRODUCTION

In this article, we give some related definitions of P(n),    ,, nPnP do X(n),Y(n), 

      P and  , d

e

11 nnYnX ,    ,",' nCnC  nC1
 ,  nC1

 ,    nPnP '',' ,  nP r 
1 ,  nP r 

2 ,  nP r 
3 ,  nFFW , 

d(n), ,)(,)x ;x(,)( 2

 zxx  .);()( 1



 xxandx k

k In section 1.3, we generate the generating function 

for P(n). In section 1.4, we give the generating functions for    ,, nPnP do  and prove the Corollary 

1.1 by mathematical expression, and prove the Theorem 1.1 with an example. In section 1.5, we 

generate the generating functions for X(n),Y(n) and prove the Corollary 1.2 by mathematical 

expression and prove the Remark 1.1 with an example. In section 1.6 we develop the generating 

functions for       P and  , d

e

11 nnYnX and prove the Corollary 1.3 in terms of       , 11 nYnX and
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prove the another Corollary 1.4 in terms of      and P  1d

e nXn   .In section 1.7, we discuss the 

generating functions for    ,",' nCnC  and quite some special functions collected from 

Ramanujan’s lost notebook and unpublished papers, and prove the Theorem 1.2 with an example. 

In section 1.8, we give the generating functions for  nC1
 ,  nC1

 , and prove the Theorem 1.3 with 

example. In section 1.9, we give the generating functions for    nPnP '','  and prove the Corollary 

1.5 in terms of    nPnP '','  and prove the Theorem 1.4 with an example. In section 1.10, we 

generate the generating functions for    nPnP 2 

2

2 

1 , ,  nP r 
2 ,  nP r 

3  and prove the Corollary 1.6 in 

terms of    nPnP rr  

2

 

1 , , and prove the Theorem 1.5 with an example. Finally in section 1.11, we 

discuss the generating function for FFW (n) and give the Relation 1.1 in terms of  nFFW , d(n), 

and prove the Corollaries 1.7, 1.8, 1.9 and 1.10  with the help of their generating functions. 

 

1.2. SOME RELATED DEFINITIONS 

P(n) : The number of partitions of n. Example:  4, 3+1, 2+2, 2+1+1, 1+1+1+1P(4)=5. 

 nPo : The number of partitions of n into odd parts. 

 nPd :The number of partitions of n into distinct parts. 

X(n) :The number of partitions of n with no part repeated more than twice. 

Y(n)  :The number of partitions of n with no part divisible by 3. 

 nX 1 : The number of partitions of n with no part repeated more than thrice . 

 nY 1  : The number of partitions of n with no part divisible by 4. 

 nPd

e  : The number of partitions of n into even distinct parts. 

 nC : The number of partitions of n into parts of the forms 5m + 1 and 5m + 4. 

 nC  : The number of partitions of n into parts of the forms 5m + 2 and 5m + 3. 

 nC1
 : The number of partitions of n into parts without repetitions or parts whose minimal 

                difference is 2.        

 nC1
 :  The number of partitions of n into parts not less than 2 and with minimal difference 2. 

 nP'  :The number of partitions of n into parts of the form 
raaan  ...21
,  

           where 31  ii aa  and  if 
ia3 , then 31  ii aa

 
 

  nP ''  
: The number of partitions of n into parts congruent to  .6 mod 1               

 nP r 
1 : The number of partitions of n into part that are either even or not congruent to  rr 4mod24   

            or odd and congruent to  rrr 4mod14,12  .  

 nP r 
2 : The number of partitions of n into parts that are either even or else congruent to  

             rr 2mod12   with the further restriction that only even parts may be repeated. 

 nP r 
3 : The number of partitions of n of the form sbbbn  ...21 , where 1 ii bb , and for ib  odd, 

            121   rbb ii   0   where,1 1  sbsi . 
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FFW (n): Let D denote the set of partitions into distinct parts. We define; 

                            FFW (n) = ,)()1( 1)(#





n
D

s




          

                      where s(𝜋) is the smallest part of  a partition 𝜋, and # (𝜋) is the number of parts .  

 d (n) : The number of positive divisors of n like d(1)=1, d(2)=2 ,d(3)=2,..    

Product Notations:  

).....1)(1();(

)1)...(1)(1()(
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)...1)(1();(

)...1)(1)(1()();(

211
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.1xwhere  

 

1.3. PARTITION 

 

A partition of n is a division of n into any number of positive integral parts. Then the sum of the 

integral parts or summands is n. The order of the parts and arrangement in a division of n are 

irrelevant and the parts are arranged in descending order. Usually a partition of n is denoted by 

Greek letters  . We denote the number of partitions of n by P(n). It is convenient to define  

 P(0) = 1 and , P(n) = 0 for negative integer of n.  

Let   ,...,...,, 21 raaaA   be a finite or infinite set of positive integers. If naaa r  ...21 , with 

Aar   (r = 1, 2, 3,…). Here repetitions are allowed. Then we say that the sum raaa  ...21  is 

a partition of n into parts belonging to the set A. So that, 3+2+1 is a partition of 6. If a partition 

contains p numbers, it is called a partition of n into p parts or shortly a p-partition of n. Hence, 9 = 

4+2+1+1+1, and we can say that, 4+2+1+1+1 is a 5-partition of 9. The order of the parts is 

irrelevant, the parts to be arranged in descending order of magnitude, 1...321  raaaa . 

Now explain how to find all the partitions of 7 as follows:  

First take 7; then 6 allowed by 1; then 5 allowed by all the partitions of 2 (i.e., 2, 1+1); then 4 

allowed by all the partitions of 3 (i.e., 3, 2+1, 1+1+1);  then 3 allowed by all the partitions of 4, 

which contain no part greater than 3  (i.e., 3+1, 2+1+1, 1+1+1+1, 2+2); then 2 allowed by all the 

partitions of 5, which contain no part greater than 2 (i.e., 2+2+1, 2+1+1+1, 1+1+1+1+1); lastly 

1+1+1+1+1+1+1. Hence the complete set is;  

7, 6+1, 5+2, 5+1+1, 4+3, 4+2+1, 4+1+1+1, 3+3+1, 3+2+1+1, 3+1+1+1+1, 3+2+2,  

2+2+2+1, 2+2+1+1+1, 2+1+1+1+1+1, 1+1+1+1+1+1+1. 

