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ABSTRACT 
Suppose we have a polynomial function. Also suppose coefficients of polynomial follow a 
certain pattern of decreasing or increasing in magnitude. Then we have many results for 
providing the regions containing all the roots of polynomial functions. Here, in this paper 
we prove a result that gives a disk or circular region containing no roots of function, 
thereby our result finally gives annular region containing all roots of polynomial function 
and hence thereby improves the earlier proved, results. 
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1. INTRODUCTION 
If )(zf  is a thn   degree polynomial function, then by the Fundamental Theorem 

of Algebra, we know that )(zf  has at least one root in complex plane and repeated 
application of the theorem tells that )(zf   has exactly   roots in whole Argand plane. 
But the theorem, however, does not provide any information about the location of 
roots of a polynomial function. The issue of finding position of the roots of a 
polynomial function has been of great interest. This could be observed by glancing 
at the books of Marden (1949), Milovanovic et al. (1994), Sheil-Small  (2002) and 
Rahman and Schmeisser  (2002). We have also other recent articles on same area 
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Aziz and Zargar (1966), Daras and Rassias (2015), Jain  (2009), Rahman and 
Schmeisser  (2002), Rassias and Gupta (2016), Shah and Liman (2007), Vieira 
(2017) on the subject.  Since the days of Gauss and Cauchy, many well-known 
mathematicians have contributed to the further growth of the subject. Here we first 
mention the following result of Cauchy Aziz and Mohammad (1984) that is 
commonly popular as Cauchy’s Theorem. 
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Next elegant result that is commonly famous as Enestrom-Kakeya Theorem, 

and firstly proved by Enstrom Enestrom (1920) and later independently by Kakeya 
Kakeya (1912) and Hurwitz (1913). 

Theorem B.  If ∑
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ν  is a polynomial of degree n, such that 

  

             0011 >≥≥≥≥ − cccc nn                                                        Equation 2 

 

then )(zf   has no roots in 1>z  

In the same sphere Aziz and Zargar (1966), Aziz and Mohammad (1984), 
Dichler  (1996), Lal et al. (2011), Lal  (2019) there exist various generalizations and 
refinements of Theorem B and other related results. 

Joyal et al. (1967) augmented Theorem B for the polynomial function having 
coefficients having all real values. More precisely, they gave the next result. 

Theorem C. If ∑
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ν  is a polynomial function of degree n, with 

property 
 

              011 cccc nn ≥≥≥≥ −                                                                Equation 3 

 
then all roots of )(zf  are contained in  
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If 00 >c  then this result reduces to Theorem B. 

Aziz and Zargar (1966) improved upon the bound in Theorem C. 
 

Theorem D.  If  ∑
=

=
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i zczf

0
)( is a polynomial function of nth degree, such 

that for some 1≥M  
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Rather (1998) augmented the above Theorem D in following. 

Theorem E. If ∑
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)(  is a polynomial function of nth degree, and for 

some 1≥M  
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Then )(zf  contains all its roots inside  
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2. MAIN THEOREM 

The main idea of this paper is to find a region having any roots, inside the disk 
containing every root. Here, we are able to find such region by proving next result 
that gives us a root-free region for the polynomial, whose coefficients follow a 
certain pattern. This result improves upon the result of Enestrom and Kakeya and 
also some of the other results in this sphere.  

 

  Theorem 2. 1.. If ∑
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for some 1≥M   together with 10 −≤≤ nr  
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then no roots of  )(zf   are contained in   
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Remark 2.2. For M=1 the above result improves upon Theorem E due to Rather 

Rather (1998) and for 1=K , 0=r  the above result improves upon Theorem C due 
to Joyal et al. (1967). Furthermore, the result proved here also refines upon the 
result of Enestrom-Kakeya Enestrom (1920) for  ,0>∀ ic  ....,2,1,0 ni =  

 
3. PROOF OF MAIN THEOREM  

We prove the main Theorem 2.1 as follows. 
 
Proof of Theorem 2.1.  
  For the proof of our main theorem, we take a new polynomial function as 
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From  Equation 11 
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Also, for 1=z  , from Equation 12, we have 
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Now g (0) =0 and g(z) are analytic, we have, obviously by Schwarz’s lemma for  
1≤z ,  
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Associating the Equation 13 and Equation 14, we get 
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Thus, we completed the proof of Theorem 2.1. 

 
4. CONCLUSION 

Our result gives a circular region containing no roots or zeros of polynomial 
functions inside it while other mentioned earlier proved results give circular regions 
containing all roots. Thus, we have obtained an annular region containing all roots 
of polynomial the region containing all roots of polynomial function has been 
reduced in size. So, our result improves the estimate of region having all roots.  
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