

Original Article
ISSN (Online): 2350-0530
ISSN (Print): 2394-3629

 International Journal of Research - GRANTHAALAYAH
December 2024 12(12), 129–138

How to cite this article (APA): Rawat, A., Chaprana, K., Kumari, K., and Aggarwal, R. (2024). AI-Powered Task Automation and
Assistance on Linux. International Journal of Research - GRANTHAALAYAH, 12(12), 129–138. doi:
10.29121/granthaalayah.v12.i12.2024.6117

129

AI-POWERED TASK AUTOMATION AND ASSISTANCE ON LINUX

Ankita Rawat 1, Kirti Chaprana 1, Kshama Kumari 1, Ruchika Aggarwal 1

1 Department of Computer Science & Engineering, Echelon Institute of Technology, Faridabad, India

ABSTRACT
This research presents the design and development of Jarvis, an intelligent personal
assistant tailored for Linux-based systems. Inspired by virtual assistants like Cortana and
Siri, Jarvis offers a user-friendly interface for executing a wide range of daily tasks via
voice or text input. The system integrates modules for speech recognition, text-to-speech
synthesis, web automation, and machine learning-based command interpretation. Jarvis
facilitates activities such as general conversation, online searches, weather updates,
health inquiries, and event reminders. By combining Python libraries like
speech_recognition, pyttsx3, pywhatkit, and wikipedia, the assistant ensures seamless
interaction and efficient task execution. The layered architecture—from user input to
system-level operations—enables robust, real-time responses, making Jarvis a practical
and scalable solution for enhancing Linux user productivity.

Received 26 October 2024
Accepted 28 November 2024
Published 31 December 2024
DOI
10.29121/granthaalayah.v12.i12.202
4.6117

Funding: This research received no
specific grant from any funding agency in
the public, commercial, or not-for-profit
sectors.

Copyright: © 2024 The Author(s).
This work is licensed under a Creative
Commons Attribution 4.0
International License.

With the license CC-BY, authors retain
the copyright, allowing anyone to
download, reuse, re-print, modify,
distribute, and/or copy their
contribution. The work must be
properly attributed to its author.

1. INTRODUCTION
Imagine having an AI assistant as capable and responsive as Jarvis from the Iron

Man films. The idea of interacting with a virtual helper that manages your digital
tasks simply through voice commands or minimal keyboard inputs has transitioned
from fiction to reality through the advancements in artificial intelligence and natural
language processing. Virtual assistants like Siri, Cortana, and Alexa have set the
benchmark for voice-controlled automation. Drawing inspiration from these
intelligent systems, our project seeks to create a Linux-based personal assistant
named Jarvis, developed in Python, to simplify and optimize everyday computing
activities.

The key aim of this project is to develop a user-friendly, AI-powered interface
that assists users in their daily tasks such as opening websites, retrieving
information from Wikipedia, performing Google searches, playing videos and music

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.29121/granthaalayah.v12.i12.2024.6117&domain=pdf&date_stamp=2024-12-31

AI-Powered Task Automation and Assistance on Linux

International Journal of Research - GRANTHAALAYAH 130

on YouTube, and even participating in simple conversational exchanges. These
operations are facilitated by integrating various Python modules that handle speech
recognition, web automation, text-to-speech conversion, and natural language
interpretation.

The increasing reliance on voice-operated assistants is grounded in their ability
to improve productivity and user engagement. In educational environments, for
example, students benefit immensely from quick access to learning materials via
YouTube, an essential feature of our Jarvis assistant. Jarvis utilizes the pywhatkit
module to automate searches and playback of YouTube content, providing a
seamless bridge between user intent and multimedia access [1]. This enhances the
learning experience by making it interactive, convenient, and less dependent on
traditional manual input.

Another powerful functionality of Jarvis is its ability to fetch and relay factual
data through Wikipedia searches. With the integration of the wikipedia Python
module, Jarvis enables users to gain access to summarized information on a wide
range of topics simply through voice or text queries. This is particularly useful for
quick fact-checking or background research in professional or academic contexts
[2].

Moreover, Jarvis is programmed to access various search engines such as
Google, Bing, and Yahoo, using the webbrowser module. This feature ensures that
users can obtain web-based information without needing to manually open a
browser and type queries. The assistant listens to the spoken query, processes it,
and executes the appropriate web search command, offering results instantly [3].
By automating this process, the assistant enhances user convenience and reduces
the time spent on repetitive actions.

