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ABSTRACT 
One of the shortcomings implicit in the use of a network of rain gauges is to detect 
weather phenomena in pre-established geographical points that are stable over time. A 
discrete and finite number of measurement points are arranged to capture values of 
precipitation variables of atmospheric events. 
It happens that several of these precipitation events can impact areas that do not include 
any measurement point. This phenomenon reveals a blind side of the network: the 
hydrological values associated with such events are irreversibly and completely lost from 
the network. 
In this paper, a theoretical model suitable for estimating such events not captured by the 
network is described and proposed at an introductory level, introducing useful equations 
for estimating values such as number of events, rainfall depths, rain volumes inferable on 
the ground. 
Starting from the hypothesis of isotropy and local homogeneity of some key variables, 
number of events and rainfall depth, we arrive at the synthesis of some significant 
relationships between the precipitation values of extremely isolated events completely 
not captured by the network, those measured by the network and the clusters of 
atmospheric events that generated both. 
The method allows these results to be obtained by making use only of the rainfall data 
provided by a network of rain gauges. The denser the network, the smaller the extent of 
such non-captured events; the more frequent the network measurement time is, the 
shorter the potentially deductible duration of such events. 
A first example of application shows that for a fairly dense network the estimated average 
annual rainfall not measured by a rain gauge can reach a value corresponding to 80% of 
the average annual total rainfall measured by the rain gauge itself. The results are 
confirmed by the literature. It must be taken into account that when calculating the 
volumes associated with this percentage lost, mainly small impact areas must be 
considered. In fact, the distribution of impact areas estimate for this application seems to 
favour smaller ones. 
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1. INTRODUCTION 
Rain gauge networks are still very important, they are useful in many fields of 

application even after the advent of weather radars Dervos and Baltas (2024), Abu 
Salleh et al. (2019). In any case compared to radars they have a continuous 
measurement system from the point of view of time, although it is, spatially, only 
punctual Lim, S. (2020) and still represent the first choice in most hydrological 
applications Dai et al. (2017). In particular, automatic tipping bucket rain gauges 
(TBRGs) are the most common automatic instrument Dervos and Baltas (2024). 
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Given the spatial punctuality of the measurements, a network of rain gauges is 
characterized by the discretion and above all by the finiteness of location points of 
ground measurements of atmospheric precipitations that can impact the ground on 
limited areas. It is clear that such impacts can occur completely and precisely in the 
interspace of the network, i.e., in areas of the surface where the network lies but 
without measurement points. Rainfall depth measurements from such events will 
be completely and permanently lost from the network Figure 1 example of impact 
area between rain gauges. 
Figure 1  

  
Figure 1 RG: Rain Gauges. White Area Around Rain Gauges: Blind Area of the Network. Dotted Area 
Inside the Blind Area: Impact Area of an Event Completely Lost by the Network 

 
The network therefore has a blind side. Through this dysfunction the network 

risks losing track of events that could be numerous or individually intense; in any 
case, they could be significant. 

It would be important to take these lost quantities into account, at least to know 
whether in a more or less dense network, significant quantities of losses can be 
estimated. A very dense network may not have major losses. But it can also be a 
competition of climatic, geomorphological and meteorological factors specific to the 
area in which the network lies, which make the measurements effective also from 
this point of view (of the loss of measurements), despite the fact that the network 
does not have a high density of stations. 

The temporal resolution Zbynek Sokol et al. (2021) or measurement frequency 
of the network also has notable importance; this will be particularly highlighted in 
the "Conclusions" section 

In this paper, a theoretical model is proposed, agreeing on equations between 
the variables involved, which allow a useful interpretation of the problem. These 
equations make it possible to estimate some hydrological characteristics of 
precipitation events, in particular those events completely lost by the network 
measurement system: events with an impact area that is completely embedded in 
the blind area of the network Figure 1. 

Rain gauges are considered the best sources for long-term analysis of 
precipitation Katharina Lengfeld et al. (2020): it is well known that the associated 
databases often cover decades of measurements. 

In the explanation of the theoretical aspects we proceed from the point of view 
of the rain gauges-network, i.e., as if we only had a database of rain gauge 
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measurements available. Therefore, without the aid of radar (or remote sensing) 
data, underlining however that, generally, radar also has its blind side, deducible 
from a temporal sampling error TSE: Villarini et al. (2008). If the order of magnitude 
of the temporal resolution Zbynek Sokol et al. (2021) of the rain gauge network were 
comparable with that of the eventually supplied radar, a spatio-temporal 
intersection of blindness could occur which would prevent each other's errors from 
being appropriately corrected. Also taking into account that in this analysis events 
with a generally small impact area and short-term duration are treated. 

It is well known that the measurement errors that characterize a network of 
rain gauges (for example automatic tipping bucket rain gauges) are many and of 
various kinds Segovia-Cardozo et al. (2021). The difficulty in their estimation and 
correction is also well known Segovia-Cardozo et al. (2021). The specific 
shortcoming addressed in this article, however, seems rather ignored by the 
literature, especially through the hypotheses of the present analysis, i.e. the absence 
of data from other types of gauges (e.g. remote sensing instruments), having only 
data available from the rain gauge network. 

The phenomenology of atmospheric events is involved in the study through 
reasonable physical hypotheses of isotropy and local homogeneity. 

The study conducted in this paper is aimed at timeless interpretations of the 
phenomenon, without therefore analysing its dynamic aspect. The theoretical 
analysis is set geometrically on a surface, i.e. on a two-dimensional space. 

To facilitate the construction of the theoretical model and make statistical 
applications easier, the rain gauges are thought of as distributed at the points of an 
averagely regular square mesh network. The edge-size of this mesh however 
depending on the density of the network. 

We will try to establish mathematical relationships between beams of 
atmospheric events and measured events (i.e. events detected by rain gauges) and 
not measured events (completely impacting the blind area). These relationships are 
examined from the point of view of the numerousness, their rainfall depth and the 
volume they can produce once they reach the ground. 

The study highlights the fact that the size of the impact area of events is very 
important. In order for the impact to have the probability of occurring in the blind 
area Figure 1, the average impact area must respect some dimensions directly 
linked to the density of the network in the zone involved. 

We can therefore say that, in this context, such events, having an impact area of 
the order of magnitude the inverse of the network density, can be defined: extremely 
isolated events (with respect to the local density of the network itself). The higher 
the network density, the smaller the area of extremely isolated events: this allows 
the impact areas of such events to be geometrically approximated to compact 
circular or square areas, consistently with the regular mesh approximation of the 
network in a specific local density. 

This approach is proposed and explained following the subsequent schedule. 
Some preliminary hypotheses and useful definitions are given. Some necessary 

observations are made. Some particular numerical sets are defined to facilitate the 
description of the methods. Geometric probability methods are applied to obtain the 
value of the probability that an event can be measured by at most a single rain gauge; 
this probability turns out to be a function of network density and the extent of the 
impact area of an event. These functions are crucial for the development of 
subsequent topics allowing the equations to be built that will be applied in a first 
numeric example of a real network, to obtain estimates of rainfall depths completely 
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uncaptured by rain gauges. Equations for estimating the number of events falling in 
the blind area of the network, their rainfall depths and associated volumes are then 
determined. 

In a last supporting paragraph, of non-central importance, some relationships 
are deduced regarding the average rainfall depths of the three types of bundles 
discussed: the original bundles of events, generated by the atmosphere; the bundles 
of events that managed to obtain the measurement of a single rain gauge; the 
bundles of events that fell in the blind area. These latter relationships are proposed 
because it is believed they could be a useful mathematical/statistical tool in the 
possible application of the model to a real network of rain gauges. 

In the "Comments and Discussions" section we preferred to proceed initially by 
describing the phases of a probable application to a DB of real measurements, 
commenting on the equations that may gradually become involved in the analysis. 
Assuming a priori that we have the useful parameters available of each of the 
extremely isolated events that were measured by one and only one rain gauge in the 
network. 

Some important or interesting aspects, theoretical or practical, regarding the 
defined equations will be discussed.  

