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ABSTRACT 
Background and Objective: Higuchi’s method of determining fractal dimension (HFD) 
occupies a valuable place in the study of a wide variety of physical signals. In comparison 
to other methods, it provides more rapid, accurate estimations for the entire range of 
possible fractal dimensions. However, a major difficulty in using the method is the correct 
choice of tuning parameter (kmax) to compute the most accurate results. In the past 
researchers have used various ad hoc methods to determine the appropriate kmax choice 
for their data. We provide a more objective method of determining, a priori, the best value 
for the tuning parameter, given a particular length data set.  
Methods: We create numerous simulations of fractional Brownian motion to perform 
Monte Carlo simulations of the distribution of the calculated HFD.  
Results: Experimental results show that HFD depends not only on kmax but also on the 
length of the time series, which enable derivation of an expression to find the appropriate 
kmax for an input time series of unknown fractal dimension.  
Conclusion: The Higuchi method should not be used indiscriminately without reference 
to the type of data whose fractal dimension is examined. Monte Carlo simulations with 
different fractional Brownian motions increases the confidence of evaluation results. 

Keywords: Fractal Methods, Numerical Analysis, Signal Processing Methods, Genetics, 
Bioinformatics 

 
1. INTRODUCTION 

         The Higuchi algorithm Higuchi (1988) is one of many widely used methods 
to compute fractal properties of complex nonlinear physical signals Esteller et al. 
(2001). It is often preferred when big data are analyzed because it is stable, rapid, 
accurate, relatively low-cost, and excels better known linear methods. We call the 
fractal dimension calculated via the Higuchi algorithm the Higuchi fractal 
dimension (HFD).  
         The Higuchi algorithm was first applied to turbulence in space plasmas 
Higuchi (1988) but is applicable to any data generated by complex systems since 
these tend to exhibit multidimensional fluctuations over many orders of 
magnitude. The method thus leverages the multiple scaling domains generated 
by complex systems and derives their characteristic fractal (or multifractal) 
scaling exponents. 
          Over the past several decades the Higuchi algorithm has been extensively 
used to study pathologies in biological systems. Its utility increases in an era of 
big data where real-time computation continues to grow in importance Gomolka 
et al. (2018), Klonowski et al. (2004). The Higuchi algorithm has been 
successfully employed in numerous medical studies including human gait 

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/
https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/granthaalayah.v9.i11.2021.4393
https://dx.doi.org/10.29121/granthaalayah.v9.i11.2021.4393
https://dx.doi.org/10.29121/granthaalayah.v9.i11.2021.4393
https://orcid.org/0000-0002-3291-6529
https://crossmark.crossref.org/dialog/?doi=10.29121/granthaalayah.v9.i11.2021.4393&domain=pdf&date_stamp=2021-12-07
mailto:sggordon@presby.edu
mailto:gewanliss@presby.edu
mailto:RH35@email.sc.edu
mailto:jawanliss@presby.edu


James Wanliss, R. Hernandez Arriaza, G. Wanliss, and S. Gordon 
 

International Journal of Research - GRANTHAALAYAH 203 
 

Doyle et al. (2004), epilepsy Khoa and Toi (2012), disorders Wajnsztejn et al. (2016), 
Kawe et al. (2019), magnetoencephalograms Gómez et al. (2009), Khoa and Toi 
(2012), neuro-physiology Kesić and Spasić (2016), electroencephalograms 
Paramanathan and Uthayakumar (2008), Kawe et al. (2019), Zappasodi et al. 
(2014), and brain entrainment Shamsi et al. (2021). The Higuchi method generally 
exceeds the efficiency of well-known linear methods such as the fast Fourier and 
wavelet transforms. Those methods work well when signals are stationary, but the 
increasing richness of data that are not only nonstationary but generated by non-
equilibrium and noisy processes eliminates their advantages. 