The increasing integration of voice assistants in daily computing demonstrates
a shift in how users interact with technology. Voice-based interaction provides
hands-free convenience and caters to users with different accessibility needs,
thereby democratizing the use of technology. According to recent research, virtual
assistants significantly improve user engagement and reduce cognitive load by
streamlining multi-step tasks into simple, natural language commands [4].

In addition to these capabilities, Jarvis supports a conversational interface that
can respond to greetings and basic questions, thereby simulating a natural
interaction. Although not as advanced as commercial AI assistants with access to
large cloud infrastructures, Jarvis offers a solid foundation for implementing
personal productivity tools on open-source platforms. This provides users the
ability to customize and expand functionalities according to their specific
requirements.

In summary, the Jarvis assistant for Linux presents a highly customizable and
efficient alternative to commercial virtual assistants. It leverages Python's powerful
libraries to deliver core features like media playback, web browsing, factual
information retrieval, and basic conversation. As a learning project, it not only
demonstrates the implementation of natural language processing and AI in daily
computing but also encourages further exploration in the fields of human-computer
interaction and intelligent systems [5].

2. LITERATURE REVIEW

In the evolving landscape of human-computer interaction, digital personal
assistants (DPAs) like Jarvis are gaining traction due to their integration of speech
recognition technologies and artificial intelligence for task automation. These

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/

Ankita Rawat, Kirti Chaprana, Kshama Kumari, and Ruchika Aggarwal

International Journal of Research - GRANTHAALAYAH 131

assistants function through natural language processing (NLP), voice recognition,
and contextual understanding to aid users in everyday tasks. The Jarvis assistant,
inspired by the AI assistant in Iron Man and commercial technologies like Apple's
Siri and Microsoft's Cortana, aims to bridge the gap between user commands and
system actions primarily in Linux environments [1].

Jarvis emphasizes the use of speech as its primary interface. This reflects the
broader movement in HCI (Human-Computer Interaction) where voice-based
systems are becoming central to smart assistant development. Speech recognition,
which encompasses both recognition and synthesis, forms the crux of such
interfaces. A recognizer converts speech into text, while a synthesizer generates
speech from textual data [2]. Systems like Google's Speech-to-Text and Amazon's
Polly exemplify these functionalities. In Jarvis, these tasks are accomplished using
the speech_recognition and pyttsx3 Python libraries, which offer straightforward
integration of voice-based I/O into scripts [3].

The voice signal, being rich in temporal and spectral features, necessitates the
application of sophisticated digital signal processing methods for analysis and
understanding. Jarvis uses MFCC (Mel Frequency Cepstral Coefficients) for feature
extraction, a widely adopted technique in the field of speech recognition. MFCCs
represent the short-term power spectrum of a sound and are known for their
alignment with human auditory perception, which enhances the performance of
speech recognition systems in noisy environments [4]. These coefficients are
derived from a Fourier transform of a signal and filtered through a Mel-scale filter
bank, allowing them to reflect perceptually relevant frequencies [5].

Digital personal assistants have evolved from basic command-response models
to intelligent systems capable of contextual reasoning and user adaptation. For
example, Cortana uses cloud-based cognitive services to continuously adapt to user
preferences, while Siri incorporates natural language generation to create more
human-like responses [6]. Jarvis integrates similar functionalities by employing
modules like wikipedia, webbrowser, and pywhatkit to offer web-based content
retrieval, video playback, and automated browsing, thereby ensuring multi-modal
interaction.

The need for such assistants in Linux environments has been significantly
understated despite the platform's popularity among developers and system
administrators. The proposed Jarvis fills this void by offering a customizable and
open-source solution tailored for Linux systems. Unlike Windows and iOS platforms,
which come with native assistants, Linux lacks an inbuilt, user-friendly voice-based
automation system. Hence, this project serves both functional and educational
purposes by exposing developers to real-world applications of Python in AI and
system automation [7].

One of the key objectives of the project is to extend the capabilities of the
assistant to more interactive domains, including context-aware task management,
event reminders, and conversational AI. By feeding a predefined set of Q&A into the
system, Jarvis is trained to simulate human-like conversations, adding an element of
personality to its interactions. This function is comparable to early chatbot models
like ELIZA but with deeper integration into OS-level operations [8].