A first application with empirical analysis of the methods developed here is 
presented, considering the precipitation data DB of a network in north-eastern Italy 
as imput. From this first estimate it can be seen that the average annual value of 
rainfall falling in the blind area of the network around a rain gauge can reach 80% 
of the average annual total rainfall value measured by the same rain gauge (of which, 
just under 10% is attributable to the measurements of extremely isolated events). 
This percentage (80%) seems to be confirmed by the literature Katharina Lengfeld 
et al. (2020), where an estimate of the amount of hourly heavy events captured by 
weather radar and not captured by rain gauges can be found. During the present 
analysis, possible functions are determined which can be assumed as probability 
distributions for the sizes of the impact areas of the extremely isolated precipitation 
events taken into consideration. These distributions give much greater probability 
to smaller impact areas: this will be in favour of a lower loss in terms of rainfall 
volumes. The purpose of the proposed application example is to obtain a regional 
average estimate over the entire area covered by the studied network. 

 
2. METHODS AND RESULTS (INTRODUCTORY THEORETICAL 

APPROACH) 
2.1. PRELIMINARY HYPOTHESES 
In these pages, the character of local homogeneity and isotropy of some target 

variables such as rainfall depth and number of events is assumed by hypothesis. 
Given a zone of the network with density ρ and a bundle of events with average 

impact area σ, on the zone, it is assumed that the number of events and the rainfall 
depth of the bundle (or the impacts) are both distributed in a homogeneous and 
isotropic way (on the zone with density ρ). The adjective "local" refers to the specific 
density, so that for two distinct densities heterogeneity of the beam can be admitted. 

Phenomena will be analyzed in this paper, only from a static point of view and 
therefore: timeless, not dynamic. 

At each point of a geographical surface covered by a network of rain gauges, an 
average density ρ of these rain gauges can be determined. 
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Every precipitation event has an impact area on the ground, which will be more 
or less extensive; based on its extension, this event could be measured in some 
points by a certain number of rain gauges. 

 
2.2. SOME USEFUL DEFINITIONS AND OBSERVATIONS. 
The average impact area with the ground of an event will be called section: σ. 

Since sets of events with the smallest sections that impact the network are 
considered, it is statistically permissible to attribute an average circular or square 
section to them. This makes the geometric probabilistic treatment of the topic 
easier. 

Measurement by the rain gauge of the rainfall depth of the event will be called 
reaction, and therefore a reaction corresponds to the actual “meeting” between an 
event and the rain gauge. 

In this paper the flag Extremely Isolated Precipitation Event (EIPE) is given to 
an event which, once it reaches the ground, is measured by at most a single rain 
gauge (or which has no reaction at all) Figure 2. 

An event that occurs and is not measured by any rain gauge will be called an 
undetected event (square A of Figure 2). 
Figure 2  

  
Figure 2 Example of EIPE with Single Reaction (B), and without Reaction (A: Undetected Event). 
Small Circles Represent Rain Gauges 

 
A set of precipitation events, which occur in a certain time and that impact a 

specific geographical surface, not necessarily measured by a rain gauge, will be 
called a beam (of events) (In Figure 3, larger circles delimit average impact areas of 
the events of a beam). An event of a beam will also be called an element of the beam. 
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Figure 3  

  
Figure 3 The Bold Dots Represent Rain Gauges. The Larger Circles Delimit the Approximate Impact 
Areas of a Fruitful Beam of Section Compatible with the Density of the Network. Bold Circles 
Represent those Beam Events that were Detected by a Single Rain Gauge 

 
From now on we could say a “zone ρ” (or just “ρ”) instead of “a zone with density 

ρ”. Also, with regard to σ, one can refer directly to a beam of section σ (or just a 
section σ), meaning: a beam made up of elements of average section σ. Everything 
will be clear from the context. 

When the section σ in the given density ρ can statistically produce single 
reactions (i.e. reactions with at least one rain gauge, and not more than one) this 
defines a compatibility relation between σ and ρ. See Figure 3. 

 

3. DEFINITION OF SOME SETS: 𝑺𝑺(𝝆𝝆),𝑫𝑫(𝝆𝝆),𝑻𝑻(𝝆𝝆),𝑬𝑬(𝝆𝝆),𝑬𝑬𝑬𝑬𝑬𝑬. 
A precipitation event with section σ will be intended to be measured at most by 

a single rain gauge (i.e. producing at most a single reaction), in an area with density 
σ ≤ ρ-1. Instead, for example, it will be measured by at least one rain gauge if σ ≥ ρ-1, 
and if σ ≥ 4·ρ-1 it will always be measured by at least 2 rain gauges. These properties 
are clarified better in the section regarding the application of geometric probability. 

𝑆𝑆(𝜌𝜌) = { 𝜎𝜎 | σ𝜌𝜌 < 𝜎𝜎 ≤ 4 · σ𝜌𝜌} defines the set of sections compatible with ρ in the 
weak sense; σ𝜌𝜌 = 𝜌𝜌−1 defines the section associated with the density ρ. 𝐷𝐷(𝜌𝜌), with 
𝐷𝐷(𝜌𝜌) ⊂ 𝑆𝑆(𝜌𝜌), will identify any discrete and finite subset contained in S(ρ)the 
cardinality of which will be equal to l, with l∈ℕ. 

The sections for which σ ≤ σ𝜌𝜌 (with 0 < 𝜎𝜎) will be called sections compatible 
with ρ in the strong sense, called 𝑇𝑇(𝜌𝜌) (note that given 𝜌𝜌1 < 𝜌𝜌2 we have that 𝑇𝑇(𝜌𝜌2) ⊂
𝑇𝑇(𝜌𝜌1) and if  𝜌𝜌1 is sufficiently lower than 𝜌𝜌2 it happens that 𝑆𝑆(𝜌𝜌2) ⊂ 𝑇𝑇(𝜌𝜌1)), With an 
analogous discrete and finite set 𝐸𝐸(𝜌𝜌), with 𝐸𝐸(𝜌𝜌) ⊂ 𝑇𝑇(𝜌𝜌), with cardinality, also, ∈ℕ. 
In both cases (compatibility in the weak sense and in the strong sense) the 
relationship between σ and ρ is obviously symmetrical: we can therefore also say 
that ρ is compatible with σ (in the weak or strong sense). 

In fact, for convenience we also define 𝑆𝑆̅(𝜎𝜎) = { 𝜌𝜌  | 𝜎𝜎−1 < 𝜌𝜌 ≤ 4 · 𝜎𝜎−1}: this is 
the set of ρ compatible with σ in the weak sense. We will denote by 𝐷𝐷�(𝜎𝜎)  a discrete 
and finite subset of 𝑆𝑆̅(𝜎𝜎). 
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We define  𝑇𝑇�(𝜎𝜎) = { 𝜌𝜌  | 0 < 𝜌𝜌 ≤ 𝜎𝜎−1} the set of ρ compatible with σ in the 
strong sense; 𝐸𝐸�(𝜎𝜎) is a discrete and finite subset of 𝑇𝑇�(𝜎𝜎). 

For ease of writing we define with 𝑍𝑍(𝜌𝜌𝑀𝑀) = { 𝜌𝜌 | 0 < 𝜌𝜌 ≤ 𝜌𝜌𝑀𝑀} any theoretical 
continuous set of densities of a hypothetical network, with 𝜌𝜌𝑀𝑀 corresponding to the 
maximum density value present in the analyzed network: 𝑄𝑄(𝜌𝜌𝑀𝑀) ⊂ 𝑍𝑍(𝜌𝜌𝑀𝑀), any 
discrete and finite subset of 𝑍𝑍(𝜌𝜌𝑀𝑀). 

The total set of sections compatible (both weakly and strongly) with some ρ of 
the network can be found to be the following: ℵ = { σ | 0 < σ ≤ 4 · 𝜌𝜌𝑚𝑚−1} where 
𝜌𝜌𝑚𝑚 corresponds to the minimum density detected in the network. 

Compatibility remains synonymous with the fact that the section in the given 
density can statistically produce single reactions (i.e. reactions with at least one rain 
gauge, and not more than one). 