The Higuchi algorithm exhibits sensitive dependence on a tuning parameter 
kmax, defined in the following section. In the original paper Higuchi did not elaborate 
on the selection of the tuning parameter and for illustration used kmax=211 for time 
series of length N=217. Subsequent authors used similar values for the tuning 
parameter but it has been discovered that the tuning parameter plays a crucial role 
in estimation the HFD. Several studies have addressed the issue of proper selection 
of tuning parameter kmax. An early paper Affinito et al. (1997) calculated HFD values 
for kmax=3-10 for time series ranging in length from N=50-1000, settling on kmax=6 
as the optimum. The goal was to determine, in their study of electroencephalograms, 
the most suitable pair of (kmax, N).  

Table 1 Use of Higuchi algorithm and parameters 

Reference Topic N kmax N/ kmax 
Higuchi (1988) Space plasmas 217 211 64 

Wajnsztejn et al. (2016) Psychological disorder 1000 10 100 
Gomolka et al. (2018) Heart rate variability 100 5 20 
Accardo et al. (1997) EEG 50-1000 6 (3-10) 8.3-166.7 

Doyle et al. (2004) A/P gait 2400 60 40 
Virkkala et al. (2002) EEG 200 8 25 

Klonowski et al. (2004) Economics 216 15 14.4 
Mujiono et al. (2013) DNA 222 5-100 104-106 

Zappasodi et al. (2014) EEG 2560 16 160 
Gómez et al. (2009) MEG 848 48 17.7 

Polychronaki et al. (2010) Epilepsy 800 2-80 10-400 

 
Decades later the literature is unclear on the method of determining the 

appropriate value of the tuning parameter, usually suggesting that kmax must be 
deter-mined on a case-by-case basis. Several papers recommend plotting the 
calculated HFD against a range of kmax, and selecting the appropriate kmax at the 
location where the calculated HFD approaches a local maximum or asymptote, 
considered to be a saturation point Doyle et al. (2004), Wajnsztejn et al. (2016). 
Gomolka et al. (2018) select kmax on the basis of statistical tests that allow 
discrimination between known healthy and diabetic subjects. Paramanathan and 
Uthayakumar (2008) proposed to determine kmax based on a size-measure 
relationship, that employs a recursive length of the signal from different measuring 
scales. In most cases researchers found that the calculated HFD is not much affected 
by length of the time-series but depends more strongly on kmax. Therefore, a poorly 
chosen tuning parameter can severely prejudice results.  

Table 1 shows a sample of pairs of (kmax, N) from the literature. There is clearly 
no established procedure widely accepted for determining the tuning parameter. 
The plethora of values selected for the tuning parameter makes it clear that the 
community would benefit from a careful consideration of selection criteria for the 
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tuning parameter, especially with long time-series and big data where it is 
impractical to examine an almost infinite number of curves of HFD against kmax.  

In summary, one of main the difficulties in performing the Higuchi algorithm 
are that it relies on a tuning parameter, kmax, that in most cases must be selected 
before the fractal dimension is computed. Our goal in this paper is to explore the 
optimum sample pairs between the tuning parameter and length of the time series 
for the most general types of data. 

 
2. MATERIALS AND METHODS  
The Higuchi algorithm takes a signal and discretizes it into the form of a time 

series, 𝑥𝑥(1), 𝑥𝑥(2), … , 𝑥𝑥(𝑁𝑁). From this series we derive a new time series, 𝑋𝑋𝑘𝑘𝑚𝑚 , defined 
as follows: 

𝑋𝑋𝑘𝑘𝑚𝑚: 𝑥𝑥(𝑚𝑚), 𝑥𝑥(𝑚𝑚 + 𝑘𝑘), 𝑥𝑥(𝑚𝑚 + 2𝑘𝑘), … , 𝑥𝑥 �𝑚𝑚 + �
𝑁𝑁 − 𝑘𝑘
𝑘𝑘

� ∙ 𝑘𝑘)�, 

 
where [] represents the integer part of the enclosed value. The integer 𝑚𝑚 =

1,2, … , 𝑘𝑘 is the start time; 𝑘𝑘 is the time interval, with 𝑘𝑘 = 1, … , 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚; 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  is a free 
tuning parameter. This means that a given time interval equal to 𝑘𝑘, spawns 𝑘𝑘-sets of 
new time series. For instance, if 𝑘𝑘 = 3 and the time series has length 𝑁𝑁 = 40, the 
following three time series are derived from the original data: 