Moreover, future iterations of Jarvis envision broader system control
capabilities such as managing server deployments, monitoring system health,
performing backups, and scaling resources autonomously. These objectives align
with ongoing trends in DevOps where automation plays a pivotal role in enhancing
reliability and efficiency [9]. If achieved, this would elevate Jarvis from being a
personal productivity tool to a semi-autonomous system administrator.

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/

AI-Powered Task Automation and Assistance on Linux

International Journal of Research - GRANTHAALAYAH 132

The accuracy of voice-based interaction was tested with different users,
highlighting the robustness of MFCCs across gender variations in speech patterns.
This diversity in user testing indicates a strong foundation for broader deployment.
However, continual learning and model updates will be necessary for handling
regional accents, noisy environments, and ambiguous commands.

In conclusion, the literature underscores that Jarvis is not only a utility tool but
a research-driven platform to explore AI, automation, and user interaction in open-
source environments. It integrates best practices from commercial assistants while
contributing to the ecosystem of intelligent voice agents for Linux systems.

S.No Earlier
Techniques

Methodology Advantages Disadvantages References

1 Rule-Based
Systems

Used predefined
rules and keyword

matching to
generate fixed

responses

Easy to
implement; Fast
response time

Not scalable; No
contextual

understanding

[1], [2]

2 Template-
Based

Chatbots

Used pattern-
matching and fixed

templates for
responses

Useful for FAQs;
Requires less
training data

Inflexible; Can’t
learn from new

data

[3]

3 Speech
Recognition
with HMMs

Hidden Markov
Models for

phoneme-based
speech recognition

Effective for
continuous

speech
recognition

Requires large
training data;
Prone to noise

[4], [5]

4 MFCC-based
Voice

Processing

Feature extraction
using Mel Frequency
Cepstral Coefficients

Efficient audio
representation;

Good for
classification

tasks

Sensitive to
background

noise

[6]

5 Decision
Trees & SVM

Machine learning
classifiers for
text/speech
command

classification

High accuracy
on small
datasets

Not efficient for
large-scale or

real-time
systems

[7]

6 Recurrent
Neural

Networks
(RNN)

Sequence-based
learning for natural

language
understanding

Good for
sequential data;

Learns from past
inputs

Vanishing
gradient
problem;

Slower training

[8]

7 Google
Assistant

Architecture

Cloud-based NLP
with real-time

processing and API
integration

Powerful cloud
processing;

Integrates with
many apps

Privacy
concerns; Needs

continuous
internet access

[9]

8 Cortana and
Siri

NLP pipeline with
voice recognition

and contextual
learning

Multi-platform
support; User-

friendly

Limited
customization;

Heavily
platform

dependent

[10]

9 Jarvis
(Current
Project)

Python-based
system using

speech_recognition,
pyttsx3, web

automation, etc

Open-source;
Customizable;

Works on Linux;
Performs

multiple daily
tasks

Limited NLP
capabilities;

Basic ML
integration

[11]

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/

Ankita Rawat, Kirti Chaprana, Kshama Kumari, and Ruchika Aggarwal

International Journal of Research - GRANTHAALAYAH 133

3. PROPOSED MODEL, WORKING, AND ARCHITECTURE

The proposed model focuses on the development of Jarvis, a Linux-based
digital personal assistant that emulates the functionality of widely used commercial
AI assistants like Cortana, Siri, and Alexa. However, unlike its commercial
counterparts, Jarvis is designed to be open-source, customizable, and developer-
friendly. The goal of this project is to create a lightweight, voice-enabled assistant
that simplifies daily tasks through natural language interaction, thereby providing
an accessible and intelligent interface between the user and their system.

Jarvis primarily supports voice and text-based interaction to execute a wide
variety of tasks including playing music and videos, performing web searches,
fetching weather updates, accessing Wikipedia entries, and providing dictionary
meanings or health-related information. It also includes the ability to manage
reminders and scheduled events. At its core, Jarvis uses speech recognition to
convert spoken input into text using Python’s speech_recognition library, which
leverages Google’s speech API for accurate transcription [1]. Text-to-speech
conversion is then handled using pyttsx3, which is a platform-independent text-to-
speech library capable of working offline [3].

The architecture of Jarvis is designed to be modular and extensible, following a
layered approach. The first layer is the Input Layer, which accepts either voice or
text commands. Voice commands are captured through a microphone and
converted to text, while text commands are directly entered via the keyboard. Once
the command is captured, it is processed by the Processing Layer, which acts as the
decision-making engine. This layer includes a command classifier that uses keyword
detection and basic natural language processing techniques to determine the user’s
intent. For more sophisticated interpretations, machine learning algorithms are
employed to ensure optimal decision-making and dynamic response generation [2].

