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ABSTRACT 
Integrating solar energy with battery energy storage systems (BESS) is critical in 
sustainable development plans and carbon neutrality goals. Can the energy exchange 
between supply and demand offer hope via effective management of BESS operations? 
How will the depth of discharge in microgrids affect individual BESS prosumers? 
Motivated by such questions, this study determines the minimum energy costs and 
optimal energy management considering the BESS discharge depth for industrial 
prosumers with different PV power production to electricity demand ratios. In addition, 
the impact of Epv/Eload and depth of discharge on individual PV-BESS microgrid 
prosumers is evaluated annually from a technical, economic, and environmental 
perspective. Moreover, considering the negative impact of the self-consumption rate 
(SCR) on the low voltage distribution network (overvoltage, power loss, etc.), 
unfavorable depth of discharge thresholds and Epv /Eload are determined. The 
optimization framework is built in Python Gurobi, and Mixed Integer Linear 
Programming solves the complex problem. The results show that a higher Epv /Eload can 
reduce the cost of energy (COE) by up to 84.1% and increase the renewable fraction (RF) 
and electricity sales revenues by up to 61% and up to 570.25 $/yr. It also emphasizes that 
for Prosumer 5, with the highest Epv /Eload (176.5%), each depth of discharge is not 
feasible due to SCR. In contrast, a higher depth of discharge can increase CO2 reduction 
by up to 4.45 tons/yr and thus provide additional revenues of up to 197.41 $/yr. 
Evaluating BESS operations in microgrid energy management will help many 
stakeholders determine reliable investments and help in the planned transition to clean 
energy. 
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1. INTRODUCTION 
A growing interest in clean energy alternatives due to global temperature 

concerns is helping countries meet their net-zero ambitions. Tax reductions for 
renewable technologies in electricity generation, batteries in energy storage 
solutions, and incentives for clean energy production make integration a priority 
International Energy Agengy. (2023) Battery energy storage systems (BESS) with 
superior performance compared to their peers can improve the energy balance of 
supply and demand to fill renewable energy generation outages and reduce over-
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penetration of renewable energy. Integrating renewable energy and BESS under the 
hybrid power system (HPS) provides many technical, economic, and environmental 
benefits. For instance, the levelized cost of energy (LCOE) can be reduced by up to 
34.9% Zieba Falama et al. (2022), diesel consumption by up to 1.3% Jacobus et al. 
(2011), and CO2 by up to 53.5% Qi et al. (2022). Thus, grid dependency can be 
reduced by up to 3.62% Üçtuğ and Azapagic (2018), and load coverage ratio and 
self-consumption ratio (SCR) can be increased by up to 14.08% and 16.56% Liu et 
al. (2020). For HPSs with higher cost-benefit ratios, it is critical to determine energy 
management based on BESS operating parameters and aging characteristics and to 
properly characterize the relationship of battery degradation cost with different 
operating models for economic system operations Bordin et al. (2017). The most 
significant of the operating parameters is the depth of discharge (DOD). 
Determining the optimum performance of existing DOD-based conventional models 
is complicated due to linearization issues. The proposed optimization framework 