 

1.3.1. Generating function for  nP  [Euler (1742)] 

 nP  is the number of partitions of n given in Table-1.1 

 

n  Type of partitions  nP  
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1 1 1 

2 2, 1+1 2 

3 3, 2+1, 1+1+1 3 

4 4, 3+1, 2+2, 2+1+1, 1+1+1+1 5 

5 

… 

5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1 

…. 

7 

… 

                                    It is convenient to define   10 P  , but   0nP for n<0 .  

              We can make an expression as; 

            ...543210 5432  xPxPxPxPxPP  

....7.5.3.2.11 5432  xxxxx  

   ... ...1 ...1 ...1 63422  xxxxxx
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 1.4. Generating Functions for    :  nPandnP do  

                          [Collected from Ramanujan’s lost notebook] 

 

1.4.1 The generating function for  nPo ; 

 nPo  is the number of partitions of n into odd parts given in Table-1.2 

          

 
n  Type of partitions  nPo  

1 1 1 

2 1+1 1 

3 3, 1+1+1 2 

4 3+1, 1+1+1+1 2 

5 

… 

5, 3+1+1, 1+1+1+1+1 

….. 

3 

… 

                   

                                       It is convenient to define   10 oP . 

          

We can write an expression for  nPo

 as; 

          ... 4 3 2 10 432  xPxPxPxPP ooooo  

....2.2.1.11 432  xxxx  

     ... 1 1 1 

1
53 xxx 



       [Toh, (2011)]
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  1.4.2  The generating function for  nPd ; 

 nPd  is the number of partitions of n into distinct parts given in Table-1.3 

 

n  Type of partitions  nPd  

1 1 1 

2 2 1 

3 3, 2+1 2 

4 4, 3+1 2 

5 

… 

5, 4+1, 3+2 

…. 

3 

… 

                                                It is convenient to define   .10 dP  

We can write an expression for  nPd

 as; 

          ... 4 3 2 10 432  xPxPxPxPP ddddd  

 

....2.2.1.11 432  xxxx  

 

   ... 1 1 1 32 xxx 
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Corollary 1.1:      nPnP do    

Proof:  From above we get; 
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                    ... 1 1 1 32 xxx   

 

                  
  n

n

d xnP  
0






 .[by above] 

Now equating the coefficient of  nx
 from both sides we get; 

         nPnP do  . Hence The Theorem. 

Theorem 1.1 [Das (2013)]: The number of partitions of n into odd parts is equal to the number   

of partitions of n into unequal parts.  i.e.,    nPnP do  . 
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Proof: We develop an one to one correspondence between the partitions enumerated by  nPo  and 

those enumerated by  nPd . We start with any partition of n into odd parts say raaan  ...21 . 

Among these r odd integers, suppose there are m distinct ones, say  mccc ,...,, 21  by rearranging 

notation if necessary. Collecting like terms in the partition of n, we get mmcececen  ...2211 . We 

write each co-efficient ie as a unique sum of distinct powers of 2, and write each iice  as a sum of 

terms of the type i

t c2 . This gives n as a partition into distinct parts. Thus we have the one to one 

correspondence. Such as a number k can be expressed uniquely in the binary scale i.e., as 

 ...0...222 cbak cba  . Hence a partition of n into odd parts can be written as;  

...5.3.1. 321  kkkn  

     3. ...221. ...22 2211 baba   ...5. ...22 33 
ba

 

and there is an one to one correspondence between this partitions and the into distinct parts 1.2 1a
,  

1.2 1b
, …, ,3.2 2a 3.2 2b

,…, ,5.2 3a 5.2 3b
,…  

Conversely let raaan  ...21  be a partition of n into distinct parts. We convert this partition 

into a partition of n with odd parts. For any even positive integer m can be expressed   mfj2  as a 

multiple odd integer. As for example; 4 = 1.22, 6 = 3.21, 10 = 4 + 6 = 1.22 + 3.21, where j2 is the 

highest power of 2 and  mf  is an odd integer. Suppose there are distinct odd integers among  1af

,  2af ,…,  raf . Rearrange the subscripts of necessary so that  1af ,  2af ,…,  saf  are distinct 

odd integers, and  1saf ,  2saf , …,  raf  are duplicates of these. Collecting terms, we can write  

 



s

i

ii afcn
1

  with positive integers coefficients ic . The final step is to write each  ii afc  in the 

form      iafafaf  ...21
 with ic  terms in the sum. Thus n is expressed as a sum of odd integers. 

Clearly our correspondence is onto so that,    nPnP do  . 

Numerical Example 1.1: 

      We take n = 11, the list of partitions of 11 into odd parts is given below; 

11 = 9+1+1 = 7+3+1 = 7+1+1+1+1 = 5+5+1 

=5+3+1+1+1=5+1+1+1+1+1+1=5+3+3=3+3+3+1+1 

= 3+3+1+1+1+1+1 = 3+1+1+1+1+1+1+1+1 

= 1+1+1+1+1+1+1+1+1+1+1. 

So there are 12 partitions.  i.e.,   1211 oP . 

  Again the list of partitions of 11 into unequal parts is given below; 

11 =10+1 = 9+2 = 8+3 = 8+2+1 = 7+4 = 7+3+1 

= 6+5 = 6+4+1 = 6+3+2 = 5+4+2= 5+3+2+1. 

So there are 12 partitions.  i.e.,    1211 dP . 

Therefore,     1111 do PP  . 