It is clear that the beams with a section in 𝑆𝑆(𝜌𝜌) will not be able to produce 
undetected events and will be called fruitless beams. The fruitful beams (beams 
capable of producing undetected events) will have a section belonging to 𝑇𝑇(𝜌𝜌) 
Figure 3. EIPEs can be produced from both fruitless and fruitful beams. However, 
the 𝑇𝑇(𝜌𝜌) beams (i.e., beams with the average section belonging to 𝑇𝑇(𝜌𝜌)) are made 
up only of EIPE events, unlike the 𝑆𝑆(𝜌𝜌) beams which also produce not-EIPE events. 

EIPEs are therefore the set of events that have become “fruit” (undetected 
event), or that have led to a single reaction. 

 
4. ON THE PROBABILITY THAT AN EVENT WILL GET A 

SINGLE REACTION (GEOMETRIC PROBABILITY) 
It should be noted that the probability with which the number of events of a 

beam with an average section belonging to 𝑇𝑇(𝜌𝜌) translates into the number of single 
reactions (i.e., the number of impacts on a single rain gauge) will be calculated in a 
different way from a beam with an average section belonging to S(ρ).  

This derives from the fact that in one case we are in the presence of fruitful 
beams and in the other, instead, of fruitless beams. 

To give a simple geometric explanation of the two probabilities just highlighted, 
we analyze the impact position of an event of section σ that falls on an area with 
density ρ. The topic is solved with the geometric probability methods Mathai (1999), 
Klain and Rota (1997) outlined below. 

Assuming a square section with sides 2 · ℎ · 𝑙𝑙𝜌𝜌 (with 0 < ℎ ≤ 2) that flows in an 
averagely regular network of square mesh with sides of length ℎ = (𝜎𝜎𝜎𝜎)1/2 being 
the section with side 2 · ℎ · 𝑙𝑙𝜌𝜌. By following a straight line as in Figure 4, it is noted 
that through a cyclic distance the section encounters 0, 1 or more rain gauges. The 
same thing happens when traveling along a straight line perpendicular to the 
previous one. It must be taken into account that the two perpendicular linear 
directions analyzed are associated with two marginal distributions of a bivariate 
variable; these distributions must be considered stocastically independent. 

The distances are those described in the following explanations. 
1) The probability of a single reaction in the case S(ρ). See Figure 4 “C”. 
Inside an area with density ρ, the possible linear displacement, to obtain a 

single reaction, of an event with a square section of half-side (or radius if circular 
section, is the same) ℎ · 𝑙𝑙𝜌𝜌 where  𝑙𝑙𝜌𝜌 is the half-side of the area section 𝜎𝜎𝜌𝜌  and 1 ≤
ℎ ≤ 2, is equal to 𝐿𝐿0 = 2 · (2 − ℎ) · 𝑙𝑙𝜌𝜌 (Figure 4, c0) over a total length of 𝐿𝐿 = 2 · 𝑙𝑙𝜌𝜌 =
𝐿𝐿0 + 𝐿𝐿1, where 𝐿𝐿1 = 2 · (ℎ − 1) · 𝑙𝑙𝜌𝜌 is the portion of the linear displacement of the 

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/


The Blind Side of a Rain Gauges Network: Introductory Theoretical Approach, with a First Example of Application 
 

International Journal of Research - GRANTHAALAYAH 39 
 

event, within the same area, to obtain a number of reactions strictly greater than 1 
(Figure 4, c1). Therefore, the respective linear probabilities are 𝑃𝑃0 = 𝐿𝐿0 𝐿𝐿⁄  and 𝑃𝑃1 =
𝐿𝐿1 𝐿𝐿⁄ , with 𝑃𝑃0 + 𝑃𝑃1 = 1. It can be deduced that the spatial probability of obtaining 
only one reaction is equal to 𝑞𝑞1(𝜎𝜎,𝜌𝜌) = (2 − ℎ)2 =  𝜎𝜎𝜎𝜎 + 4 · (1 − (𝜎𝜎𝜎𝜎)1/2). 

2) The probability of a single reaction in the case T(ρ). See Figure 4 “B”. 
Inside an area with density ρ, the possible linear displacement, to obtain 0 

reactions (an undetected event), of an event with a square section of half- ℎ · 𝑙𝑙𝜌𝜌 
where  𝑙𝑙𝜌𝜌 is the half-side of the area section 𝜎𝜎𝜌𝜌  and 0 < ℎ ≤ 1, is equal to 𝐿𝐿0 = 2 ·
𝑙𝑙𝜌𝜌 − 2 · ℎ · 𝑙𝑙𝜌𝜌 (Figure 4, b0) over a total length of 𝐿𝐿 = 2 · 𝑙𝑙𝜌𝜌 = 𝐿𝐿0 + 𝐿𝐿1, where 𝐿𝐿1 = 2 ·
ℎ · 𝑙𝑙𝜌𝜌 is the portion of the linear displacement of the event, within the same zone, to 
obtain a single reaction (Figure 4, b1). Therefore, the respective linear probabilities 
are  𝑃𝑃0 = 𝐿𝐿0 𝐿𝐿⁄  and 𝑃𝑃1 = 𝐿𝐿1 𝐿𝐿⁄ , with 𝑃𝑃0 + 𝑃𝑃1 = 1. It can be deduced that the spatial 
probability of obtaining only one reaction is equal to 𝑞𝑞0(𝜎𝜎,𝜌𝜌) = ℎ2 = ((𝜎𝜎𝜎𝜎)1/2)2 =
𝜎𝜎𝜎𝜎. In this case we found precisely the probability predicted by the elementary and 
fundamental equations (which are used here from a simplified point of view) of 
nuclear physics, used (in an obviously more sophisticated form and generally 
defined in differential terms) within the topic of “scattering”, in particular in the 
definition of the so-called “cross section” Landau and Lifshitz (1982). 

We call 𝑞𝑞0 and 𝑞𝑞1 single reaction factors (or projection factors) of the beams on 
the network. 
Figure 1  

 
Figure 4 The Small Circles Represent Rain Gauges Inside an Area of Average Density  𝜌𝜌. σ𝜌𝜌 = 4 · 𝑙𝑙𝜌𝜌2. 
A Is an Event with Section 𝛔𝛔𝝆𝝆. B Is an Event with Section of Half-Side 𝒉𝒉 · 𝒍𝒍𝝆𝝆, with 𝟎𝟎 < 𝒉𝒉 ≤ 𝟏𝟏. C Is an 
Event with Section of Half-Side 𝒉𝒉 · 𝒍𝒍𝝆𝝆, With 𝟏𝟏 < 𝒉𝒉 ≤ 𝟐𝟐. 𝒃𝒃𝟎𝟎 and 𝒃𝒃𝟏𝟏 Identifying the Linear Vertical 
Displacements (In Succession) Of the Upper Edge of Square B To Obtain 0 Reactions Or 1 Reaction 
Respectively. 𝒄𝒄𝟎𝟎 And 𝒄𝒄𝟏𝟏 Identify the Linear Vertical Displacements of the Upper Edge of Square C To 
Obtain One Or More Than One Reaction Respectively. 

 
NOTE. 
Weak compatibility is called weak because the events of such sections have the 

probability of hitting only one rain gauge, hence the compatibility, but their beams 
are fruitless, hence the weakness. 

NOTE. 
The case 𝜎𝜎 = σ𝜌𝜌 is a special case (Figure 4, “A”); it could be considered both as 

𝑇𝑇(𝜌𝜌) and as 𝑆𝑆(𝜌𝜌), it is a case of boundary between the two sets; for 𝜎𝜎 = σ𝜌𝜌 we have 
𝑞𝑞0�σ𝜌𝜌,𝜌𝜌� = 𝑞𝑞1�σ𝜌𝜌,𝜌𝜌�.  The σ𝜌𝜌beams can be considered fruitful beams with 0 fruits 
(0 undetected events) or they can be considered fruitless beams whose beam 
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elements all completely translate into single reactions, i.e. with no cases where 2 or 
more rain gauges are hit simultaneously. 

 
4.1. ON THE NUMBER OF EVENTS 
In the subsequent rows, reasoning about single reactions or rainfall depths can 

be considered applicable to a single rain gauge or the full set of rain gauges of a ρ-
zone. 