based on C-rate and DOD overcomes the related problem. It appropriately 
incorporates different control strategies of BESS into energy management Qiu et al. 
(2022). Managing the number of initial charges, DOD, and charge/discharge cycles 
to reduce BESS investment, replacement cost, and microgrid's operating cost 
positively impacts the microgrid lifetime. It increases daily financial savings by up 
to 21.6% Mostafa et al. (2020). It is also highlighted that 80% of DOD can minimize 
the cost of microgrid extension in long and short-term processing models and 
improve BESS lifetime Alsaidan et al. (2016). In microgrids, considering the cost of 
battery degradation with demand response programs changes the optimal DOD 
margin, favoring a DOD of 60% for temperatures above 10°C Zia et al. (2019). 
Moreover, reducing C-rate constraints reduces the system cost by lowering BESS 
purchase prices De La Torre et al. (2019). In addition to the capacity reduction in 
degradation characteristics, the inclusion of the replacement year in the microgrid 
sizing determines an optimal BESS capacity of 2,602 MWh and an optimal DOD of 
80% over the 10-year planning horizon, reducing the total cost by up to 6.5% Amini 
et al. (2021). Besides the economic objective, in the transition to zero-energy 
communities, especially in residential buildings, choosing an optimal ESS capacity 
of 7.8 kWh and operating the DOD at 77% ensures optimal performance Tsioumas 
et al. (2021). For techno-economic operating plans based on loss of power supply 
probability and energy cost, choosing an optimum DOD of 70% is recommended 
Hlal et al. (2019). However, a 1% change in DOD could impact up to 6 million £ on 
grid-level BESS plans for wind-reduced energy. Accordingly, it is proposed to 
operate DOD at 90%, provided that BESS purchase prices are 125-150 £/kWh Rayit 
et al. (2021). Moreover, reducing the DOD by 60% increases the net present value 
by 5.83%, even though it decreases PV capacity by 31.25% and increases the LCOE 
by 5.51% Gomez-Gonzalez et al. (2020). A 1% change in DOD leads to a decrease in 
system efficiency, especially hydrogen production, but low DOD operation based on 
renewable energy is favourable for extending the BESS lifetime Tebibel et al. (2015). 
Increasing mechanical stress on the active masses and the growing size of sulfate 
crystals are the main reasons for shortening the BESS lifetime Alramlawi and Li 
(2020). Since deep discharge affects lifetimes and shallow discharge cannot meet 
renewable targets, building a real time battery operating cost model can reduce 
operating costs by 50% Sufyan et al. (2019). However, determining and 
implementing the optimal state of charge (SOC) for each day and the optimal DOD 
for each cycle can minimize microgrid operating costs and leave efficiency in the 
background Fallahifar and Kalantar (2023). Therefore, the trade-off between 
lifetime and optimal cycle depth should be addressed Dulout et al. (2017). Moreover, 
minimizing the charging and discharging power and energy charging cost, 
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considering the consumption of residential loads, energy production, and time-of-
use tariffs, allows the operation of the optimal DOD in the range of 10-85% and 
extends the economic BESS lifetime Al Essa (2020). Consequently, total discharge 
energy and internal resistance, Coulomb efficiency, lithium coating, and positive 
electrode active material conditions should be considered in addition to the 
optimization strategy until the end of the BESS lifetime to determine the optimum 
DOD Park et al. (2023). 