1.5. Generating functions for    :  nYandnX  

                                  [Collected from Ramanujan’s lost notebook] 

1.5.1 The generating function for X(n): 

X(n) is the number of partitions of n with no part repeated more than twice given  

   inTable-1.4  
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n  Partitions of n with no part repeated more than twice X(n) 

1 1 1 

2 2, 1+1 2 

3 3, 2+1 2 

4 4, 3+1, 2+2, 2+1+1 4 

5 5, 4+1, 3+2, 3+1+1, 2+2+1 5 

… … … 

                                                                   It is convenient to define X(0)=1.  

We can write an expression for X(n) as; 

          ... 4 3 2 10 432  xXxXxXxXX  

....5.4.2.2.11 5432  xxxxx  

   ... 1 1 1 63422 xxxxxx 
[Toh, (2011)]
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n

nn xx . 
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n
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nn xnXxx  

1.5.2 Generating function for Y(n): 

 Y(n) is the number of partitions of n with no part divisible by 3 given 

       inTable-1.5 

 

n  Partitions of n with no part divisible by 3 Y(n) 

1 1 1 

2 2, 1+1 2 

3 2+1, 1+1+1 2 

4 4, 2+2, 2+1+1, 1+1+1+1 4 

5 5, 4+1, 2+2+1, 2+1+1+1, 1+1+1+1+1 5 

… … … 

                                                                        It is convenient to define Y(0)=1. 

 

We can write an expression for Y(n) as; 

            ... 5 4 3 2 10 5432  xYxYxYxYxYY  

....5.4.2.2.11 5432  xxxxx  

       ...11...1111

1
1323542  


nn xxxxxx [Andrews  (1979]
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n
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Corollary 1.2:       nYnX   

Proof: From above we get; 
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Equating the coefficient of nx  from both sides we get; 

             nYnX  . Hence the Corollary. 

Remark 1.1 [Das (2014)]: The number of partitions of n with no part repeated more than twice is 

equal to the number of partitions of n with no part  divisible by 3. 

              i.e.,     nYnX  .  

Proof: We develop a one-to-one correspondence between the partitions enumerated by  nX  and 

those enumerated by  nY . Let raaan  ...21  be a partition of n with no part is repeated more 

than twice. We transfer this into a partition of n with no part is divisible by 3. If a part ma  of the 

partition, which is divisible by 3, enumerated by  nX  can be expressed into three equal parts, 

such that: 6 = 2+2+2, 3 = 1+1+1. Rearranging the parts of the partition, we can say that the parts 

are not divisible by 3. Clearly, our correspondence is one-to-one. 

 Conversely, we start any partition of n into with no part is divisible by 3, say  

raaan  ...21 , we consider the same part not less than thrice, it would be unique sum by 

same three parts by taking a group, such that, 5+1+1+1 = 5+3 and 2+2+2+1+1 = 6+1+1. 

 This gives n as a partition with no part is repeated more than twice. Thus, we have the one-to-one 

correspondence. The corresponding is onto, so that    nYnX  . Hence the Remark.   

 Numerical Example1.2: 

 When n = 8, the listed partitions of 8 with no part repeated more than twice is given below; 

8 = 7+1 = 6+2 = 6+1+1 = 5+3 = 5+2+1 = 4+4 = 4+3+1 = 4+2+1+1 = 4+2+2 = 3+3+2 = 3+3+1+1= 

3+2+2+1. 

So, there are 13 partitions i.e.,   138 X . Again, the list of partitions of 8 with no part is 

divisible by 3 is given below:  

8 = 7+1 = 5+2+1 = 5+1+1+1+1 = 4+4 = 4+2+1+1 = 4+2+2= 4+1+1+1+1 = 2+2+2+2 

=2+2+2+1+1= 2+2+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1. 

So, there are 13 partitions i.e.,    138 Y .  

                                  .nYnX   

1.6. Generating functions for       P and  , d

e

11 nnYnX  :  
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1.6.1 The generating function for  nX 1  :  

 nX 1  is the number of partitions of n with no part repeated more than thrice given  

           in Table-1.6  

 

n  Partitions of n with no part repeated more than thrice  nX 1  

1 1 1 

2 2, 1+1 2 

3 3, 2+1,1+1+1 3 

4 4, 3+1, 2+2, 2+1+1 4 

5 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1 6 

… … … 

                                                                   It is convenient to define   101 X .  

We can write an expression for  nX 1 as; 

          ... 4 3 2 10 41312111  xXxXxXxXX  

..96.43.2.11 65432  xxxxxx  

   ... 1 1 1 96364232 xxxxxxxxx   

 





1

321
n

nnn xxx . 

                       

  .)(1
0

1

1

32 









n

n

n

nnn xnXxxx  

1.6.2 Generating function  nY 1 for: 

  nY 1  is the number of partitions of n with no part divisible by 4 given 

       inTable-1.7 

 

n  Partitions of n with no part divisible by 4  nY 1  

1 1 1 

2 2, 1+1 2 

3 3, 2+1, 1+1+1 3 

4 3+1, 2+2, 2+1+1, 1+1+1+1 4 

5 5, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1 6 

… … … 

                                                                        It is convenient to define   101 Y . 

 

We can write an expression for  nY 1  as; 

            ... 5 4 3 2 10 5141312111  xYxYxYxYxYY  

...9.6.4.3.2.11 55432  xxxxxx  

       ...1111111

1
976532 xxxxxxx 
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Corollary 1.3:       nYnX 11   

Proof: From above we get; 
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Equating the coefficient of nx  from both sides we get; 

             nYnX 11  . Hence the Corollary. 

Remark 1.2 [Das (2014)]: The number of partitions of n with no part repeated more than thrice is 

equal to the number of partitions of n with no part  divisible by 4. 

              i.e.,     nYnX 11  .  

Proof: We can prove the Remark very easily as same as the Remark 1.1 by changing four equal  

         terms into a single term. 