It is worth specifying that in the following lines, σ generally represents the 
average section of the beam events and ρ the average density of the rain gauges in 
the area where the beam impacts. It will become clear when the meaning of the 
symbols is to be considered different. 

In this paper we only analyse reactions that occurred with no more than one 
rain gauge, that is, we are interested in taking into consideration the rainfall events 
that can be measured (given the section that characterizes them) by no more than 
one rain gauge: those that have been defined as EIPE. 

From the database of a network of rain gauges (thinking, for example, about a 
multi-year network of tipping rain gauges with a time-step of a few minutes), for 
each individual rain gauge, it is possible to collect the number, depths and durations 
of the single reactions that occurred with the EIPEs. 

Calling 𝑁𝑁�𝑅𝑅(𝜌𝜌) the number of these reactions, in order to obtain estimates of 
event values regarding the blind area of the network, it seems clear that this number 
must be divided into two components: 

 
𝑁𝑁�𝑅𝑅(𝜌𝜌) = 𝑁𝑁�𝑅𝑅(𝜌𝜌) + 𝑁𝑁𝑅𝑅(𝜌𝜌)                                                                                                 (1) 
 
𝑁𝑁�𝑅𝑅(𝜌𝜌) being the number of single reactions with the EIPEs of S(ρ) (called 

fruitless-EIPEs); 𝑁𝑁�𝑅𝑅(𝜌𝜌) the number of reactions with T(ρ) (fruitful-EIPEs). The 
analysis of 𝑁𝑁�𝑅𝑅(𝜌𝜌) is important because this number must be subtracted from the 
total number of single reactions detected by a rain gauge to obtain the fruits 
(undetected events) of the rain gauge. 

Analysis of the fruitful component: 𝑁𝑁�𝑅𝑅(𝜌𝜌). 
The single reactions of this component (𝑁𝑁�𝑅𝑅(𝜌𝜌)) recorded by a rain gauge can 

be divided into a number of sections, the beams of which produced such reactions, 
allowing the following distributional equation: 

 

                                                              (2)     
 

where each of the 𝑁𝑁𝑅𝑅(𝜎𝜎,𝜌𝜌) (= 𝑝𝑝(𝜎𝜎,𝜌𝜌) · 𝑁𝑁𝑅𝑅(𝜌𝜌)) represents the number of 
reactions had with the beam of section 𝜎𝜎; 𝑝𝑝(𝜎𝜎,𝜌𝜌) is a relative frequency distribution, 
and is such that ∑ 𝑝𝑝(𝜎𝜎,𝜌𝜌) = 1𝐸𝐸(𝜌𝜌) . 

The relationship between the number of events of a beam, 𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌), of section 
σ (with σ compatible with ρ in the strong sense) and the number of single reactions 
is given by the following equation, in which the single reaction factor was calculated 
previously: 
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𝑁𝑁𝑅𝑅(𝜎𝜎,𝜌𝜌) = 𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌) · 𝑞𝑞0(𝜎𝜎,𝜌𝜌)                                                               (3) 

 
which implies 𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌) = (𝑝𝑝(𝜎𝜎,𝜌𝜌) 𝑞𝑞0(𝜎𝜎,𝜌𝜌)⁄ ) · 𝑁𝑁𝑅𝑅(𝜌𝜌). 
From here we can immediately write the total expression of 𝑁𝑁𝑅𝑅(𝜌𝜌)and thus 

obtain a more complete relationship between beams and single reactions: 
 
∑ (𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌) · 𝑞𝑞0(𝜎𝜎,𝜌𝜌))𝐸𝐸(𝜌𝜌) = 𝑁𝑁𝑅𝑅(𝜌𝜌)                                                                   (4) 

 
which can also be written: 𝑁𝑁𝑅𝑅(𝜌𝜌) · σ𝜌𝜌 = ∑ (𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌) · 𝜎𝜎)𝐸𝐸(𝜌𝜌) , moving from a 

relation between numerousness (cardinalities) to a relation between surfaces 
(between strong EIPEs and their reactions). 

To have a clearer vision of the relationships between beams and single 
reactions in the context of fruitful sections (𝑇𝑇(𝜌𝜌) o 𝑇𝑇�(𝜎𝜎)) the following 
definitions/findings may be useful. 

𝑁𝑁𝐹𝐹(𝜌𝜌) = ∑ 𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌)𝐸𝐸(𝜌𝜌)  that represents the overall number of events of beams 
with all possible sections σ strongly compatible with the density ρ. 

𝑁𝑁𝑅𝑅(𝜎𝜎) = ∑ (𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌) · 𝑞𝑞0(𝜎𝜎,𝜌𝜌))𝐸𝐸�(𝜎𝜎)  that represents the part of overall reactions 
(over all ρ densities strongly compatible with σ) obtained from beams of section σ. 

𝑁𝑁𝐹𝐹(𝜎𝜎) = ∑ (𝑁𝑁𝑅𝑅(𝜎𝜎,𝜌𝜌) · 𝑞𝑞0−1(𝜎𝜎,𝜌𝜌))𝐸𝐸�(𝜎𝜎) , the total number of events of beams of 
section σ that produced reactions on all densities ρ strongly compatible with σ. 

The definition of 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌)  introduces one of the main topics of this paper giving 
mathematical expression to the fruits of the beams E(ρ) (i.e. the undetected events) 
deducting from the previous equations: 

 

                                                                         (5) 
 
where 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌)=∑ 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌)𝐸𝐸(𝜌𝜌)  with 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌) = 𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌) · (1 − 𝑞𝑞0(𝜎𝜎,𝜌𝜌)). 
Consequently, the following is also obtained (numerousness balance): 
 
𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌) + 𝑁𝑁𝑅𝑅(𝜌𝜌) = 𝑁𝑁𝐹𝐹(𝜌𝜌)                                                                                            (6) 
 
From the previous equations we obtain: 
 

𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌) = (1−𝑞𝑞0(𝜎𝜎,𝜌𝜌))
𝑞𝑞0(𝜎𝜎,𝜌𝜌) · 𝑝𝑝(𝜎𝜎,𝜌𝜌) · 𝑁𝑁𝑅𝑅(𝜌𝜌)                                                              (7) 

 
From the latter, the expression of the ratio between fruits and reactions of a 

strongly compatible beam can be deduced: 
 

                                         (8) 
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Analysis of the fruitless component: 𝑁𝑁�𝑅𝑅(𝜌𝜌). 
For fruitless sections there exists (as deduced from the previously made 

statistical-geometric considerations) the following relationship between elements 
of the beams and their single reactions: 

 

                                                                                   (9) 
 
with 𝑞𝑞1(𝜎𝜎,𝜌𝜌) previously calculated equal to: 𝜎𝜎𝜎𝜎 + 4 · (1 − (𝜎𝜎𝜎𝜎)1/2). 
 

4.2. ON THE RAINFALL DEPTHS 
Assuming the knowledge of a distribution of rainfall depths across the section 

values compatible with a given density, it is clear that relationships similar to the 
case of the analysis on numerousness can be found; still taking into account the 
previously mentioned hypotheses about homogeneity and isotropy. 

The main ones are written formally; the meaning of the symbols can be deduced 
from the previous lines. 

Also in this case, the two types of components, fruitless and fruitful, must be 
distinguished: 

 
𝐻𝐻�𝑅𝑅(𝜌𝜌) = 𝐻𝐻�𝑅𝑅(𝜌𝜌) + 𝐻𝐻𝑅𝑅(𝜌𝜌)                                                                                         (10) 
 
The fruitful component, 𝐻𝐻𝑅𝑅(𝜌𝜌), corresponds to the following summation: 
 

                                                                        (11) 
 
where each of the  𝐻𝐻𝑅𝑅(𝜎𝜎,𝜌𝜌) (= 𝑃𝑃(𝜎𝜎,𝜌𝜌) · 𝐻𝐻𝑅𝑅(𝜌𝜌))  represents the value of rainfall 

depth measured by the section beam σ, single-reactions in the ρ-density zone; 
𝑃𝑃(𝜎𝜎,𝜌𝜌) is a relative frequency distribution, and is such that ∑ 𝑃𝑃(𝜎𝜎,𝜌𝜌) = 1𝐸𝐸(𝜌𝜌) . 