 
𝑋𝑋31: 𝑥𝑥(1), 𝑥𝑥(4), 𝑥𝑥(7), … , 𝑥𝑥(40),
𝑋𝑋32: 𝑥𝑥(2), 𝑥𝑥(5), 𝑥𝑥(8), … , 𝑥𝑥(38),
𝑋𝑋33: 𝑥𝑥(3), 𝑥𝑥(6), 𝑥𝑥(9), … , 𝑥𝑥(39).

 

 
The length of any one of these curves is given by: 
 

𝐿𝐿𝑚𝑚(𝑘𝑘) =

��∑ |𝑥𝑥(𝑚𝑚 + 𝑖𝑖𝑘𝑘) − 𝑥𝑥(𝑚𝑚 + (𝑖𝑖 − 1) ∙ 𝑘𝑘|
�𝑁𝑁−𝑚𝑚𝑘𝑘 �
𝑖𝑖=1 � 𝑁𝑁 − 1

�𝑁𝑁 − 𝑚𝑚
𝑘𝑘 � ∙ 𝑘𝑘

�

𝑘𝑘
. 

 
The length of the curve for the time interval 𝑘𝑘 is then defined as the average 

over the 𝑘𝑘 sets of 𝐿𝐿𝑚𝑚(𝑘𝑘): 
 

𝐿𝐿(𝑘𝑘) = 〈𝐿𝐿𝑚𝑚(𝑘𝑘)〉. 
 
If this equation scales according to the rule 𝐿𝐿(𝑘𝑘) ∝ 𝑘𝑘−𝐷𝐷 , then the time series 

behaves as a fractal with dimension D. Thus, the HFD is defined as the slope of the 
straight line that fits the curve of ln(L(k)) versus ln(1/k).  
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Figure 1 Sample fBm for HFD between 1.1 and 1.9. 

 
The data we experiment on are theoretically derived fractional Brownian 

motions (fBm). fBm is a continuous-time random process proposed by Mandelbrot 
and John (1968). A signal that displays fBm is expressed in terms of stochastic 
integrals of time integrations of fractional Gaussian noise: 

 

𝐵𝐵𝐻𝐻(𝑡𝑡) =
1

Γ �𝐻𝐻 + 1
2�
�� [(𝑡𝑡 − 𝑠𝑠)𝐻𝐻−

1
2 − (−𝑠𝑠)𝐻𝐻−

1
2]𝑑𝑑𝑑𝑑(𝑠𝑠)

0

−∞
+ � (𝑡𝑡 − 𝑠𝑠)𝐻𝐻−

1
2𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑡𝑡

0
� 

 
Here W is a white noise process defined on (-∞, ∞), and 𝐻𝐻 ∈ (0, 1) is known as 

the Hurst parameter. The Hurst exponent for the signal is its roughness averaged 
over many length scales. The covariance function is given by 

 

𝑐𝑐𝑐𝑐𝑐𝑐{𝐵𝐵𝐻𝐻(𝑠𝑠),𝐵𝐵𝐻𝐻(𝑡𝑡)} =
1
2

{|𝑠𝑠|2𝐻𝐻 + |𝑡𝑡|2𝐻𝐻 − |𝑠𝑠 − 𝑡𝑡|2𝐻𝐻} 

 
so that 𝐵𝐵𝐻𝐻(0) ≡ 0 and 𝑐𝑐𝑣𝑣𝑣𝑣{𝐵𝐵𝐻𝐻(𝑡𝑡)} = 𝑡𝑡2𝐻𝐻 . This means that for the special case 

H=1/2, fBm reduces to the well-known random walk. The relationship between H 
and HFD is HFD = 2 − 𝐻𝐻, with values between 1 and 2. Thus, we are able to use the 
fBm process as our data source with a well-defined HFD in order to determine how 
well the Higuchi algorithm is able to accurately recover the theoretical value. 