The effects of DOD on microgrids and HPS, considering degradation 
characteristics and optimal DOD determination strategies, have been frequently 
evaluated in the literature. However, studies have yet to determine the optimal DOD 
of individual BESSs for feasible microgrid energy management considering the load 
balance of solar energy. This study proposes an optimization framework to 
minimize energy costs for industrial prosumers in the microgrid using individual 
BESSs. DOD's technical, economic, and environmental impacts on the optimization 
scheme are evaluated for prosumers with varying EPV/Eload ratios. Accordingly, the 
optimal DOD to improve the energy balance for each prosumer is determined. The 
study is organized as follows. Section 1 presents the literature review and 
originality. Section 2 explains the methodology, mathematical modeling, and 
assumptions. Section 3 compares and evaluates the optimization results. Finally, 
Section 4 presents conclusions, including recommendations for the future. 

 
2. METHODOLOGY AND MATERIAL 

2.1. MICROGRID MODEL AND SCENARIOS 
Five prosumers with different EPV/Eload ratios connected to the common 

distribution bus in the microgrid are considered in the microgrid model, as shown 
in Figure 1. The PV production data of the prosumers are obtained annually from 
renewables. ninja Renewables.ninja (2023), and the electricity purchase prices are 
obtained annually from the Energy Exchange Istanbul (EXIST) in Türkiye EPIAS 
(2023). PV capacities are assumed to be 1, 1, 8.75, 8.33, and 6.25 kW from Prosumer 
1 to Prosumer 5, respectively. For PV-integrated prosumers using individual BESS, 
the ratio of PV energy production to load consumption is 11.6%, 23%, 50.3%, 95.2%, 
and 176.5%, respectively. In this way, the significance of simultaneous load 
consumption with PV can be evaluated technically, economically, and 
environmentally for each prosumer in the microgrid with the objective of minimum 
energy cost.  On the other hand, from Prosumer 1 to Prosumer 5, the nominal BESS 
capacity is 6, 6, 52.5, 50, and 37.5 kWh, respectively. BESS is prohibited from 
purchasing electricity from the grid due to uneconomic and environmental 
concerns. BESS does not plan to sell electricity to the grid as the microgrid model 
aims to improve the supply-demand balance, fill valley periods in electricity 
production, and use it at load. Electricity purchases from the grid, PV power 
production, and BESS discharge are managed appropriately in the background 
based on hourly data on demand to minimize energy costs. The constraints and 
objective functions related to the energy balance and management in the microgrid 
are introduced in Section 2.4. The entire optimization process is performed annually 
in Python via Gurobi, while the optimization problem is solved using mixed integer 
linear programming (MILP). In addition to MILP, Gurobi includes various problem 
solvers, such as linear and quadratic programming Python (n.d.). Figure 1 shows 
microgrid model. 
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Figure 1 

 
Figure 1 Microgrid Model 

 
The optimization framework is conducted annually in Python Gurobi while 

evaluating the technical, economic, and environmental impacts of EPV/Eload and 
depth of discharge on microgrid prosumers. Moreover, the technical disadvantages 
of SCR on distribution busbars (overvoltage, power loss, etc.) are considered, and 
unsuitable SCR thresholds are determined. BESS' loss is considered only as a 
technical parameter, while SCR, self-supply ratio (SSR), the renewable fraction (RF), 
and energy exchange ratio (EXR) are decision criteria that concern both technical 
and environmental aspects. Net present cost (NPC), cost of energy (COE), for 
electricity costs, electricity sales revenue, and additional CO2 reduction income are 
economic performance measures, while CO2 is analyzed only for environmental 
concerns. Dynamic PV power production and TOU data were used, but capital, 
replacement, and O&M costs were not considered. The main scenarios of this study, 
where the relevant feasibility outcomes are assessed for each prosumer profile, are 
shown in Table 1.  PV production data was taken the renewables. ninja open data 
web source and is shown in Figure 2. 
Table 1 

Table 1 Scenarios of the Microgrid 

Scenario EPV/Eload (%) Demand DODmax (%) Minimize the 
cost of energy 

Feasibility 
Analysis 

Sub-scenario 

A 11.6 Prosumer 1  

20, 30, … ,80, 
90 

 

 

✓ 

 

 

✓ 

A.1, A.2, … , A.7, A.8 

B 23 Prosumer 2 B.1, B.2, … , B.7, B.8 

C 50.3 Prosumer 3 C.1, C.2, … , C.7, C.8 

D 95.2 Prosumer 4 D.1, D.2, … , D.7, D.8 

E 176.5 Prosumer 5 E.1, E.2, … , E.7, E.8 
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Figure 2 

 
Figure 2 PV Energy Production Curves for Prosumers 

 
The study area is selected as Istanbul Fatih considering the geographical 

coordinates 41°51"N, 28°57'13 "E. Annual electricity purchase prices from EPIAS 
are presented in Figure 3 (a), while Figure 3 (b) shows the demand profiles for the 
prosumers on any possible day. Since the impact of maximum DOD on microgrid 
energy costs and feasibility is analyzed considering EPV/Eload in the minimum energy 
cost objective, DOD effects can be easily assessed by keeping the price of electricity 
sold to the grid lower. Higher electricity selling prices cause the excess PV energy 
produced for the minimum energy cost objective to be sold to the grid instead of 
charging the BESS. Accordingly, grid energy sales are minimized by assuming that 
the price of electricity sold to the grid will be $0.017 $/kWh. Since the energy costs 
related to the energy balance are examined, and PV, BESS in-vestment, replacement, 
and O&M costs are not included in the optimization, the NPC for energy cost is 
calculated. 
Figure 3 

 
Figure 3 (a) Electricity Purchase Prices, (b) Daily Demand Profiles for Prosumers 
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2.2. ENERGY BALANCE AND CONSTRAINTS 
Energy balance and constraints in microgrid planning are considered for the 

load, PV, BESS, and grid side. Considering the load side first, for each prosumer k, 
the sum of the power purchased from the grid for the load and the power 
transferred from PV and BESS to the load at time step t gives the demand profile for 
each prosumer as in Equation (1). 

