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ABSTRACT 
"Smart contracts" are software documented on block chains under specific circumstances 
that control the allocation of assets between individuals. In a smart healthcare supply 
chain, product traceability is a major issue. Two enabling technologies in the smart 
healthcare supply chain that ensure product traceability and safeguard against data 
manipulation are block chain and smart contracts. A smart contract workflow must be 
developed and carried out in a block-chain-based supply chain in accordance with the 
input data. This paper has an objective function to meet the entire system as a parallel 
composition of smart contracts and users this paper analyze the behavior of smart 
contracts and a core language of programs with an essential set primitive. The 
experimental results show that the proposed method can accurately detect security 
vulnerabilities and logic flaws in smart contracts through formal verification and other 
analysis techniques before smart contracts are deployed. 
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1. INTRODUCTION 
Smart contracts are applications that operate on the blockchain. The block-

chain is a revolutionary technology that both industry and academia. A smart 
contract can encode various rules for asset management within its source code. The 
established rules of a contract will be adhered to rigorously and automatically 
during its execution, embodying the principle that ‘code is law’ Liu et al. (2021). 
Smart contracts enable the automatic fulfillment of contract terms, thereby 
supporting intricate decentralized applications. smart contracts have been 
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deployed in various blockchain platforms, enabling a wide range of applications that 
could serve in various domains, such as supply chain, healthcare, and the Internet of 
Things, might utilize it as their basis. This popularity can be related to its enduring 
and decentralized personality traits. Smart contracts running on block chains are 
dynamic programs that respond to events generated by external actors, triggering 
function calls. Participants can emit events in an asynchronous manner. 
Nonetheless, certain functionalities need to be limited to participants occupying 
designated roles within the system, roles that can change over time as the system 
develops Xu et al. (2025). 

The smart supply chain can play an essential role using Internet-of-Things (IoT) 
and smart devices, during the pandemic situation, such as COVID-19. Blockchain is 
an instance of distributed shared ledger which employs distributed storage to 
maintain Bitcoin transaction data in distinguish blocks. Each block's data controls 
whether its sub-blocks are formed. However, Bitcoin's practical application value is 
restricted since to its merely single-function form and inability to develop intricate 
applications on the blockchain network. Blockchain provides data traceability and 
protection from tampering at the same time Rahman et al. (2020).  

One of the most significant challenges in a block-chain based supply chain 
system is coping with the additional cost associated with implementing inaccurate 
smart contracts. likewise, it is challenging to regulate the dynamic flow of smart 
contracts. The control flow of smart contracts is not guaranteed to be immutable. 
The process for creating a smart contract workflow must be accurately completed 
prior to the deployment of associated smart contracts.  

The interactions between smart contracts can lead to a growing network of 
interconnected contracts over time. As a result, predicting the behaviors of these 
contracts can be difficult. Furthermore, many current methods primarily 
concentrate on identifying possible logical flaws in smart contracts [Rahman et al. 
(2020),Rahman et al. (2021)]. 

Key Security Measures for Smart Contracts Yashavant et al. (2024) 
1) Formal Verification:   

• Utilizing mathematical proofs to confirm the accuracy of smart contract 
logic.   

• Ensuring adherence to expected behaviors prior to deployment.   
2) Security Audits:   

• Performing comprehensive code reviews by expert security auditors.   
• Detecting and addressing vulnerabilities before deployment.   

3) Best Coding Practices:   
• Adopting secure coding methodologies.   
• Leveraging well-established libraries and frameworks.   
• Installing reentrancy guards and appropriate access control measures.   

4) Upgradable Smart Contracts:   
Implementing proxy contract frameworks to facilitate future upgrades without 

jeopardizing security.   
5) Multi-Signature Authorization:   
Mandating multiple approvals for critical operations to strengthen control and 

prevent unauthorized access.   
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1.1. CONTINUOUS MONITORING APPROACHES   

1) On-Chain Monitoring Tools:   
• Employing blockchain analytics platforms to identify suspicious 

transactions and anomalies in real-time.   
• Monitoring contract interactions and fund transfers.   

2) Automated Threat Detection:   
• Deploying AI-driven monitoring systems to recognize behavioral 

patterns and potential security threats.   
• Utilizing anomaly detection algorithms for proactive alerts.   