Once the intent is identified, the appropriate Functional Module is invoked.
Each module is responsible for a specific task. For example, the Web Search Module
utilizes the webbrowser module to open search queries in browsers like Google or
Bing. The YouTube Automation Module uses pywhatkit to play the requested video
directly on YouTube. Similarly, the Wikipedia Module uses the wikipedia API to fetch
summaries of topics, while the Weather Module accesses real-time weather data via
external APIs. Other modules handle dictionary queries, medical information, and
reminder tasks. These modules are seamlessly integrated and return their
respective outputs back to the processing engine.

The final step in the process occurs at the Output Layer, where the system
communicates the results to the user. The output can either be displayed as text on
the screen or spoken aloud using the pyttsx3 TTS engine. This dual-output capability
enhances accessibility and allows users to interact with Jarvis in both quiet and
hands-free environments. This layered approach not only ensures clarity and
maintainability in system design but also simplifies the process of adding new
modules in the future.

The typical workflow of Jarvis is linear yet modular. When a user speaks or
types a command, the assistant first identifies the command's content using speech
recognition or text parsing. The command is then processed for meaning, classified
based on intent, and routed to the appropriate functional module. Once the task is
executed—whether that’s playing a YouTube video, retrieving weather data, or
conducting a web search—the system formats the output and delivers it back to the

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/

AI-Powered Task Automation and Assistance on Linux

International Journal of Research - GRANTHAALAYAH 134

user in both textual and spoken form. This entire pipeline creates a seamless human-
computer interaction experience.

From a technical perspective, the assistant relies on various Python libraries
and tools to function effectively. The speech_recognition library is used for
converting speech to text, while pyttsx3 handles speech synthesis. Web-related
tasks are executed using modules like webbrowser, pywhatkit, and requests.
Wikipedia searches are handled using the wikipedia module, and time-based
features are implemented using the built-in datetime and time libraries. The
assistant is optionally extendable to include a graphical user interface (GUI) using
tkinter or PyQt5.

One of the key advantages of this system is its offline compatibility, made
possible by modules that do not depend on internet connectivity, such as pyttsx3.
Moreover, Jarvis is platform-independent in terms of software, though currently
developed for Linux systems. Its customizability allows developers to easily add or
modify functions as per their needs, making it highly adaptable. Furthermore, its
scalability makes it suitable for future integration with smart home systems and
server-side applications.

In terms of architectural design, the system is envisioned as a series of
connected layers: an input interface (microphone or keyboard), a recognition
module, a processing engine with task-specific modules, and a dual-mode output
system. This architecture allows Jarvis to handle multiple types of user requests
efficiently and provides a strong foundation for future enhancements. The
architecture also supports asynchronous task execution, which could be extended
using threading or multiprocessing techniques in Python for more complex
automation scenarios.

As for future scope, Jarvis can be further enhanced by integrating with
advanced NLP models like BERT or GPT for more natural and human-like
interactions. Additionally, incorporating IoT integration would allow Jarvis to
control physical devices such as lights, fans, or smart appliances, expanding its
utility beyond desktop interaction. It can also evolve into a server management
assistant, capable of handling backups, deployments, logging, and monitoring,
potentially replacing traditional administrative roles [4].

In conclusion, the proposed model of Jarvis serves as a foundational prototype
for a fully functional Linux-based digital assistant. Its layered, modular design
ensures robustness, while its reliance on widely available Python libraries makes it
both accessible and extendable. Through continuous development and integration
with more advanced AI techniques, Jarvis has the potential to become a powerful
tool for personal and professional productivity.

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/

Ankita Rawat, Kirti Chaprana, Kshama Kumari, and Ruchika Aggarwal

International Journal of Research - GRANTHAALAYAH 135

4. RESULT ANALYSIS
To evaluate the efficiency and practicality of the proposed digital assistant

(Jarvis), a comparative analysis was performed between automated assistant-based
execution and manual execution for a set of daily computing tasks. The comparison
was based on the following key metrics: task execution time, response speed, task
completion accuracy, and system resource usage.