1.6.3.  The generating function for  nPd

e  :  

 nPd

e  is the number of partitions of n into even distinct parts given in Table-1.8 

 

n  Partitions of n into even distinct parts  nPd

e  

1 1 1 

2 2, 1+1 2 

3 3, 2+1, 1+1+1 3 

4 4, 3+1,2+1+1, 1+1+1+1 4 

5 

… 

5, 4+1, 3+2, 3+1+1, 2+1+1+1, 1+1+1+1+1 

…. 

6 

… 

                                                It is convenient to define   .10 d

eP  

We can write an expression for  nPd

e  as; 
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          ...4 3 2 10 432  xPxPxPxPP d

e

d

e

d

e

d

e

d

e  

....96.4.3.2.11 65432  xxxxxx  

   
   

... 
1 1 x-1

1 1 1
53

642

xx

xxx






 

 
 









1
12

2

1

1

n
n

n

x

x
 

                         

 
 

 















01
12

2

.
1

1

n

nd

e

n
n

n

xnP
x

x

       

 

 

Corollary 2.4:      nXnPd

e

1   

Proof:  From above we get; 

          

 
 
 








 




1
12

2

0 1

1

n
n

n

n

nd

e
x

x
xnP  

                 

   
   

... 
1 1 x-1

1 1 1
53

642

xx

xxx




  

                

   
   

   
   

 
..1 1 1

..1 1 1
. 

..1 1 x-1

..1 1 1
642

642

53

642

xxx

xxx

xx

xxx








  

 

                 

      
   

 
..1 1 x-1

..11 11 11
32

664422

xx

xxxxxx




  

                  

   
    

 
..1 1 x-1

..1 1 1
32

1284

xx

xxx






 

                    

     ... 1 1 1 96364232 xxxxxxxxx 
 

                     

 





1

321
n

nnn xxx

      

                      

.)(
0

1





n

nxnX

[by above] 

            
   










0

1

0

. 
n

nn

n

d

e xnXxnP  

Now equating the coefficient of  nx
 from both sides we get; 

         .1 nXnPd

e  . Hence the Corollary. 

 

1.7.Generating functions for  nC  and  :1 nC  
                                    [Collected from Ramanujan’s lost notebook and Andrews (1979)] 

1.7.1 The generating function for  :nC  
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 nC   is the number of partitions of n into parts of the forms 5m + 1 and 5m + 4 given  

         inTable-1.9 

n

 

Partitions of n into parts of the forms 5m + 1 and 5m + 4

 
 nC

 

1 1 1 

2 1+1 1 

3 1+1+1 1 

4 4, 1+1+1+1 2 

5 4+1, 1+1+1+1+1 2 

6 

… 

6, 4+1+1, 1+1+1+1+1+1 

…. 

3 

… 

                                                          It is convenient to define   10 C  

We can write an expression for  nC as;

            ...543210 5432  xCxCxCxCxCC

 
 ... 3221 65432  xxxxxx

 

     


 ... 1 1 1 1

1
964 xxxx  [Hardy  et al. (1917)] 

  



 


0

4515 1 1

1

m
mm xx

  

  
  . 1

11

1

10
4515

n

nm
mm

xnC
xx














  

 1.6.2   The generating function for  :1 nC  

 nC1


 is the number of partitions of n into parts without repetitions or  parts, whose minimal 

difference is 2 given in Table-1.10 

n

 
Partitions of n into parts without repetitions or parts, 

whose minimal difference is 2 

 nC1


 

1 1 1 

2 2 1 

3 3 1 
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4 4, 3+1 2 

5 5, 4+1 2 

… … … 

                                                          It is convenient to define   .101 C  

We can write an expression for  nC1
 as;

 

            ...543210 5

1

4

1

3

1

2

111  xCxCxCxCxCC
 

  ... 33221 765432 xxxxxxx

 

      









  ... 

1 1 11 11
1

32

9

2

4

xxx

x

xx

x

x

x

[Andrews (2005)] 

    


 


1
2 1 ... 11

1

2

m
m

m

xxx

x
  

    
  . 

1...11
1

0

1

1
2

2

n

nm
m

m

xnC
xxx

x














 

   1.6.3  In 1916, Ramanujan defined the following series in his Lost Notebook;  

 We get;  
 

  
]2  1  0 [,

 ... 1 1

,
, 0 orkandHwhere

axa

xaG
xaH k

k 


    …        (1.6.3a)       

and    
 xaHH kk ,  

 

   aQPxaxa n

n

n

knk

knnn

nn









0

22

215

2 11 ,
 

   where 
r

n

r
n

x
P



 1

1

1
, and  

r
nr

n
ax

aQ





 1

1
 .  It is convenient to define 10 P .   

   And     
 

  n

knk

knnn

nn

n
k CxaxaxaG  11, 22

215

2

0







    with 1x  and 1a .  

where k is 1 or 2 and 10 C ,  
    
    n

n

n
xxx

axaxa
C








1 ... 1 1

1 ... 1 1
2

1

. 

 k

k

kk HaHH 



  3

1

1  , where the operator  is defined by  f(a) = f(ax), and k = 1 or 2. 

                                                                                           …..                         (1.6.3b) 

   If k=1 and a=x then;                        

          ...1, 1374

1 xxxxxxG  …    (1.6.3c) 
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   554515

0

1 1 1 




 nnn

n

xxx  

     Again if k=2 and a=x then;                         

                ...1, 11932

2 xxxxxxG                                              (1.6.3d)     

                           
   553525

0

1 1 1 




 mmm

m

xxx  .  

Theorem 1.2: The number of partitions of n with minimal difference 2 is equal to the number of 

partitions of n into parts of the forms 5m + 1 and 5m + 4. 