As for the number of events, the relationships also exist for the rainfall depths: 
 

                                                                                       (12) 
 

and 
 

                                                                                    (13) 
 
where 𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌)=∑ 𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌)𝐸𝐸(𝜌𝜌)  represents the depth of rainfall not 

measured by the rain gauges in the ρ-area; H^𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌) = 𝐻𝐻𝐹𝐹(𝜎𝜎,𝜌𝜌) · (1 −
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𝑞𝑞0(𝜎𝜎,𝜌𝜌)). As with the numerousness, also for the rainfall depths a balance equation 
can be written (rainfall depth balance): 𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌) + 𝐻𝐻𝑅𝑅(𝜌𝜌) = 𝐻𝐻𝐹𝐹(𝜌𝜌). 

Even in the case of rainfall depths, as in the case of event-number, we can write: 
 

                                                               (14) 
 
(with 𝑃𝑃(𝜎𝜎,𝜌𝜌)possibly different from 𝑃𝑃(𝜎𝜎,𝜌𝜌), this last defined for the number of 

events). 
For the fruitless component, the following relationship exists between rainfall 

depth of the elements of the beams and rainfall depth of single reactions: 
 

                                                                                         (15) 
 
With 𝑞𝑞1(𝜎𝜎,𝜌𝜌) previously defined. 
 

4.3. ON THE UNDETECTED VOLUME 
 

                                                                                                 (16) 
 
Where 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌) indicates the overall undetected volume matched to the ρ-area. 
Hence, the expression of the overall undetected volume over the region covered 

by the entire network: 
 

                                                                         (17) 
 

4.2. ON THE AVERAGES OF RAINFALL DEPTHS 
From the specific equations of a section strongly compatible with the density, 

defined for the numerousness and, respectively, the rainfall depths of the beams, 
𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌) · 𝑞𝑞0(𝜎𝜎,𝜌𝜌) = 𝑝𝑝(𝜎𝜎,𝜌𝜌) · 𝑁𝑁𝑅𝑅(𝜌𝜌) and 𝐻𝐻𝐹𝐹(𝜎𝜎,𝜌𝜌) · 𝑞𝑞0(𝜎𝜎,𝜌𝜌) = 𝑃𝑃(𝜎𝜎,𝜌𝜌) · 𝐻𝐻𝑅𝑅(𝜌𝜌) 
(from eq. (3) and similar for H) we can derive the following relationship between 
the averages of the rainfall depths : 

 

                                                                                (18) 
 
Where  𝜇𝜇(𝐻𝐻𝑋𝑋(𝜆𝜆)) = 𝐻𝐻𝑋𝑋(𝜆𝜆) 𝑁𝑁𝑋𝑋(𝜆𝜆)⁄ ; 𝑋𝑋 = 𝑅𝑅,𝐹𝐹 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝜆𝜆 = (𝜌𝜌) 𝑜𝑜𝑜𝑜 (𝜎𝜎,𝜌𝜌). 
From the same equalities and eq. (7) and (14), the equality of the following 

averages can be further deduced: 
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𝜇𝜇(𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌)) = 𝜇𝜇(𝐻𝐻𝐹𝐹(𝜎𝜎,𝜌𝜌)) = 𝜇𝜇(𝐻𝐻𝑅𝑅(𝜎𝜎,𝜌𝜌))                                                        (19) 
 
Then, from equation (8) (for 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂) and from the analogous equation that can 

be written for 𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂 we can deduce the other relations on the averages of the depths 
for a given density: 

 

                                                                                  (20) 
 

From an equation identical to equation (8), 𝑁𝑁
𝐹𝐹(ρ)

𝑁𝑁𝑅𝑅(ρ) = 𝜎𝜎𝜌𝜌 ∑ (𝜎𝜎−1 · 𝑝𝑝(𝜎𝜎,𝜌𝜌))𝐸𝐸(𝜌𝜌) ,  for 
N^F and for H^F this other relation is obtained for the beams. 

 

                                                                                            (21) 
 
Therefore, being able to deduce an important link between the number of 

events and the relative averages of rainfall depths: 
 

                                                                                            (22) 
 
still taking eq. (3) into account. 
 
From the trivial equation 𝐻𝐻𝑅𝑅(𝜎𝜎,𝜌𝜌) · 𝑁𝑁𝑅𝑅(𝜎𝜎,𝜌𝜌) = 𝐻𝐻𝑅𝑅(𝜎𝜎,𝜌𝜌) · 𝑁𝑁𝑅𝑅(𝜎𝜎,𝜌𝜌), the 

following results: 𝐻𝐻𝑅𝑅(𝜎𝜎,𝜌𝜌) · 𝑝𝑝(𝜎𝜎,𝜌𝜌) · 𝑁𝑁𝑅𝑅(𝜌𝜌) = 𝑁𝑁𝑅𝑅(𝜎𝜎,𝜌𝜌) · 𝑃𝑃(𝜎𝜎,𝜌𝜌) · 𝐻𝐻𝑅𝑅(𝜌𝜌) = 𝑝𝑝(𝜎𝜎,𝜌𝜌) ·
𝑃𝑃(𝜎𝜎,𝜌𝜌) · 𝑁𝑁𝑅𝑅(𝜌𝜌) · 𝐻𝐻𝑅𝑅(𝜌𝜌) (TR-equation); from which, summing over the strongly 
compatible sections: 

 

                                             (23) 
 

From definitions (2) and (11) this relationship emerges, 𝜇𝜇(𝐻𝐻𝑅𝑅(𝜎𝜎,𝜌𝜌)) = 𝑃𝑃(𝜎𝜎,𝜌𝜌)
𝑝𝑝(𝜎𝜎,𝜌𝜌)

·
𝜇𝜇(𝐻𝐻𝑅𝑅(𝜌𝜌)), but above all: 

 

                                                                            (24) 
 
And finally, from the definition of p and P, the following equation is given: 
 

                     (25) 
 
with,𝑚𝑚 ∈ ℤ . 
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Considering the set 𝐽𝐽 of the two triples {(𝑝𝑝,𝑁𝑁𝑅𝑅 ,𝑛𝑛), (𝑃𝑃,𝐻𝐻𝑅𝑅 ,𝑚𝑚) | 𝑛𝑛,𝑚𝑚 ∈ ℤ} and 
considering two distinct elements of 𝐽𝐽, (𝑌𝑌1,𝑋𝑋1,𝑛𝑛1) and (𝑌𝑌2,𝑋𝑋2,𝑛𝑛2), with |𝑛𝑛1| > |𝑛𝑛2| 
and 𝑚𝑚 = 𝑛𝑛1 + 𝑛𝑛2, (25) can be written like this: 

 

                        (26) 
 
5. COMMENTS AND DISCUSSIONS 
The main purpose of the theory just exposed is to provide tools for the 

determination (estimation) of 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌), 𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌) and 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌) 
Considering the application of the model to a real case, i.e. having the network's 

rainfall database available, the variables that can be obtained from these data are: 
numerousness, rainfall depth and duration of the single reactions. Sections cannot 
be obtained directly. 

It is presumable that to obtain characteristics (at least from a statistical point 
of view) regarding the sections involved in the phenomenology studied, specific data 
analyses must be resorted to, with the possible aid of the relationships found in this 
paper. 

The values collected by the DB regarding the single reactions of each rain gauge 
present in the DB must be subjected to equations (1) and (10). In fact, from these 
reactions it is necessary to subtract those relating to fruitless beams, thus allowing 
one to work directly on the single reactions associated with events in the blind zone. 
From the point of view of both the numerousness and rainfall depth (N and H), the 
following values are therefore now available: 𝐻𝐻𝑅𝑅(𝜌𝜌), 𝑁𝑁𝑅𝑅(𝜌𝜌) and 𝜇𝜇(𝐻𝐻𝑅𝑅(𝜌𝜌)). 