4.1. TASK EXECUTION TIME
One of the most vital parameters for determining the effectiveness of a digital

assistant is the speed at which it can execute a task. Jarvis was tested for common
actions such as web searching, retrieving YouTube videos, Wikipedia lookups,
weather updates, and voice recognition responses. Figure 1 displays the comparison
of execution times (in seconds) between Jarvis and traditional manual operations.
Figure 1

Figure 1 Task Execution Time Comparison

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/

AI-Powered Task Automation and Assistance on Linux

International Journal of Research - GRANTHAALAYAH 136

From the figure, we observe that:
• Jarvis significantly reduces the time required to perform routine actions

like web search (1.2s vs. 3.5s) and Wikipedia lookup (1.0s vs. 2.8s).
• Playing videos on YouTube, which includes parsing and launching the

video, is also faster (1.8s vs. 4.2s).
• Weather retrieval is streamlined using API-based automation in Jarvis

(0.9s vs. 2.4s).
• The overall average reduction in execution time was approximately

58% compared to manual workflows.
This enhancement is primarily attributed to the integration of APIs and the

parallel processing capabilities of Python modules like speech_recognition,
pywhatkit, and webbrowser.

4.2. ACCURACY AND RESOURCE UTILIZATION
The reliability of a virtual assistant hinges not only on speed but also on task

accuracy and how efficiently it utilizes system resources. Figure 2 showcases the
task completion accuracy and average CPU/RAM utilization in percentage terms for
both Jarvis and manual operations.
Figure 2

Figure 2 Accuracy and Resource Usage Comparison

Analysis of the results reveals that:

• Task Accuracy: Jarvis achieved a completion accuracy of 96%, while
manual operations recorded an 85% average success rate. This
difference is attributed to human error and slower typing or search
behavior.

• System Resource Usage: Jarvis exhibited a moderate resource
footprint at around 35% CPU/memory utilization, which is reasonable
considering the use of multiple services. Manual operation peaked at
around 50%, mostly due to opening multiple browser tabs, switching
applications, and running heavy video streaming in parallel.

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/

Ankita Rawat, Kirti Chaprana, Kshama Kumari, and Ruchika Aggarwal

International Journal of Research - GRANTHAALAYAH 137

These results suggest that Jarvis not only reduces time but also ensures high-
quality task handling with less strain on the system, making it suitable for low-end
hardware setups.

4.3. REALISTIC SCENARIO TESTING
To further validate Jarvis’ utility in real-world settings, a simulation was

conducted where two participants (one male and one female) performed five
different tasks with and without Jarvis:

Task Jarvis Avg.
Time (s)

Manual Avg.
Time (s)

Jarvis Accuracy
(%)

Manual
Accuracy (%)

Search “Latest AI
Trends”

1.4 3.2 100 90

Play "Motivational
Video"

1.9 4.1 95 85

Open Wikipedia
“Python”

1.1 2.7 98 87

Retrieve Weather
Info

1 2.5 96 88

Dictionary:
“Ephemeral”

1.5 3 92 80

The table confirms consistent performance and reliability. The assistant also

handled different voice pitches and speech clarity effectively using MFCC-based
preprocessing, which is integrated into Python’s speech_recognition module [1].

4.4. PERFORMANCE LIMITATIONS
Despite its strengths, some challenges were noted:

• Voice misinterpretation occurred when ambient noise exceeded 45
dB, leading to slight task execution errors.

• Dependency on Internet connectivity for web-based tasks sometimes
introduced latency during peak hours.

• Limited local task support (e.g., file system navigation, document
editing) due to a lack of context-based reasoning modules.

These limitations present future scope for integrating noise suppression
systems, offline fallback capabilities, and better NLP modules.

CONFLICT OF INTERESTS

None.

ACKNOWLEDGMENTS

None.

REFERENCES

G. Sharma, A. Gupta, and N. Kumar, "YouTube as an educational tool: Empirical
evidence from learners," Education and Information Technologies, 2020.

J. Leskovec and A. Rajaraman, Mining of Massive Datasets, Cambridge University
Press, 2014.

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117

AI-Powered Task Automation and Assistance on Linux

International Journal of Research - GRANTHAALAYAH 138

Python Software Foundation, "webbrowser — Convenient Web-browser
controller." [Online]. Available:
https://docs.python.org/3/library/webbrowser.html

J. W. Moore et al., "Cognitive impact of voice assistants in information search,"
Journal of Human-Computer Interaction, 2021.

M. Hossain, "Developing a Smart Personal Assistant using Python," International
Journal of Computer Applications, vol. 179, no. 18, 2018.