3) Logging and Alerts:   
• Creating solid logging systems for tracking contract execution.   
• Establishing real-time alert mechanisms to inform administrators 

of unusual activities.   
4) Bug Bounty Programs:   

• Motivating ethical hackers to uncover vulnerabilities through 
incentive programs.   

• Strengthening security via community-driven assessments and 
feedback.   

5) Regular Smart Contract Updates:   
Conducting periodic reviews and updates of smart contracts to tackle emerging 

vulnerabilities and enhance performance. 
 
2. RELATED WORK 

In the past few years of research authors suggested a novelty to analyze smart 
contract behaviors using formal methods with the aim of monitoring the security of 
high level potential. Some review articles have focuses on tools on detecting 
vulnerabilities rather than algorithms. One of the most cited motivation of the 
research is TheDAO attack Laneve et al. (2019). 

In the paper Laneve et al. (2019) discusses the conduct of smart contracts and 
their engagement with outside participants is analyzed to optimize objective 
functions. We establish a fundamental programming language with a basic 
collection of smart contract elements and portray the entire system as a parallel 
arrangement of smart contracts and users. Consequently, we represent the 
behaviors of the system as a first logic formula in Presburger arithmetic and 
examine the highest profit for each participant by resolving arithmetic constraints.  

In this paper Fu et al. (2023), we present the challenges associated with 
detecting re-entrancy attacks on Ethereum, focusing on the origins of these attacks, 
their behavioral traits, and the limitations of current detection techniques. Initially, 
we investigate the origins of re-entrancy attacks by examining the execution 
patterns of smart contracts in real transactions, and we highlight two shortcomings 
in the run-time detection of such attacks. Next, we chose actual re-entrancy attack 
transactions that have been reported officially and conducted a manual analysis of 
the smart contracts and their call sequences involved in these occurrences. We 
distilled two critical components of re-entrancy attacks and explored various types 
of these attacks, summarizing their behavioral characteristics from a theoretical 
perspective. 
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This paper Prajapati et al. (2023) introduces a defense mechanism that tracks 
the timestamps of DAOs between parent and child nodes, highlighting suspicious 
nodes that surpass a set threshold within a time period, blacklisting, and eliminating 
DAOs from detected malicious nodes. Additionally, it restricts the amount of DAO 
sent by a child node within a defined time frame to lessen the effects of an attack. 
The results of the experiments indicate that the insider attack on DAO adversely 
affects network performance (packet delivery ratio, average end-to-end delay, and 
throughput) across different intervals of DAO replay. The proposed defense 
mechanism reinstates optimal network performance with a high detection success 
rate. 

This paper Xu et al. (2025) suggested utilizing dynamic condition response 
(DCR) graphs for both role-based and declarative access control in smart contracts, 
along with approaches for test-driven modeling and refinement of DCR graphs to 
facilitate the secure design and evolution of smart contracts. We demonstrate that 
these graphs enable the representation and visualization of a type of dynamic access 
control where access permissions change as the state of the contract advances. Their 
implementation aids in the clear declaration of access control permissions, 
enhances code auditing, supports test-driven modeling, allows for multiple 
iterations of smart contracts, and fosters a better understanding for users. 

This paper Ding et al. (2020)   introduces a method for dynamic monitoring and 
analysis at the function level for smart contracts, along with a prototype system 
implementation. The approach incorporates a "shadow stack" and associated data 
structures into the virtual machine of the testing block chain platform by examining 
the function management principles alongside the original stack. It then observes 
the byte code following code instrumentation, documenting the relationships of 
function calls and gathering relevant metrics such as time, instruction count, and gas 
consumption. The prototype system detects inefficient behaviors within contracts 
using visualization and intelligent analysis techniques, thereby creating an 
optimization feedback loop for smart contracts through iterative enhancements. 
Ultimately, the paper demonstrates the high feasibility and practicality of the 
monitoring and analysis method, as well as the performance of the prototype 
system, through experimental validation. 