                                              .   .,. 1 nCnCei    

Proof: From Ramanujan’s Lost Notebook, we get; 

 
 

  
]2  1  0 [,

 ... 1 1

,
, 0 orkandHwhere

axa

xaG
xaH k

k 




       

 

         If   k = 2 and a = x, we get;  

 
 

    


 ...1 1 1

,
,

32

2
2

xxx

xxG
xxH  

   
     









 ... 1 1 1

1 1 1

32

553525

0

xxx

xxx mmm

m

[by(1.6.3d]

                                               

                                                                  ...11111 x-1

1
1411964 xxxxx 

  

                                        
   1 1

1
,,

4515
0

2 



 


mm
m xx

xxHor

       …      

(1.6.3e)

      

 

Again, from Ramanujan’s Lost Notebook, we get; 

1 kk HH k

k Ha 

 3

1
,
where the operator  is defined by  f(a) = f(ax), and k = 1 or 2, then 

 

 21 HH  , 112 HaHH  .    

So we have, 

2

2

22 HaHH   .            …                                                                  (1.6.3f)   

We suppose that; ...1 2

212  acacH                                                     (1.6.3g) 

where the coefficients ic  depend on x only. Substituting this into (1.6.3f), we obtain; 

 ...1 2

21 acac    ...1...1 42

2

2

1

22

21 xacaxcaxacaxc . 

Hence, equating the coefficients of various powers of a from both sides we get; 

x
c




1

1
1 , 12

2

2
1

c
x

x
c


 , 23

4

3
1

c
x

x
c


 , …, 

 

    n

nn

n
xxx

x
c






1...11 2

1

. 

Putting these values in(1.6.3g) 
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 xaHH ,22     2

22

1 11
1

xx

xa

x

a







    



  ... 

1 1 1 32

63

xxx

xa
…    (1.6.3h) 

If a = x, then; 
  2

4

2
1 11

1),(
xx

x

x

x
xxH







   
... 

1 1 1 32

9





xxx

x

 

(1.6.3i) 

From (1.6.3e) and (1.6.3i) we get; 

           



 











0

451532

9

2

4

11

1
... 

1 1 1 1 11
1

m
mm xxxxx

x

xx

x

x

x
 

       







 





0
4515

1
2 11

1

1...1 1
1,.

2

m
mm

m
m

m

xxxxx

x
ei  

                           [It is known as Rogers- Ramanujan’s Identity] 

 

   









11

1 .11
n

n

n

n xnCxnC

 

Equating the co-efficient of xn from both side we get;        

 

                                    nCnC 
1  

i.e., the number of partitions of n with minimal difference 2 is equal to the number of partitions 

of n into parts of the forms 5m + 1 and 5m + 4. Hence the Theorem. 

Example 1.3: 

 For n = 11, there are 7 partitions of 11 that are enumerated by  nC1
  of above statement, which 

are given bellow; 

11, 10 + 1, 9 + 2, 8 + 3, 7 + 4, 7 + 3 + 1, 6+4+ 1,       7111 C .  

There are 7 partitions of 11 are enumerated by  nC1
  of above statement, which are given 

bellow: 

11, 9+1+1, 6+4+1, 6+1+1+1+1+1, 4+4+1+1+1, 4+1+1+1+1+1+1+1, 

1+1+1+1+1+1+1+1+1+1+1,        711 C . 

Hence,    11111 CC  .  

 1.8. The generating functions for  nC   and  nC1
 : 

                                      [Collected from Ramanujan’s lost notebook and Andrews (1988)] 

1.8.1 The generating function for  nC   : 

 nC   is the number of partitions of n into parts of the forms 5m + 2 and 5m + 3 given 

             In Table-1.11 

                                                        n

 

Partitions of n into parts of the forms 5m + 2 and 5m + 3

 
 nC 

 

1 none

 
0 

2 2 1 

3 3 1 
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4 2+2 1 

5 3+2 1 

6 3+3, 2+2+2 2 

… … … 

                             

It is convenient to define   .10 C

 
We can write an expression for  nC  as;

            ...543210 5432  xCxCxCxCxCC
   ... 22.01 765432 xxxxxxx

 

     


 ... 1 1 1 1

1
8732 xxxx      [Birman (1988)]     

  



 


0

3525 1 1

1

m
mm xx  

  
  . 

11

1

00
3525

n

nm
mm

xnC
xx
















 
  1.8.2   The generating function for  nC1

  : 
 nC1
  is the number of partitions of n into parts not less than 2 and with minimal difference 2 

        given in Table-1.12

                                                n

 

Partitions of n into parts not less than 2 and with minimal 

difference 2

 

 nC1


 

1 none

 
0 

2 2 1 

3 3 1 

4 4 1 

5 5 1 

6 6, 4+2 2 

… … … 

                                                                 

It is convenient to define   .101 C

 
We can write an expression for  nC1

 as;

            ...543210 5

1

4

1

3

1

2

111  xCxCxCxCxCC

 
  ... 3221 8765432 xxxxxxx
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  ... 

1 1 11 11
1

32

12

2

62

xxx

x

xx

x

x

x

     [Rankin (1989) and Lovejoy (2003)]     

 

     









1
2

1

1 ... 1 1
1

m
m

mm

xxx

x

 

    
  . 1

1...11
1

1

1

1
2

)1(
n

nm
m

mm

xnC
xxx

x














  

Theorem 1.3: The number of partitions of n into parts not less than 2 and with minimal 

difference 2 is equal to the number of partitions of n into parts of the forms 5m + 2 and 5m + 3 

                              . .,. 1 nCnCei   

Proof: From Ramanujan’s Lost Notebook, we get; 

 
 

  
]2  1  0 [,

 ... 1 1

,
, 0 orkandHwhere

axa

xaG
xaH k

k 




       

 

         If   k = 1 and a = x, we get;  

 
 

    


 ...1 1 1

,
,

32

1
1

xxx

xxG
xxH   

   
     









 ... 1 1 1

1 1 1

32

554515

0

xxx

xxx mmm

m [by(1.6.3c)] 

                                                           
        ...11111 x-1

1
13128732 xxxxx 

  

                                                             =
   1 1

1
3525

0




 


mm
m xx

                                               

                                                          

 

                                        
   1 1

1
,,

3525
0

1 



 


mm
m xx

xxHor

       …       

(1.6.3j)

      

 

Again, from Ramanujan’s Lost Notebook, we get 

1 kk HH k

k Ha 

 3

1
,
where the operator  is defined by  f(a) = f(ax), and k = 1 or 2, then 

 

 21 HH  , 112 HaHH  .    

So we have, 

2

2

22 HaHH   .            …                                                                  (1.6.3k)   

We suppose that; ...1 2

212  acacH                                                     (1.6.3l) 

where the coefficients ic  depend on x only. Substituting  this  into (1.6.3k),  we obtain; 

 ...1 2

21 acac    ...1...1 42

2

2

1

22

21 xacaxcaxacaxc . 
Hence, equating the coefficients of various powers of a from both sides we get; 

x
c




1

1
1 , 12

2

2
1

c
x

x
c


 , 23

4

3
1

c
x

x
c


 , …, 

 

    n

nn

n
xxx

x
c






1...11 2

1

. 