 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎− 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘 (𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘 (𝑡𝑡) + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘 (𝑡𝑡) = 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘 (𝑡𝑡)                               (1) 

 

Second, on the PV side, for each prosumer k at time step t, the power transferred 
from the PV to the load, the power that the PV charges the BESS, and the power sold 
from the PV to the grid are summed to get the total PV power production as in 
Equation (2). 

 

𝑃𝑃𝑃𝑃𝑃𝑃−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘 (𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃−𝑡𝑡𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘 (𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑘𝑘 (𝑡𝑡)                                (2) 
 

Third, on the BESS side, the charging power of the BESS needs to be calculated 
as in Equation (3) by summing the power that the grid and PV charge the BESS at 
time step t for each prosumer k. Similarly, the BESS discharge power is calculated as 
in Equation (4) by summing the power sold from the BESS to the grid and the power 
transferred to the load. However, this study prohibits BESS charging and 
discharging from the grid. 
 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎− 𝑏𝑏𝑏𝑏𝑏𝑏
𝑘𝑘 (𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃−𝑡𝑡𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑡𝑡) = 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 (𝑡𝑡)                                                         (3) 

 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘 (𝑡𝑡) + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘 (𝑡𝑡) = 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 (𝑡𝑡)                                                                                 (4)  

 

Moreover, it is necessary to set limits on the BESS charging and discharging 
power for each prosumer k over an operating horizon of one year. As evaluated in 
Equation (5), the BESS capacities selected for each prosumer limit the BESS charging 
and discharging power at the maximum limit. Here, binary logic (0 or 1) ensures 
that BESS charging and discharging operations are not performed simultaneously. 

𝑘𝑘 = {1,2,3,4,5} 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ∈ 𝑁𝑁 =>

  �
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 (𝑡𝑡) ≤ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘  . (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)                   ∀𝑘𝑘, 𝑡𝑡
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 (𝑡𝑡) ≤ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘  . (1 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)      ∀𝑘𝑘, 𝑡𝑡

                                (5) 

 

At the beginning of the annual analysis of the optimization process, the SOC 
initially assumes that the BESS is full. Accordingly, for each prosumer k, the BESS 
initially operates at total capacity within the optimization framework. On the other 
hand, at each time step, the SOC balance is operated as in Equation (6), considering 
the BESS charging and discharging power and charging and discharging efficiency. 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑡𝑡 − 1) + 𝜂𝜂𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 (𝑡𝑡) −
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘 (𝑡𝑡)

𝜂𝜂𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
                          (6)  

 

The coefficient m was introduced to Gurobi in Python to study the DOD effects 
depending on the SOC range, which is also the scope of the study. Considering a 
factor of 0.1 in Equation (7) for the relevant parameter, multiplying the nominal 
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BESS capacity by 0.1 allows SOCmin to be set at 10% and DODmax to be operated at 
90%. Similarly, considering a multiplier of 0.9, SOCmin and DODmax are set at 90% and 
10%, respectively. SOCmax is set to 100%, not exceeding the nominal BESS capacity. 

 

𝑘𝑘 = {1,2,3,4,5} ;  𝑚𝑚 = {0.1,0.2, . . ,0.7,0.8} ;  ∀𝑘𝑘, 𝑡𝑡 =>

 �
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 (𝑡𝑡) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑘𝑘  .𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 (𝑡𝑡) ≤ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘                                  
                                                                       (7)  

 

Finally, on the grid side, the power purchased from the grid is determined as in 
Equation (8) by summing the power purchased from the grid for the load and the 
BESS at time step t for each prosumer k. Similarly, in Equation (9), the power sold 
to the grid is calculated by summing the power sold to the grid from PV and BESS. 
 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎− 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘 (𝑡𝑡) + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑡𝑡) = 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑘𝑘 (𝑡𝑡)                                               (8) 
 

𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘 (𝑡𝑡) + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑘𝑘 (𝑡𝑡) = 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘 (𝑡𝑡)                                                                                                           (9) 

  
The maximum limits for the power purchased from and sold to the grid are 

determined as in Equation (10). This study sets very high maximum power limits 
(no limits) for the power purchased from the grid or sold to the grid. In contrast, the 
electricity purchased from the grid and sold to the grid is managed asynchronously 
using binary logic (0 or 1) within an appropriate plan. 