The authors in paper [Elia et al. (2022),Acquaviva (2025)] introduces a 
blockchain-based framework designed for the ongoing monitoring of applications, 
which facilitates the authorized deletion of IoT data in critical safety databases. The 
framework supports the implementation of data-evaluation policies that can 
identify redundant or outdated measurements within the database, thereby 
allowing them to be flagged for removal. The innovation of our method lies in the 
execution of the data-evaluation policy through a smart contract. In addition, 
utilizing a blockchain guarantees that essential operations in the database (such as 
deletions) are secure from tampering and adhere to the standards set forth by 
system stakeholders. We illustrate the effectiveness of the proposed framework 
through a real-world case study involving accelerometer data from a bridge 
monitoring application, while also assessing the transactional overhead caused by 
interactions with the blockchain. 

This paper Alzahrani et al. (2021) facilitates innovation in collaborative 
business processes and encourages the RCM data market within the rail industry. 
By utilizing existing smart contract-based models for the trading and sharing of IoT 
data across blockchain networks, we pinpoint effective methods for enforcing 
agreements and ensuring equitable cost distribution among stakeholders without 
relying on a trusted third party. We provide an outline for a block chain-based RCM 
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data audit framework, specifying appropriate data access agreements and 
accounting models in detail. Additionally, we evaluate three permissioned block 
chain platforms Hyperledger Fabric, Sawtooth, and Iroha for their feasibility in 
implementation. Lastly, the chapter discusses plans for future work focused on 
validating the tools using two industrial scenarios: monitoring systems for 
unattended overhead line equipment and axle bearings. 

 
3. METHODOLOGY AND IMPLEMENTATIONS 

The state-of-the-art performances in tasks related to programming language 
processing. During data prepossessing phase, collect different number of  datasets 
and subsequently perform data cleaning. Finally, employ the proposed model to 
encode the data. Data cleaning is the length of a smart contract often varies based 
on its functions and intricacies is as shown in Figure 1. The source code is processed 
through tokenization, breaking it down into tokens that signify semantic units. After 
this, the tokenized data is converted into numerical formats, with each token 
assigned a distinct integer ID, creating the input token ID sequence. To fulfill the 
model’s input specifications, padding and truncation techniques are utilized, 
guaranteeing a consistent sequence length. 
Figure 1 

 
Figure 1 Data cleaning cycle 

 
Certain complex contracts can go beyond several thousand tokens. However, 

managing lengthy text has historically presented difficulties in deep learning. 
Transformer models like BERT and GPT do have constraints when it comes to 
handling sequences that go beyond their token limit (typically around 512 tokens 
for numerous models). For Optimized LSTM and Optimized CNN models, direct 
processing of input IDs and masks is not feasible. 

The proposed suggested model has been specifically adjusted to improve its 
alignment with the intended task by utilizing pre-processed input IDs and attention 
masks. Nevertheless, for the Optimized LSTM and Optimized-CNN models, we 
refrain from performing any fine-tuning on the proposed model regarding data pre-
processing [Tang et al. (2023), Hwang et al. (2022)]. 
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Figure 2 

 
Figure 2 Proposed Model 

 
The proposed model is shown in Figure 2 built upon the Transformer 

architecture, which comprises multiple encoder layers. Prior to entering the 
encoder layers. The input data undergoes an embedding process followed by the 
encoding stage; fully connected layers are added for classification purposes. The 
proposed model   for implementation is depicted in Figure 3. 
Figure 3 

 
Figure 3 Optimized Proposed Model 

 

In the training phase of this proposed model, the tokenizer utilizes embedding 
techniques that convert text or symbol data into vector forms. This procedure 
changes each word into a 512-dimensional word embedding. The suggested method 
aims to help the model grasp the positional information found within the sequence. 
It links each position to a particular vector representation to convey the relative 
positions of tokens throughout the sequence. 

The suggested model utilizes multiple encoder layers to carry out deep 
representation learning. Each encoder layer consists of two sub-components: multi-
head self-attention and a feed-forward neural network. The self-attention 
mechanism aids in capturing the relationships and dependencies among various 
positions in the input sequence. The feed-forward neural network is tasked with 
independently transforming and mapping the features for each position. 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to assure an unbiased assessment of various methods, we conducted 
training and testing in the same environments. Each experiment was carried out on 
a laptop equipped with system parameters are  shown in Table 1. 

 

Table 1  
Table 1 System Device Parameters 

SL 
no. 