Once this separation has been accomplished, equations (2), (3), (4), (11) and 
(12) allow one to establish the relationship between the beams of events produced 
by the atmosphere, and strongly compatible with the densities involved in the 
network, and the single reactions (fruitful type) just deduced (always, for both N 
and H). 

Equations (5), (6), (7), (8), (13) and (14) involve and statistically define the 
portions of events not detected by the network; they relate these events with the 
original beams and the fruitful single reactions deduced from the DB (for both N and 
H). 

The beam events are precisely distributed between undetected events and 
single reactions (eq. (6) and analogous for H). 

Finally, equations (16) and (17) obtain an estimate of the volumes of rainfall 
not measured by the network, both for each individual density zone and for the 
region covered by the entire network. 

Equations (9) and (15) express the component of the single reactions, 
concerning the fruitless beams, as a function of the beams with weakly compatible 
sections. 

This component is no less important than the fruitful component, but this paper 
highlights, in particular, the topics regarding the fruitful component. It remains clear 
that even for the fruitless component it could be useful to consider a distribution of 
the single reactions as a function of the 𝑆𝑆(𝜌𝜌) sections. But by only having to subtract 
these reactions from the overall reactions, it might also be sufficient to obtain a 
synthetic estimate for them, without specifications on the sections (see the 
application example section). The single reaction factor, 𝑞𝑞1, would have the sole 
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purpose of making known the characteristics of the fruitless beams of events, with 
respect to the single reactions generated by them. 

From the structure of the model, considered from a mathematical-statistical 
point of view, it can be seen that conducting an analysis on raw data or making use 
of an inferential analysis regarding the distributions p and P would be crucial (see 
the application example section). The following values would be available at this 
point: 𝑁𝑁𝐹𝐹(𝜎𝜎,𝜌𝜌), 𝐻𝐻𝐹𝐹(𝜎𝜎,𝜌𝜌), 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌), 𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌), 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌), etc. 

Equations from (18) to (23) relate the number of events to the rainfall depth; 
these relationships can become useful in the applied phase of the analysis aimed at 
estimating the p and P distributions. These equations also highlight some aspects of 
the model from the point of view of the physical hypotheses initially admitted. 

The equivalences (19) show, from a statistical point of view, the 
correspondence of the hypothesis of local homogeneity placed at the foundation of 
the phenomenological interpretation. 

From these equalities, and considering equation (18), it can also be seen that 
the average of the rainfall depths of all strong single reactions is distributed 
according to the p distribution (the distribution expected for the numerousness), 
both for 𝜇𝜇(𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂(𝜎𝜎,𝜌𝜌)) and for 𝜇𝜇(𝐻𝐻𝐹𝐹(𝜎𝜎,𝜌𝜌)) and for 𝜇𝜇(𝐻𝐻𝑅𝑅(𝜎𝜎,𝜌𝜌)). 

Equation (23) also characterizes the relationship that exists between the 
numerousness and depth of rainfall of the single reactions of each section: 𝐻𝐻𝑅𝑅(𝜎𝜎,𝜌𝜌) 
holds the factor p and 𝑁𝑁𝑅𝑅(𝜎𝜎,𝜌𝜌)  instead holds P. 

The P distribution is presented by relating the inverse of the averages of the 
rainfall depths of the reactions (equation (24)). Equation (18) corresponds to (24) 
with the exchange of roles between 𝐻𝐻𝑅𝑅(𝜌𝜌) and 𝑁𝑁𝑅𝑅(𝜌𝜌) between 𝐻𝐻𝑅𝑅(𝜎𝜎,𝜌𝜌) and 
𝑁𝑁𝑅𝑅(𝜎𝜎,𝜌𝜌) and between p and P. 

Returning to equations (3) and (12), a brief overview of the single reaction 
factors is interesting: 𝑞𝑞0 and 𝑞𝑞1. 

The percentage of a beam of section σ spent in reactions in a density ρ varies 
linearly from 0% to 100% Figure 5, starting from the null section (section to be 
considered only theoretical) up to σ𝜌𝜌 (the section associated with ρ). 

Considering sections and densities strongly compatible with each other: for the 
same density with the same numerousness of beams, a smaller section produces 
more fruits (and fewer reactions) than a larger section. Two beams with the same 
section and numerousness produce more fruits (and fewer reactions) in a lower 
density. 

The fruitless part associated with 𝑞𝑞1, however, decreases non-linearly from 
100% to 0%, from σ𝜌𝜌 4σ𝜌𝜌 Figure 5. Assuming for different sections the same number 
of events (or rainfall depth) of the beams, approximately the single reactions to be 
subtracted from 𝑁𝑁�𝑅𝑅(𝜌𝜌) (or 𝐻𝐻�𝑅𝑅(𝜌𝜌))  due to the fruitless component, amount to one 
and a half times those associated with the fruitful component. 
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Figure 5  

 
Figure 5 Percentage of the Number of Elements or Rainfall Depth, Of the Beams with A Section 
Compatible with A Density Ρ. the Left Increasing Line Represents the Percentage That Can Be 
Deduced with the Single Reaction Factor for the Fruitful Component, While the Right Decreasing 
Line Concerns the Fruitless Component. 

 
The application of the model presented in this paper could be facilitated by the 

assumption of some general hypotheses. 
For example, one of the trivial hypotheses to be admitted could be that of the 

equal distribution of the single reactions according to the sections; in this way we 
would admit 𝑝𝑝(𝜎𝜎,𝜌𝜌) = 1

 #(𝐸𝐸(𝜌𝜌))
 or 𝑃𝑃(𝜎𝜎,𝜌𝜌) = 1

 #(𝐸𝐸(𝜌𝜌))
 (indicating with #(-)  the value of 

the cardinality of a set). Another hypothesis could be the assumption of global 
homogeneity of the beams; in this way the numerousness and the value of rainfall 
depth of each ρ-density zone would depend on the area occupied by this density. 

From an analysis of the original precipitation data, a linear, increasing or 
decreasing dependence of the rainfall depth on the section value could be 
ascertained ascertained (for example 𝑃𝑃(𝜎𝜎,𝜌𝜌) = 𝑚𝑚𝑚𝑚 + 𝑞𝑞, with 𝑚𝑚 and 𝑞𝑞 constant). 
With this hypothesis (H1) and with the hypothesis of the equal distribution (for 
example 

𝑃𝑃(𝜎𝜎,𝜌𝜌) = 1
 #(𝐸𝐸(𝜌𝜌))

) An integral solution to the problem could be convenient, 
noting that, for example, equation (12) in integral form can be written like this: 

 

                                                                          (26) 
 
while, from equation (16), the value of the volume lost in a ρ density zone would 

be the following: 
 

                                                                                (27) 
 

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/


Gianmarco Tardivo 
 

International Journal of Research - GRANTHAALAYAH 48 
 

which, for example, admitting the validity of hypothesis H1 would give the 
following value of the undetected volume 𝜌𝜌: 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌) = 1

3
· 𝐻𝐻𝑅𝑅(𝜌𝜌) · σ𝜌𝜌. Having 

considered for simplicity ∫ 𝑃𝑃(𝜎𝜎,𝜌𝜌) 
𝑇𝑇(𝜌𝜌) = 1, 𝑃𝑃(𝜎𝜎,𝜌𝜌) = 𝑚𝑚 · 𝜎𝜎, with 𝑚𝑚−1 = ∫ 𝜎𝜎 

𝑇𝑇(𝜌𝜌) 𝑑𝑑𝜎𝜎 =
𝜎𝜎𝜌𝜌2 2⁄ , deducing the following rainfall depth balance (𝐻𝐻𝐹𝐹(𝜌𝜌) = 𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂(𝜌𝜌) + 𝐻𝐻𝑅𝑅(𝜌𝜌)): 
2 · 𝐻𝐻𝑅𝑅(𝜌𝜌) = 𝐻𝐻𝑅𝑅(𝜌𝜌) + 𝐻𝐻𝑅𝑅(𝜌𝜌). 

In the final section of this paper, a deeper analysis is presented: a first numerical 
example of application to a database of measurements coming from a real network 
of 138 automatic tipping rain gauges located in a region in northern Italy. 