Putting these values in(1.6.3l) 

http://www.granthaalayah.com/


[Das et. al., Vol.3 (Iss.10): October, 2015]                                                ISSN- 2350-0530(O) ISSN- 2394-3629(P) 

                                                                                                                                          Impact Factor: 2.035 (I2OR) 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [1-29] 

 xaHH ,22     2

22

1 11
1

xx

xa

x

a







    



  ... 

1 1 1 32

63

xxx

xa
…(1.6.3m) 

From  above we get;  21 HH   

 
         

















 ...
111111

1,
32

63

2

22

11
xxx

xa

xx

xa

x

a
xaHH    [by(1.6.3m)] 

 
         

















 ...
111111

1,
32

93

2

42

11
xxx

xa

xx

xa

x

ax
xaHH  

If a = x, then;  
         

















 ...
111111

1,
32

12

2

62

1
xxx

x

xx

x

x

x
xxH (1.6.3n) 

From (1.6.3j) and (1.6.3n) we get; 

           



 











0

352532

12

2

62

11

1
... 

1 1 1 1 11
1

m
mm xxxxx

x

xx

x

x

x
 

 

       

















0
3525

1
2

1

11

1

1...1 1
1,.

m
mm

m
m

mm

xxxxx

x
ei  

               [It is also known as Rogers- Ramanujan’s Identity] 

          

   









11

1 .11
n

n

n

n xnCxnC

 

Equating the co-efficient of xn from both side we get;        

 

                                    nCnC 
1 ,   

i.e., the number of partitions of n into parts not less than 2 and with minimal difference 2 is equal 

to the number of partitions of n into parts of the forms 5m + 2 and 5m + 3. Hence the Theorem. 

Example 1.4: 

If n = 11, the four partitions of 11 into parts not less than 2 and with minimal difference 2 are 

given below: 

11, 9 + 2, 8 + 3, 7 + 4. Hence,   4111 C . 

Again the four partitions of 11 into parts of the form 5m + 2 and 5m + 3 are given as; 

8 + 3, 7 + 2 + 2, 3 + 3 + 3 + 2, 3 + 2 + 2 + 2 + 2. Hence,   411 C . 

         11111 CC  . 

1.9. We discuss the generating functions for  nP'  and  nP '' :   

                                          [Collected from Ramanujan’s lost notebook and Berndt (1991)] 

1.9.1  The generating function for   nP'  : 

 nP'  is the number of partitions of n into parts of the form 
raaan  ...21
, where 31  ii aa  

and  if 
ia3 , then 31  ii aa

 
given in Table-1.13 

n  Type of partitions  nP'  

1 1 1 
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2 2 1 

3 3 1 

4 4 1 

5 5, 4+1 2 

… … … 

          It is convenient to define .1)0(' P  

We can write an expression for  nP' as; 

...)4(')3(')2(')1(')0(' 432  xPxPxPxPP  

   ...33221 8765432 xxxxxxxx  

 )...1)(1)(1)(1)(1( 7542 xxxxx          [Andrews  (1979)]   

 

.)1)(1(
0

2313






 
n

nn xx  

 








 
0 0

2313 )(')1)(1(
n n

nnn xnPxx .         

1.9.2   The generating function for   nP ''  : 

 nP ''  
is the number of partitions of n into parts congruent to  6 mod 1  

given in Table- 1.14                               

n  Type of  partitions  nP ''  

1 1 1 

2 1+1 1 

3 1+1+1 1 

4 1+1+1+1 1 

5 5, 1+1+1+1+1 2 

… … … 

                               It is convenient to define .1)0('' P , 

We can write an expression for  nP '' as;            ...)4('')3('')2('')1('')0('' 432  xPxPxPxPP  

             ...33221 8765432 xxxxxxxx  

             ..)..1..)(1..)(1( 1471052  xxxxxx [Andrews  (1979)]     

              ...)1()1()1( 17151   xxx  

                =
)..1)(1)(1(

1
75 xxx 

 

                  5616
0 1 1

1




 


nn
n xx  

                       
.)(''

1 1

1

0
5616

0














n

n

nn
n

xnP
xx                     

    Corollary 1.5:  )('')(' nPnP      
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    Proof:  From above we get; 












0

2313

0

)1)(1()('
n

nn

n

n xxxnP  

)...1)(1)(1)(1)(1)(1( 87542 xxxxxx   

)...1)(1)(1(

)...1)(1)(1(
42

842

xxx

xxx






 

)...1)(1)(1)(1(

1
1175 xxxx 



 

 











00

.)('')('
n

n

n

n xnPxnP  

Equating the coefficient of nx  from both sides we get; 

                   ).('')(' nPnP     Hence the Corollary. 

Now we can consider a Partition Theorem; 

Theorem 1.4: ).('')(' nPnP   i.e., the number of partitions of n into parts of the form  

raaan  ...21
, where 31  ii aa  and if 

ia3 , then 31  ii aa  is equal to the number of 

partitions of n into parts congruent to  6mod1 .  