 

𝑘𝑘 = {1,2,3,4,5} 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ∈ 𝑁𝑁 =>

  �
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘 (𝑡𝑡) ≤ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘 (𝑡𝑡). (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)      ∀𝑘𝑘, 𝑡𝑡
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘 (𝑡𝑡) ≤ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘 (𝑡𝑡). (1 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)      ∀𝑘𝑘, 𝑡𝑡
                                    (10)  

 

As a result, for each prosumer k at time step t, multiplying the power purchased 
from the grid by the realtime grid electricity purchase price determines the 
electricity purchase cost, and multiplying the power sold to the grid by the 
electricity sale price determines the electricity sale revenues. Subtracting revenues 
from costs, the energy cost for each prosumer k at time step t is calculated in 
Equation (11). 

 

𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘 (𝑡𝑡) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑘𝑘 (𝑡𝑡) = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 (𝑡𝑡)               (11) 
 

2.3. OBJECTIVE AND DECISION CRITERIA 
The optimization framework that evaluates the effects of DODmax on the energy 

cost and the feasibility results of each industrial prosumer in the microgrid 
determined by EPV/Eload needs to be terminated at the minimum energy cost 
objective. Accordingly, the energy costs obtained by optimal managing the energy 
balance at time step t for each prosumer k should be cumulatively summed as in 
Equation (12). 

 

∑ ∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 (𝑡𝑡)�       ∀𝑘𝑘, 𝑡𝑡𝑡𝑡𝑘𝑘                                                                           (12) 
 

NPC and COE are the primary considerations for economic decision criteria, 
while revenue from CO2 reduction is secondary. Given the average nominal discount 
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rate of the Central Bank of Turkey last year (23.3%) and the inflation rate (14%) 
Head Office (2023), the real discount rate is calculated based on the famous Fisher 
equation as in Equation (13). Extending the energy cost results obtained for each k 
prosumer in the one-year optimization framework to a 20-year project horizon 
requires a long operational period. Accordingly, each year is considered a constant 
when extending the annual optimization results to the project horizon (20 years). 
The annual energy costs are used in the NPC calculation in Equation (14), 
considering the real discount rate for the project horizon. The ratio of annual energy 
cost to load consumption is calculated in Equation (15) to represent the COE for 
each prosumer k. Traditionally determined by the energy production cost ratio, this 
expression considers load consumption in the denominator as electricity demand is 
fully met Demirci et al. (2022), Demirci et al. (2023), Ozturk et al. (2021), Ozturk & 
Demirci (2023). 

 

𝑖𝑖 = 𝑖𝑖′−𝑓𝑓
1+𝑓𝑓

                                                                                                                                      (13) 
 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 (𝑡𝑡)
(1+𝑖𝑖)𝑡𝑡

                                                                                                                                                         (14)  
 

𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 (𝑡𝑡)𝑁𝑁
𝑡𝑡=1
∑ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘 (𝑡𝑡)𝑁𝑁
𝑡𝑡=1

                                                                                                                                                 (15)  
 

The environmental criteria associated with the technical criteria are RF, SCR, 
SSR, and EXR. CO2 is the primary decision criterion for environmental concerns. For 
each prosumer k, the RF is calculated as in Equation (16) by subtracting the 
electricity demand at time step t from the power purchased from the grid for the 
load and proportioning it to the electricity demand. Summing the electric power 
transferred from PV and BESS to the load and multiplying it by the emission factor 
of the electricity to be purchased from the grid mix allows the CO2 reduction to be 
calculated as in Equation (17). Here, the Climate Transparency Report estimates the 
carbon emission from the grid mix for Turkey as 426.1 g/kWh. Although yet to be 
implemented in Türkiye, a carbon tax of 20 $/ton, considered a first step, is regarded 
as a decision criterion that can provide additional revenue. Accordingly, annual CO2 
reduction revenues are calculated as in Equation (18) Terkes et al. (2022). 