A note on local homogeneity assumption: 
In some geographical-climatic areas, supported by a specific network of rain 

gauges, situations could arise in which the hypothesis of local homogeneity is not 
sufficiently satisfied. In this case one of the possible solutions could be to divide the 
area of a specific density into subareas. This would lead to making the p and P 
distributions dependent on a third variable that links the specific density zone to its 
own subzones. 

 
6. CONCLUSIONS 
This paper provides tools for an average estimate of the number of lost events, 

their depth and the volumes associated with them. This average can be reduced to 
an annual average by dividing the overall estimate found by the number of years of 
the series of measurements analyzed. This average can be further reduced to an 
aerial average, providing e.g. a density of volume lost per 𝑘𝑘𝑘𝑘2. 

It is assumed that the results of this paper can be useful in various fields, e.g. in 
the hydrological field, in the context of hydrological balance calculations Bedient et 
al. (2019). Generally, this work could be useful in any context in which only rain 
gauge data is available or in any context in which integration with rain gauge data is 
deemed necessary. If the network whose data is used is insufficiently dense for the 
climatic and hydrological context with which we are dealing, an appropriate 
correction of the precipitation values deduced from the rain gauges could be 
significant: clearly taking into account the undetected and estimated volumes. 

The method also has limitations of applicability. During the analysis it was 
found out that: the denser the network, the smaller the extent of such non-captured 
events, in fact the σ_ρ section associated with ρ will be smaller for a denser network. 
If the network is too sparse compared to the measured territory, the method may 
not give reliable results. In the extreme case of a single rain gauge, all measured 
events would be considered EIPE. 

It also seems clear that: the higher the network measurement time frequency, 
the shorter the potentially deductible duration of such events. But it should also be 
noted that a low measurement frequency could cause significant, even if of short 
duration, isolated events to be missed. 

Table 1 shows a simplified clarifying example. St.1 represents the target station, 
of which we want to extract the EIPE values. St.2 is the closest station to St.1, 
followed by St.3 and St.4. It is assumed that the network takes a measurement every 
5 minutes. We find an EIPE just as the sum of the measurements at 00:15 and 00:20 
time; its overall depth is 1.2 mm (0.8 + 0.4). This event is isolated due to the null 
value of the depths accumulated by the other stations contemporary to the EIPE 
found for St.1. It can be seen that if the network measurements instead occurred 
every 30 minutes, the event found would no longer be isolated since in the 30 

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/


The Blind Side of a Rain Gauges Network: Introductory Theoretical Approach, with a First Example of Application 
 

International Journal of Research - GRANTHAALAYAH 49 
 

minutes of the table the other stations would also have measured rainfall. The EIPE 
would therefore be undetectable from the coarsest time-resolution of the data. 

Table 1. An excerpt of a hypothetical TBRG network DB is represented here. St.1 
is the station for which the EIPEs are to be obtained (target station). St.2 is the 
closest station to St.1, followed by St.3 and St.4. hh:mm is the time format. Assuming 
that the network takes a measurement every 5 minutes. The measurement values 
are in mm. 
Table 1 

Time Station 

  St.1 St.2 St.3 St.4 
00:05 0.0 0.4 0.0 0.0 
00:10 0.0 1.2 0.0 0.0 
00:15 0.8 0.0 0.0 0.0 
00:20 0.4 0.0 0.0 0.0 
00:25 0.0 0.0 0.6 0.0 
00:30 0.0 0.0 1.4 0.0 

 
Another problem that would make the application of the present 

methodologies very difficult would be that of too many missing data in the series: 
missing data from a station close to the target station makes the identification of 
EIPEs difficult. 

We then want to highlight that in the application of these methodologies, having 
available for example a database of rainfall measurement values with a time-step of 
just a few minutes, we realize that the variables that can be deduced directly from 
this database are limited. They can be for example: single reactions with 
atmospheric events, the number of such reactions, the durations of the events 
detected, maximum values and intensities of the events, rainfall accumulations or 
rainfall depth, etc... The values of sections are not directly deducible from this 
material. It is assumed that any characteristics can be deduced indirectly, and 
approximately, through numerical and statistical analyses of the available data, also 
knowing that an event single-reacting in a ρ zone cannot necessarily have a mean 
section greater than 4· σ𝜌𝜌, and in the case of strong compatibility it cannot have a 
mean section greater than σ𝜌𝜌. 

It is very important to create a good algorithm for the collection of single 
reactions: it must take into account the fact that the measurement of 2 simultaneous 
extremely isolated events that hit 2 rain gauges, at a sufficiently long distance from 
each other, can be considered 2 distinct single reactions belonging to 2 different rain 
gauges. 

The dynamic aspect of the phenomenon, i.e. the temporal flow, has not been 
analyzed in this paper; even if the topic would be very interesting, but in preparing 
for an introductory discussion the dynamic analysis is conveniently postponed to 
any further in-depth analysis. 

Here we only point out that this dynamic aspect is evidently dependent on the 
measurement frequency of the network, which represents an upper limit of 
significance for the frequency of the dynamics. 
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7. FIRST APPLICATION EXAMPLE AND EMPIRICAL ANALYSIS 
This section describes a first analysis and application of the methods presented 

here. In particular, from the rainfall depth values of the EIPEs which are obtained 
from the DB of a real TBRG network, the mean annual rainfall depth of the EIPEs 
falling in the blind area is deduced. 

The TBRG network taken into consideration is that of the Veneto region Tardivo 
et al.  (2022). In particular, 138 rain gauges are considered, with a series length of 
21 years (2000-2020) and a time resolution of 5 min. 

Network density spans from 0.0012434 (minimum density) to 0.0161642 
(maximum density) stations per km2. The average density of the network (𝜌𝜌𝜇𝜇) is 
therefore 0.0087038 stations per km2, from which we can reduce the value of the 
area of the section associated with 𝜌𝜌𝜇𝜇 (𝜎𝜎𝜌𝜌𝜇𝜇) equal to 114.89235 km2 (4 · 𝜎𝜎𝜌𝜌𝜇𝜇 =
459.5694). 

The graph of the mm/km2 values collected by the network-DB for each density 
zone is represented in Figure 6 (dots in the graph). 

The collection of EIPEs in the DB is organized considering not only events that 
were measured by a single rain gauge in the network, but also those that reacted 
with multiple rain gauges. In the latter case, if among these reactions there are 
reactions sufficiently distant from all the others, these single reactions are 
considered EIPE for these stations, whose measurement is therefore isolated 
compared to the overall phenomenon. Only 5-minute data with a minimum 
precipitation value of 0.4 mm are considered. 

Looking at formula 10, 𝐻𝐻�𝑅𝑅(𝜌𝜌) = 𝐻𝐻�𝑅𝑅(𝜌𝜌) + 𝐻𝐻𝑅𝑅(𝜌𝜌), the following value in mm of 
𝐻𝐻�𝑅𝑅 = ∑ 𝐻𝐻�𝑅𝑅(𝜌𝜌)𝜌𝜌  was obtained from the DB: 352513.6.   

To find the fruits (deductible from 𝐻𝐻𝑅𝑅(𝜌𝜌)) you need to deduce the 𝐻𝐻𝑅𝑅(𝜌𝜌) 
component and subtract it from 𝐻𝐻𝑅𝑅(𝜌𝜌). To this end, some plausible form of the 
section distribution must be deduced. It is possible to obtain this distribution by 
considering equations 12 and 15, which when added together make up 𝐻𝐻𝑅𝑅(𝜌𝜌); 
moving on to the equations in integral form: 

 

 
 

Wanting to obtain a regional average estimate of the value of the annual rainfall 
depth, in a blind area, attributable to any rain gauge, it is convenient to analyze the 
curve (dots in Figure 6) 𝐺𝐺�𝑅𝑅(𝜌𝜌) = 𝐻𝐻�𝑅𝑅(𝜌𝜌) 𝐴𝐴𝑗𝑗� , 𝐴𝐴𝑗𝑗  being the area of the density zone 𝜌𝜌𝑗𝑗 . 