Proof: We establish an one-to-one correspondence between the partitions enumerated by  nP'  

and those enumerated by  nP '' . Firstly we consider partition enumerated by  nP' , let  

raaan  ...21
, where all terms congruent to   6mod1  

except  
ia  or 

ja , where  ri ,1  
 and 

 rj ,1 . If 
ia  is multiple by 3, then 

ia  can be expressed the terms congruent to  6mod1 and 
ja  

can be expressed the terms congruent to  6mod1 , like;  

9+2 = 1+1+1+1+1+1+1+1+1+1+1, and   

8+3 = 5+1+1+1+1+1+1.  

     Now we are arranging all the terms of the partition of n can be expressed the terms congruent 

to  6mod1  . Consequently all the terms of the partition of n can be enumerated by  nP'  
can be 

converted to the partitions of n into parts congruent to  6mod1 . So, our correspondence is one-

to-one.  

     Conversely, we transfer the partitions of n enumerated by  nP '' . Let  
raaan  ...21
, 

where all terms congruent to   6mod1  
, we sum the terms in the 1st group of n, it would be 

ia

(say) where  ri ,1  and sum the terms in the 2nd group of n, it would be 
1ia (say), 31  ii aa  

and if 
ia3 , then 31  ii aa  , like:  7+1+1+1+1 = 7+4, 5+5+1 = 10+1 and 5+1+1+1+1+1+1 = 

  
.)(''

1 1

1

0
5616

0














n

n

nn
n

xnP
xx
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8+3, then all parts of the partitions of n into parts of the form 
raaan  ...21
, where 

31  ii aa  and if 
ia3 , then 31  ii aa  . Consequently all the partitions of n enumerated by 

 nP ''  can be converted to the partitions of n enumerated by  nP' . Totally our correspondence is 

onto i.e., the number of partitions of n into parts of the form raaan  ...21
, where 31  ii aa  

and if 
ia3 , then 31  ii aa  is equal to the number of partitions of n into parts congruent to 

 6mod1 .  

                                                 i.e., )('')(' nPnP  . Hence the Theorem. 

   Numerical example 1.5: when n = 11. If n = 11, the five partitions of 11 that are enumerated by 

 nP'  are: 11, 10+1, 9+2, 8+3, and 7+4. The five partitions of 11 into parts congruent to  6mod1  
are 11, 7+1+1+1+1, 5+5+1, 5+1+1+1+1+1+1, and 1+1+1+1+1+1+1+1+1+1+1.  

    i.e., )11('')11(' PP  . 

 

1.10. Consider the Generating Functions For        ,,, 2 

1

2 

1

 

1

2 

1 nandPnPnPnP r  with r  2: 

                               [Collected from Ramanujan’s lost notebook] 

1.10.1 The Generating Function for  nP 2 

1 : 

 nP 2 

1
 is the number of partitions of n into parts that are either even and not congruent to 6 

(mod8) or odd and congruent to 3,7 (mod8) given in Table-1.15                                                                                                                     

n  Partitions of n into parts that are either even and not 

congruent to 6 (mod8)or odd and congruent to 3,7 

(mod8) 

 nP 2 

1
 

1 none  0 

2 2 1 

3 3 1 

4 4, 2+2 2 

5 3+2 1 

6 4+2, 3+3, 2+2+2 3 

… ….. … 

                                                                     It is convenient to define   .102 

1 P  

We can write an expression for  nP 2 

1
as; 

            ...543210 52 

1

42 

1

32 

1

22 

1

2 

1

2 

1  xPxPxPxPxPP  

....3.1.2.1.1.01 65432  xxxxxx  
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 [ Andrews, (1967)] 
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In general, we can write 
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1
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j
rjj
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xnP
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[Ramanathan (1981)]

 

where the coefficient  nP r 
1  is the number of partitions of n into parts that are either even and not 

congruent to  rr 4mod24  or odd and congruent to  rrr 4mod14,12  . 

1.10.2 The Generating Function for )(
2

2 nP : 

)(
2

2 nP  is the number of partitions of n into parts that are either even or else congruent to  

    3 (mod4) with the further restriction that only even parts may be repeated given in          

                                                                 Table-1.16                                               

n  Partitions of n into parts that are either even or else 

congruent to 3 (mod 4) with the further restriction that 

only even parts may be repeated 

)(
2

2 nP  

1 none  0 

2 2 1 

3 3 1 

4 4, 2+2 2 

5 3+2 1 

6 6, 4+2, 2+2+2 3 

… ….. … 

                                                                     It is convenient to define   .10
2

2 P  
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We can write an expression for )(
2

2 nP as;

            ...543210 52 

2

42 

2

32 

2

22 

2

2 

2

2 

2  xPxPxPxPxPP  

....3.1.2.1.1.01 65432  xxxxxx  
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...111
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xxxx
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 [Andrews  (1967)] 
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In general, we can write 
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j x
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1 1
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2 ,)(1
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1

22
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1

,)(1
1

1

n

nr

j
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j

xnP
x

x
 

where the coefficient  nP r 

2
 is the number of partitions of n into parts that are either even and 

not congruent to  rr 4mod24  or odd and congruent to  rrr 4mod14,12  . 

Corollary 1.6:     nPnP rr
21            

 Proof: From above we get; 
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x
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1
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1
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1
2

12

1

1

j
j

rj

x

x
 

                        





1

2 ,)(1
n

nr
xnP

[by above]

 

                         





on

nr
xnP ,)(2  

Equating the co-efficient of xn from both sides we get; 

   nPnP rr

21  . Hence the Corollary.  

Here we give a Theorem, which is related to the terms  nPr
2  and  nPr

3 . 
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Theorem 1.5: The number of partitions of n into parts that are either even or odd congruent to 

 rr 2mod12   with the further restriction that only even parts may be repeated is equal to the 

number of partitions of n of the form sbbbn  ...21 , where 1 ii bb , and for ib  odd

.121   rbb ii  Where  nPr
3  denote the number of partitions of n of the form sbbbn  ...21 , 

where 1 ii bb , and for ib  odd, 121   rbb ii   0   where,1 1  sbsi . 