Device type Parameter 

1 Processor 13th Gen Intel(R) Core(TM) i7-1355U  1.70 GHz Installed RAM 16.0 GB 
(15.7 GB usable) 

2 System type 64-bit operating system, x64-based processor 
3 Software 

used 
Python and MATLAB 2021b 

 
4.1. EVALUATION METRICS 

To assess different approaches, apply performance metrics such as accuracy, 
F1 score, recall, and precision. Accuracy represents the proportion of accurately 
predicted instances (which includes both true positives and true negatives) 
compared to the overall number of instances. It offers a broad indication of overall 
correctness. 

The models are evaluated based on the metrics listed as  
1) Precision 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  +𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   

2) Recall 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
  

3) F1 Score  

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  2(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

  
4) Accuracy 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

 𝑆𝑆𝑆𝑆𝑆𝑆 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)+ 𝑆𝑆𝑆𝑆𝑆𝑆 (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛𝑛𝑛𝑛𝑛 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

  

 
The performance configuration parameters for the Optimized-proposed model 

is shown in Table 2. 
Table 2  

Table 2 Performance Configuration of Optimized-Proposed Model 

SL no. Parameters Configuration 
1 Learning Rate 0.0001 
2 Dropout values 0.5 
3 Epochs 60 
4 Size for each batch 128 
5 Hidden dimension 128 
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6 Filter 64 
7 Folds 5 
8 Swapped node NA 
9 layer 2 

10 Output dimensions 4 

 
5. RESULTS 

In labeling the invulnerable dataset, we excluded contracts that exhibit 
characteristics possibly indicating vulnerabilities. The characteristics identified for 
four categories of vulnerabilities are defined as follows Xu et al. (2025).   

• Reentrancy: Contracts that include the call.value function may be 
susceptible to reentrancy vulnerability.   

• Timestamp Dependency: Contracts featuring block.timestamp and 
now variables may have a vulnerability related to timestamp 
dependency.   

• Unchecked Low-Level Calls: Contracts that utilize end, call, callcode, 
and delegatecall functions can lead to unchecked low-level calls 
vulnerability.   

• Tx.origin: Contracts that reference the tx.origin variable might be at 
risk of Tx.origin vulnerability.   

The comparison of performance evaluation metrics results are shown in Table 
3and Table 4. The pictorial chart has been drawn is shown in Figure 4and Figure 5. 
Table 3 

Table 3 Comparison of Evaluation Metrics Results Models 

Sl 
no. 

Evaluation 
Metrics 

Optimized CNN 
in % 

Optimized LSTM 
in % 

Proposed optimized 
model in % 

1 Precision 71.76 73.61 95.78 
2 Recall 71.36 64.06 92.56 
3 F1 Score 70.62 63.05 92.54 
4 Accuracy 85.54 81.96 95.77 

 
Figure4 

 
Figure 4 Comparison of Evaluation Metrics Results Models. 

 
The Comparison of Evaluation Metrics Results for each type of Vulnerability is 

shown in Table 4. 
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Table 4  
Table 4 Comparison of Vulnerability Metrics 

Vulnerability Precision Recall F1 score Accuracy 
Reentrancy 84.49 88.46 86.3 91.56 
Time stamp dependency 91.43 98.92 93.94 97.29 
Unchecked Low-Level Calls 99.98 99.87 99.66 96.32 
Tx.origin 99.96 86.06 92.47 98.94 

 
Figure 5 

 
Figure 5 Comparison of Vulnerability Metrics 

 
6. CONCLUSIONS 

In this paper, we introduced a novel method for detecting vulnerabilities in 
smart contracts that emphasizes a high level of security and ongoing monitoring for 
assessing smart contract behaviors. According to the evaluation results, we 
demonstrated that the suggested prototype outperformed existing methods in 
terms of speed. Across a range of vulnerability types, this work illustrated that the 
proposed technique exhibits superior effectiveness in detection performance and 
quicker detection times compared to leading smart contract vulnerability detection 
tools. On average, proposed prototype showed the best performance on precision 
95.78%, accuracy 95.77, recall 92.56 and F1-score with 92.54% respectively. Also, 
the proposed takes 100ms which is at least 12 times faster compared to the other 
tools. 
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