 

𝑅𝑅𝑅𝑅 = �1 −
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎− 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘 (𝑡𝑡)

∑ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘 (𝑡𝑡)𝑁𝑁

𝑡𝑡=1
� . 100                                                                                         (16) 

 

𝐶𝐶𝐶𝐶2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �𝑃𝑃𝑃𝑃𝑃𝑃−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘 (𝑡𝑡) + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘 (𝑡𝑡)� .𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚                                              (17)  
 

𝐶𝐶𝐶𝐶2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �𝐶𝐶𝐶𝐶2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�. 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)                                                                                                            (18)  
 

For each prosumer k, the ratio of the electric power transferred from PV to load 
to the total produced PV electric power at time step t is considered as SCR. It is 
calculated as in Equation (19). Conversely, the fraction of the electric power 
transferred from PV to load in the total electricity demand is known as the SSR and 
is determined in Equation (20). In the Only-Grid, the electric power that each 
prosumer k will purchase from the grid at time step t is expected to be decreased by 
PV and BESS, reducing grid dependency. Accordingly, EXR is calculated as in 
Equation (21) by subtracting the electric power transferred from PV and BESS to 
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the load from the total electricity demand and dividing by the total electricity 
demand Terkes et al. (2023), Terkes et al. (2023). 

 

𝑆𝑆𝑆𝑆𝑆𝑆 =  � ∑ 𝑃𝑃𝑃𝑃𝑃𝑃−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘 (𝑡𝑡)𝑁𝑁

𝑡𝑡=1
∑ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑘𝑘 (𝑡𝑡)𝑁𝑁
𝑡𝑡=1

� . 100                                                                          (16) 

 

𝑆𝑆𝑆𝑆𝑆𝑆 =  �∑ 𝑃𝑃𝑃𝑃𝑃𝑃−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘 (𝑡𝑡)𝑁𝑁

𝑡𝑡=1
∑ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘 (𝑡𝑡)𝑁𝑁
𝑡𝑡=1

� . 100                                                                                                                     (17)  
 

𝐸𝐸𝐸𝐸𝐸𝐸 = �1 − 𝑃𝑃𝑃𝑃𝑃𝑃−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘 (𝑡𝑡)+𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘 (𝑡𝑡)
∑ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘 (𝑡𝑡)𝑁𝑁
𝑡𝑡=1

� . 100                                                                                  (18)  
 

In other words, it is a sustainable plan for the PV to charge the BESS and then 
discharge it to meet the electricity demand, depending on the occupancy rate of the 
BESS. However, due to losses, there may be a difference in the electrical power 
transferred from PV to BESS and from BESS to load. Therefore, possible losses from 
the BESS should be considered within the BESS, and the BESS percentage loss should 
be calculated. The BESS loss efficiency calculated in Equation (22) is evaluated also, 
although it is not as important as the other decision criteria. 

 

𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
�𝑃𝑃𝑃𝑃𝑃𝑃−𝑡𝑡𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏

𝑘𝑘 (𝑡𝑡)−𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘 (𝑡𝑡)�

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑡𝑡𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘 (𝑡𝑡)

. 100                                                          (19) 

 
3. OPTIMIZATION RESULTS 

The effect of EPV/Eload on microgrid renewable potential (RF and SCR) and 
environmental performance is first evaluated in Figure 4 considering DODmax for 
Prosumer 1, 2, 3, 4, and 5, where the ratio of PV power production to electricity 
demand increases. 
Figure 4 

 
Figure 4 The Effect of EPV/Eload on Microgrid Renewable Potential and Environmental 
Performance Considering DODmax 
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The effects of DODmax on all optimization results obtained for each prosumer in 

the minimum energy cost objective are discussed in the next step. Figure 5 analyzes 
the impact of increasing EPV/Eload on microgrid economic performance. In BESS 
operations where the depth of discharge is high, the possible increase in EPV/Eload is 
caused by the PV power production exceeding the electricity demand, and the BESS 
charging is used to store the excess energy. Since the BESS discharge prevents the 
sale of electricity to the grid, the stored energy is used to meet the electricity 
demand before the grid. Accordingly, the power purchased from the grid (grid 
dependency) can be reduced by up to 58.54%, while carbon emissions are 
prevented by up to 6.35 tons/yr. Rewarding reduced CO2 with a 20 $/ton carbon 
tax, which still needs to be applied in Türkiye, would provide additional revenues of 
127 $/yr and 2539.8 $ if the project horizon is 20 years. Even if environmental 
concerns are reduced, the loss of BESS is up to 922.46 kWh/yr due to frequent 
charging and discharging of BESS. The only negative impact of the increase in 
EPV/Eload on microgrid outputs is the BESS loss. The main reason for the improved 
environmental performance is the preference for BESS energy over grid energy, 
increasing RF by up to 61%. 
Figure 5 