                                   .  .,. 32 nPnPei rr   

Proof: Let 1  be a partition of the type enumerated by  nPr
3 . We represent 1  graphically with 

each even part 2m represented by two rows of m nodes and each odd part 2m + 1 represented by 

two rows of m+1 nodes and m nodes respectively. 

Such as 9 + 6 becomes; 

●   ●   ●   ●   ●  

 ●   ●   ●   ●    

 ●   ●   ●     

 ●   ●   ●     

Now we may consider the graph vertically with the condition that r columns are always to be 

grouped as a single part, whenever the lowest node in the most right hand column of the group is 

not presented there. If r = 2,  form above graph we obtain in this manner; 

●                ●                ●            ●    ●    

 ●               ●                ●            ● 

 ●               ●                ●   

 ●               ●                ● 

 The partition 4 +4 + 4 + 3. Now since the condition on partitions enumerated by  nPr
3  is 

121   rbb ii , whenever ib  is odd. Thus a part congruent to  rr 2mod12   is produced. Since 

originally odd parts were distinct, we see that now odd parts will be congruent to  rr 2mod12   and 

will not be repeated and since originally all odd parts were greater or equal to 12 r , we see that 

there will always be r columns available for each grouping. Thus in this case we have produced a 

partition of the type enumerated by  nPr
2 . Clearly our correspondence is one to one, however, the 

above process is reversible and thus the correspondence is onto. So that    nPnP rr
32  .  

   Hence the Theorem. 

Example 1.6: We take r = 2, n = 9. The corresponding partitions are listed opposite each other in 

the following table -1.17:  

Type of partitions 

enumerated by  93

rP  

With relevant graph Type of partitions 

enumerated by  92

rP  

9 ●  ●  ●  ●  ● 2 + 2 + 2 + 3 
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●  ●  ●  ● 

7 + 2 ●  ●  ●  ● 

●  ●  ● 

● 

● 

4 + 2 + 3 

6 + 3 ●   ●   ● 

●   ●   ● 

●   ● 

● 

7 + 2 

5 + 2 + 2 ●    ●   ● 

●    ● 

● 

● 

● 

● 

6 + 3 

    Now we can write     499 23  rr PP .  

 1.11.The Generating Functions [Andrews et al. (2013)] for FFW (n) and 


1

),(
n

nxnzFFW : 

 1.11.1 The generating Function for FFW (n): 

FFW (n):  Let D denote the set of partitions into distinct parts. We define; 

                            FFW (n) = ,)()1( 1)(#





n
D

s




          

               where s(𝜋) is the smallest part of  a partition 𝜋, and # (𝜋) is the number of parts 

           

given in Table-1.18

                                           
n

 
Partitions of n into distinct parts s(𝜋)

 

 nFFW

 

1 1 1 1 

2 2 2 2 

3 3, 2+1 3, 1 2 

4 4, 3+1 4, 1 3 
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5 5, 4+1,3+2 5, 1, 2 2 

6 6, 5+1, 4+2, 3+2+1 6, 1, 2, 1 4 

… … …. ….. 

We can write an expression for  nFFW as; 

          ...4321 432  xFFWxFFWxFFWxFFW  

   65432 42322 xxxxxx  
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1111111
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11 332
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                                                                                [Fokkink  et al. (1995)]
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n n
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n
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x

 
Relation 2.1.  nFFW  = d (n) 

 Proof:   A relation related to the term d (n).  

We get; FFW (1) = 1 = d (1)   

 FFW (2) = 2= d (2)  

 FFW (3) = 2= d (3)    

 FFW (4) = 3= d (4) 

 FFW (5) = 2= d (5) 

 ---          ---     ---              

     We can write the relation    nFFW  = d (n). Hence the Relation. 

Corollary 2.7: 
  

k
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x
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 1 1
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  xzx
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1 1

1
R.H.S.     Hence the Corollary. 

Corollary 2.8:  
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n n
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Proof: We get;  
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                                    [Andrews et al (2013) and Andrews, Encycl. Math. (1985)]             

          =


 
















1 1

2

)1(

132
2

)(

)1(
...)

)1(

)1)(1(

)1(

)1)(1(
{

n n

nn

nn
nn

x

x

z

xzzz
x

z

zz
x  

       = ....}
1

1

1

1
{ 3

3
2

1

2
















nn

n

n x
z

z
x

z

z
x  

1

2

)1(

1

)(

)1(







n

nn

n

x

x
 

= 
1

2

)1(

1 1 )(

)1(
)

1

1
(

1




















 

n

nn

nk

n

k

k x

x
x

z

z
n

       

= 
1

2

)1(

1

1 )(

)1(

)1)(1( 












n

nn

n

n
nn

n

x

x

xzx

x

[by above]

 

=












1

2

)1(

1

))(1(

)1(

n n

n

nn

n

xzx

x
 

[Since .....)1)(1)(1()1)(1()1())(1( 23

1

2

1 




 xxxxxxxx
n

n

n =


1

])(
n

nx  

 





1

),(
n

nxnzFFW 












1

2

)1(

1

))(1(

)1(

n n

n

nn

n

xzx

x
 . Hence the Corollary. 

Corollary 2.9:  ])()[(
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Proof: We get;   
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 Hence the Corollary. 

 

Corollary 2.10:  FFW (1, n) = FFW (n) 

Proof: We get;    
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   [by above] 
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1

)(
n

nxnFFW . 

Equating the co-efficient of 
nx  form both sides we get;  

FFW (1, n) = FFW (n).Hence the Corollary. 

 

2. CONCLUSION  

 

In this article we have shown    nCnC 
1  with the help of a numerical example when n =11, and 

have shown    nCnC 
1  with the help of a numerical example when n =11.We have proved the 

Theorem    .31 nPnP rr   for any positive integer of n and 2r . In this article we have found the 

number of partitions of n into distinct parts with required conditions. We have proved the 

Corollaries  containing  a pair of generating functions  
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   by simplifications. We have established the Corollary FFW (1, n) = FFW (n) by taking z=1. 
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