G. Hinton et al., "Deep Neural Networks for Acoustic Modeling in Speech
Recognition," IEEE Signal Processing Magazine, 2012.

L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in
speech recognition," Proceedings of the IEEE, 1989.

Python SpeechRecognition Library. [Online]. Available:
https://pypi.org/project/SpeechRecognition/

S. Davis and P. Mermelstein, "Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences," IEEE
Transactions on Acoustics, Speech, and Signal Processing, 1980.

R. G. Lyons, Understanding Digital Signal Processing, 3rd ed., Pearson, 2010.
M. B. Hoy, "Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants,"

Medical Reference Services Quarterly, 2018.
C. C. Aggarwal, Machine Learning for Text, Springer, 2018.
J. Weizenbaum, "ELIZA—A Computer Program For the Study of Natural Language

Communication Between Man And Machine," Communications of the ACM,
1966.

K. M. Colby, Artificial Paranoia: A Computer Simulation of Paranoid Processes,
Pergamon Press, 1975.

B. A. Shawar and E. Atwell, "Chatbots: Are they really useful?," LDV Forum, 2007.
X. Huang, A. Acero, and H. W. Hon, Spoken Language Processing, Prentice Hall, 2001.
N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods, Cambridge University Press, 2000.
S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation,

1997.
S. Pichai, "Introducing Google Assistant," Google I/O Keynote, 2016.
Microsoft Corporation, "Cortana Architecture Overview," Microsoft Documentation,

2020.
Jarvis Project Repository and Developer Notes, "Internal Documentation," 2024.

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117
https://dx.doi.org/10.29121/granthaalayah.v12.i12.2024.6117

	AI-Powered Task Automation and Assistance on Linux
	Ankita Rawat 1, Kirti Chaprana 1, Kshama Kumari 1, Ruchika Aggarwal 1
	1 Department of Computer Science & Engineering, Echelon Institute of Technology, Faridabad, India

	1. INTRODUCTION
	2. Literature Review
	3. Proposed Model, Working, and Architecture
	4. Result Analysis
	4.1. Task Execution Time
	Figure 1

	4.2. Accuracy and Resource Utilization
	Figure 2

	4.3. Realistic Scenario Testing
	4.4. Performance Limitations

	CONFLICT OF INTERESTS
	ACKNOWLEDGMENTS
	REFERENCES
	G. Sharma, A. Gupta, and N. Kumar, "YouTube as an educational tool: Empirical evidence from learners," Education and Information Technologies, 2020.
	J. Leskovec and A. Rajaraman, Mining of Massive Datasets, Cambridge University Press, 2014.
	Python Software Foundation, "webbrowser — Convenient Web-browser controller." [Online]. Available: https://docs.python.org/3/library/webbrowser.html
	J. W. Moore et al., "Cognitive impact of voice assistants in information search," Journal of Human-Computer Interaction, 2021.
	M. Hossain, "Developing a Smart Personal Assistant using Python," International Journal of Computer Applications, vol. 179, no. 18, 2018.
	G. Hinton et al., "Deep Neural Networks for Acoustic Modeling in Speech Recognition," IEEE Signal Processing Magazine, 2012.
	L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," Proceedings of the IEEE, 1989.
	Python SpeechRecognition Library. [Online]. Available: https://pypi.org/project/SpeechRecognition/
	S. Davis and P. Mermelstein, "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences," IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980.
	R. G. Lyons, Understanding Digital Signal Processing, 3rd ed., Pearson, 2010.
	M. B. Hoy, "Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants," Medical Reference Services Quarterly, 2018.
	C. C. Aggarwal, Machine Learning for Text, Springer, 2018.
	J. Weizenbaum, "ELIZA—A Computer Program For the Study of Natural Language Communication Between Man And Machine," Communications of the ACM, 1966.
	K. M. Colby, Artificial Paranoia: A Computer Simulation of Paranoid Processes, Pergamon Press, 1975.
	B. A. Shawar and E. Atwell, "Chatbots: Are they really useful?," LDV Forum, 2007.
	X. Huang, A. Acero, and H. W. Hon, Spoken Language Processing, Prentice Hall, 2001.
	N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.
	S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, 1997.
	S. Pichai, "Introducing Google Assistant," Google I/O Keynote, 2016.
	Microsoft Corporation, "Cortana Architecture Overview," Microsoft Documentation, 2020.
	Jarvis Project Repository and Developer Notes, "Internal Documentation," 2024.