 
Figure 5 The Effect Of EPV/Eload on Microgrid SSR and Economic Performance Considering Dodmax 
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Figure 6 

 
Figure 6 Voltage Fluctuations at Critical Node 886 Based on SCR 

 
The SCR, which is the ratio of the energy transferred from PV to load to the total 

PV energy production, decreases up to 50% due to the gradually decreasing demand 
level despite the increasing PV energy production. The SSR, which measures how 
efficiently PV energy is used in electricity demand, increases up to 30.4% at higher 
EPV/Eload. Since PV power production is more minor and electricity demand is higher 
than PV power production at lower EPV/Eload, it is natural that the percentage of 
energy transferred from PV to load to total electricity demand (i.e., the SSR) 
increases for higher EPV/Eload. However, higher EPV/Eload reduces the SCR below 30%. 
In Ahmed and Demirci (2022), which examines the technical drawbacks of 
increasing SCR for low-voltage distribution networks, it is emphasized that SCR 
below 26% will cause overvoltage problems. Moreover, it is stated that ratios above 
55% will cause an increase in power losses. It is also said that up to 70% SCR can 
reduce the maximum voltage peaks by up to 18%. Besides, SCR-induced voltage 
problems (overvoltage) at the critical busbar in the IEEE 906 low voltage 
distribution network are shown in Figure 6, (Ahmed and Demirci (2022)). 
Figure 7 

 
Figure 7 The Effect of DODmax on Microgrid Renewable Potential and Economic Performance 
Considering EPV/Eload 
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Generally stated, SCR below 30% will increase the technical disadvantages at 

the distribution busbar. Due to the EPV/Eload of 176.5% for Prosumer 5, SCR is below 
30% regardless of DODmax and offers no viable performance for many stakeholders 
(utility, prosumer, government, and investor). On the other hand, COE is reduced by 
up to 84.1% and NPC by up to 93.5% (107 k$) due to the improvement in renewable 
potential and reduced grid dependency via increased BESS utilization. In addition, 
the higher EPV/Eload increase the sale of excess PV energy production to the grid and 
BESS charging, providing additional revenue of up to 570.25 $/yr. Assuming a 
project horizon of 20 years, increased electricity sales revenues of up to 11.41 
thousand dollars significantly raise investor interest. The higher EPV/Eload for lower 
DODmax operation than higher DODmax increases the BESS loss by 203.7 kWh/yr 
while reducing the electricity purchased from the grid by up to 35.6% (6479.6 
kWh/yr). In addition, CO2 is reduced by up to 2.76 tons/yr, while the additional 
carbon reduction revenue increases to 55.22 $/yr (1104.4 $ for the project horizon). 
Moreover, RF raised up to 36%, SCR decreased up to 69.2%, and electricity sales 
revenues increased up to 725.65 $/yr (14513 $ for the project horizon). In economic 
terms, COE decreases up to 54.77% and NPC up to 81.5% (94.1 k$), while SSR 
increases up to 29%. As a result, increasing DODmax for a higher EPV/Eload improves 
BESS loss by 718.76 kWh/yr, additional carbon revenues by 3.6 tons/yr (1435 $ for 
the project horizon), COE by 29.3%, NPC by 12%, SSR by 1.4% and RF by 25%. It 
also reduces grid dependency by 22.9% (8421.6 kWh/yr), SCR by 19.3%, and 
electricity sales revenues by 155.4 $/yr (3107.9 $ for the project horizon). 