G and therefore F such that 
 

 
 

which can fit 𝐺𝐺�𝑅𝑅(𝜌𝜌)are sought. 
Some analyses were conducted (which are not reported in this context for 

brevity) which led to a first choice for 𝐹𝐹 (𝜌𝜌-indipendent funtion): 
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𝐹𝐹(𝜎𝜎) =
𝛼𝛼
𝜎𝜎𝑛𝑛

+
𝛽𝛽
𝜎𝜎𝑚𝑚

 

 
with 𝑛𝑛 = 4, 𝑚𝑚 = 0.9 and 𝛼𝛼 and 𝛽𝛽 such that 𝐹𝐹 is always greater than 0 on both 

the intervals 𝑇𝑇�𝜌𝜌𝜇𝜇� and the linear regression between 𝐺𝐺 and 𝐺𝐺�𝑅𝑅obtains the 
minimum least squares error Figure 6. In our case: 𝛼𝛼 = 289247.6 and 𝛽𝛽 = 4.354086 

With these parameters the following values are obtained for 𝐺𝐺 and 𝐺𝐺�𝑅𝑅  for 
various usual statistical tests: 𝑅𝑅2 = 0.96;  standard deviation = 4.43;  𝑀𝑀𝑀𝑀𝑀𝑀 =
3.36;  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 3.36. 
 Figure 6 

 
Figure 6 Dots: Depth Density of Each Network Density Present in the Rain Gauge Network (𝑮𝑮�𝑹𝑹(𝝆𝝆)). 
Line: 𝑮𝑮(𝝆𝝆) Deductible From 𝑭𝑭 = 𝜶𝜶

𝝈𝝈𝒏𝒏
+ 𝜷𝜷

𝝈𝝈𝒎𝒎
, With 𝒏𝒏, 𝒎𝒎, 𝜶𝜶 And 𝜷𝜷 Estimated Constants. 

 
𝑃𝑃�(𝜎𝜎) = 𝐹𝐹(𝜎𝜎) 𝑆𝑆𝐹𝐹⁄  is considered as the probability distribution of the sections, 

where: 
 

 
 
At this point 𝐻𝐻�𝑅𝑅�𝜌𝜌𝜇𝜇� = 𝐻𝐻�𝑅𝑅�𝜌𝜌𝜇𝜇� · ∫ 𝑃𝑃�(𝜎𝜎) 𝑑𝑑𝑑𝑑 

𝑆𝑆(𝜌𝜌𝜇𝜇)  and 𝐻𝐻𝑅𝑅�𝜌𝜌𝜇𝜇� = 𝐻𝐻�𝑅𝑅�𝜌𝜌𝜇𝜇� −

𝐻𝐻�𝑅𝑅�𝜌𝜌𝜇𝜇�. 
Numerical results: 𝐻𝐻�𝑅𝑅�𝜌𝜌𝜇𝜇�=17285.86 𝑚𝑚𝑚𝑚; 𝐻𝐻𝑅𝑅�𝜌𝜌𝜇𝜇� = 335227.74 𝑚𝑚𝑚𝑚. 
𝐻𝐻�𝑅𝑅�𝜌𝜌𝜇𝜇� = 𝐻𝐻�𝑅𝑅  equivalence can be assumed by looking for a regional average 

estimate. 
To deduce the estimate of mm associated with the fruits, refer to formulas 13 

and 14: 
 

 
 
where 𝑃𝑃(𝜎𝜎)  = 𝐹𝐹(𝜎𝜎) 𝑇𝑇𝐹𝐹⁄  Figure 7: 𝑇𝑇𝐹𝐹 = ∫ 𝐹𝐹(𝜎𝜎) 𝑑𝑑𝑑𝑑 

𝑇𝑇(𝜌𝜌𝜇𝜇) . Numerical results: 

𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂�𝜌𝜌𝜇𝜇� = 2975835.95 𝑚𝑚𝑚𝑚. 
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Knowing that the average annual rainfall accumulated by a rain gauge in the 
network studied here amounts to 1230 mm (𝐴𝐴𝑐𝑐), it was deduced that 9.4% of 𝐴𝐴𝑐𝑐 
were mm measured from fruitful beams 
(𝐻𝐻𝑅𝑅 (number of stations · number of years)⁄ ), while the estimate of mm falling in 
the blind area (𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂 (number of stations · number of years)⁄ ) reaches 83.48% of 
𝐴𝐴𝑐𝑐. From these latest results it can be deduced that the fruitful events detected by 
the rain gauges represent 10.2% of the total actually fallen Katharina Lengfeld et al. 
(2020). 
Figure 7 

 
Figure 7 Distribution 𝑷𝑷(𝝈𝝈). Where 𝝈𝝈 Spams from 𝝈𝝈𝟎𝟎 = 𝟏𝟏𝟏𝟏 𝒌𝒌𝒌𝒌𝟐𝟐 to 𝝈𝝈𝝆𝝆𝝁𝝁 = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖 𝒌𝒌𝒌𝒌𝟐𝟐. 

 
Some comments 
It is understandable that the distributions to be preferred in this context may 

have the form 
 

 
 
in fact, for F=𝜎𝜎−𝑛𝑛, we have that (except for some particular value of n) 
 

 
 
a polynomial of 𝜌𝜌, with 𝐴𝐴(𝑛𝑛) and 𝐷𝐷(𝑛𝑛) parameters dependent on 𝑛𝑛, curves that 

are well suited for fitting 𝐺𝐺�𝑅𝑅 . 
Initially analyses were conducted on 𝐹𝐹 = 𝛼𝛼 · 𝜎𝜎−𝑛𝑛 (that is, for F with only one 

addend), obtaining an optimal result for 𝑛𝑛 = 1.5.However, the resulting statistical 
tests are not as significant as the case presented above: 𝑅𝑅2 = 0.94; standard 
deviation= 7.45;  𝑀𝑀𝑀𝑀𝑀𝑀 = 22.44In this case 
𝐻𝐻𝑅𝑅 (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 · 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)⁄  corresponds to 8.38% of 𝐴𝐴𝑐𝑐, and 
𝐻𝐻𝑂𝑂𝑂𝑂𝑂𝑂⁄((number of stations·number of years)) to 45.86% of 𝐴𝐴𝑐𝑐. 

It is expected that by using a 6-parameter 𝐹𝐹, i.e. 𝐹𝐹(𝜎𝜎) = 𝛼𝛼1 𝜎𝜎𝑛𝑛1⁄ + 𝛼𝛼2 𝜎𝜎𝑛𝑛2⁄ +
𝛼𝛼3 𝜎𝜎𝑛𝑛3⁄ , even better results can be obtained. 
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It should be noted that when dealing with this type of function (𝛼𝛼 𝜎𝜎𝑛𝑛� ) it is best 
to use a 𝜎𝜎0value greater than zero as the left margin of the set 𝑇𝑇(𝜌𝜌): due to the 
integral operator. The choice in this paper was for 𝜎𝜎0 = 10 𝑘𝑘𝑘𝑘2. Figure 7. 

Briefly, the results obtained could be explained by noting that: 9.4% of 
𝐴𝐴𝑐𝑐  corresponds to 115.62 mm i.e. 1114.38 mm of 𝐴𝐴𝑐𝑐  are not H^R; 83.48% of 
𝐴𝐴𝑐𝑐 corresponds to 1026.8 mm, so it can be conjectured that the total average annual 
rainfall falling around a rain gauge in the region reaches about 2250 mm. 

It is important to note that the previously estimated value of 83.48% of 𝐴𝐴𝑐𝑐must 
be associated with the 𝑃𝑃(𝜎𝜎)distribution calculated for the sections. Therefore, the 
calculation of the volumes lost by the network is mainly linked to the smaller 
sections in favour of a reduction in lost volumes. 

It may be interesting to know that the average duration of EIPEs numerically 
captured by network data is 7.2 minutes; the maximum duration is 2.5 hours (values 
dependent on the threshold parameter chosen, safely, for the determination of EIPE: 
at least 0.4 mm for a 5-minute datum). The monthly distribution obtained from the 
entire network is a bi-modal distribution, with the most significant peak in the 
month of May and a second peak in November. 
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