On the other hand, for prosumers with a higher EPV/Eload, the impact of 
increasing DODmax on each prosumer in terms of renewable potential and economic 
performance regarding the minimum energy cost objective in the microgrid is 
evaluated in Figure 7. In general, the effects of DODmax are higher for Prosumers 3 
and 4 with higher nominal BESS capacity and lower for Prosumers 1 and 2 with 
lower capacity installations. Increased depth of discharge enables more efficient 
utilization of the energy stored by PV in the BESS to meet the electricity demand 
when needed (lack of irradiation, absence of sun). If PV power production exceeds 
the low electricity demand and the BESS is fully occupied, electricity sales revenues 
and economic prospects are estimated to increase. The increased role and 
participation of the BESS in the energy balance due to deep discharge will inevitably 
lead to increased losses and reduced electricity from the grid. 

In this context, the optimization results prove that increasing the DODmax can 
increase the BESS loss up to 1193.83 kWh/yr (for Prosumer 3) and reduce the grid 
dependency up to 10439.3 kWh/yr (for Prosumer 4). However, if we consider the 
reduction of electricity purchased from the grid in % instead of kWh/yr, the most 
significant impact of DODmax is seen in Prosumer 5, with 22.64%. From an 
environmental perspective, CO2 is reduced by up to 4.45 tons/yr, while additional 
carbon revenues increase up to 1779.4 $ for Prosumer 4 over the 20-year project 
horizon. RF increases up to 24.7% for Prosumer 5 due to increased BESS utilization. 
SCR and SSR decreased up to 19.8% and 2.3% due to the lack of efficient PV 
utilization at lower EPV/Eload. On the other hand, from a financial perspective, 
increasing the DODmax can reduce the COE up to 65.1% for Prosumer 5. In contrast, 
the NPC can be reduced up to 19.61 thousand $ (for Prosumer 3) considering the 
NPC of electricity costs. However, if the reduction in NPC is analyzed in percentage 
terms, the most significant impact belongs to Prosumer 5, and a reduction in the COE 
is observed. Another critical point is that for Prosumer 1, which has a lower EPV/Eload, 
the dependency on the grid and, therefore, carbon emissions increase, and the RF 
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decreases, unlike the other prosumers, due to the lack of efficient energy balance 
management. Finally, considering the increase/decrease trade-off for each 
prosumer, the impact of the rise in DODmax on the maximum feasibility results is 
evaluated in Figure 8. In Figure 8, the effect of increasing DODmax on the prosumer 
optimization output is assessed as negative with red coloring. On the contrary, 
positive effects are highlighted with green color. 
Figure 8 

 
Figure 8 Increasing and Decreasing Effect of DODmax for Prosumers on Microgrid Optimization 
Results. 

 
4. CONCLUSION 

This study determines the optimal energy management for industrial 
prosumers using individual PV-BESS in the microgrid by minimizing the energy cost 
with different PV power production/electricity demand ratios. The results show 
that an increase in EPV/Eload would reduce CO2 and COE by up to 6.35 tons/yr and 
COE by up to 84.1% and increase RF, SSR, and electricity sales revenues by up to 
61%, 30.4%, and 570.25 $/yr. For Prosumer 5, with an EPV/Eload of 176.5%, the SCR 
is below 30% regardless of the depth of discharge and is not feasible, while the SCR 
drops to 30.4%. In contrast, a possible increase in the depth of discharge reduces 
grid-purchased electricity, COE, and NPC by up to 22.65% and 65.13% while 
increasing RF, electricity sales, and additional CO2 reduction revenues by up to 
24.7%, 197.41 $/yr and 4.45 tons/yr. Prosumers 3 and 4 with higher nominal BESS 
capacity are more affected by depth of discharge. In contrast, for Prosumer 1, with 
a lower EPV/Eload and capacity installation, increasing the depth of discharge raises 
carbon emissions and grid dependency. Considering the impact of depth of 
discharge on feasibility outcomes for stakeholders, even in a small-scale microgrid, 
allows for reliable investment plans. The outputs of this study can be extended in 
the future with a multi-objective objective for multi-bar and large-scale households, 
considering capital, replacement, O&M costs, and BESS degradation and focusing on 
optimal sizing and microgrid planning. Moreover, different technologies for energy 
storage can be compared, hybrid energy storage systems can be studied, and in-
depth sensitivity analysis on microgrid operation and economics can be performed. 
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