Figure 1 shows sample data of fBm signals for different values of the HFD. We 
create these data using a wavelet-based synthesis of fBm generation based on a 
biorthogonal wavelet method proposed by Meyer and Sellan Abry and Sellan 
(1996), Bardet et al. (2003) implemented in Matlab software. Figure 2 shows 
examples of how, in the Higuchi algorithm, the slope is calculated from the slope of 
linear fits for the curve of ln(L(k)) versus ln(1/k) for theoretical values of HFD of 1.3 
and 1.7. 
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Figure 2 HFD is defined as the slope of the straight line that fits the curve of ln(L(k)) versus ln(1/k). 

 
3. RESULTS AND DISCUSSIONS  
One way that is suggested to find the optimal kmax is by plotting the calculated 

HFD against the kmax, and by selecting the value in the range for which HFD(k) 
achieves a plateau. This assumes that a plateau is achieved in every case for different 
classes of HFD. It is not a priori evident that this will be the case since, as is 
demonstrated in Figure 1, different values for the fractal dimension create time 
series with different roughness, which will influence the accuracy of the Higuchi 
algorithm. Those with HFD below 1.5 are smoother curves having clear long-range 
dependence while curves with higher values are rougher. 

Figure 3 shows the error between the theoretical HFD and the value calculated 
via the Higuchi algorithm, for time series of length N=1,000, and varying values of 
kmax. In general, for the smallest kmax=2 the persistent time series, with HFD<1.5 
produces an underestimate the theoretical fractal dimension, and antipersistent 
time series an overestimate. What we note here is that not every case shows the HFD 
estimate reaches a plateau, thus demonstrating that seeking to find the optimum 
tuning parameter by a plateau is not in general a valid procedure in the Higuchi 
algorithm. Indeed, for the persistent time series there is no plateau that is achieved. 
The antipersistent curves do show a clear plateau yet, contrary to general 
recommendations, selecting kmax near the plateau does not yield the lowest error, 
which is rather achieved for kmax values far beyond the plateau (i.e., for HFD=1.9, 
1.7) 

 
Figure 3 Error difference between Higuchi algorithm and theoretical HFD values, versus kmax, for 
different fBm's of length N=1,000 

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/


James Wanliss, R. Hernandez Arriaza, G. Wanliss, and S. Gordon 
 

International Journal of Research - GRANTHAALAYAH 207 
 

In order to explore how the HFD depends on the tuning parameter we created 
100 independent time series with lengths, N, varying between 1,000 and 200,000 
data points. Next, for each of these series, we compute the HFD for different values 
of kmax, allowing kmax to vary between kmax =2 and kmax =N/2. The idea is to produce 
Monte Carlo simulations from which to derive a distribution of outcomes that can 
be analyzed. This results in a set of HFD values as a function of the time series length, 
and the tuning parameter, kmax. Next, we create surface plots comparing the HFD 
versus the tuning parameter kmax and time series length, N. To best compare the 
results for various theoretical HFD from the wavelet method, we calculate an error 
metric, defined as, the percentage error: 

 
𝐸𝐸(𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑁𝑁) = 100 ∗ (𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)/𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

 
Figure 4 Surface showing the percentage error between the Higuchi algorithm and theoretical 
HFD=1.9. The curve of least error is shown as a thick grey line. 

This error metric allows one to easily see where the Higuchi algorithm best 
approximates the correct HFD, and where it produces overestimates or 
underestimates. Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 shows the surface 
plots for E(kmax,N) for values of HFD=1.9, 1.7, 1.5, 1.3, 1.1. The grey line overlaid in 
each figure shows the curves of minimum error, corresponding to the kmax tuning 
parameter that yields the best correspondence between the theoretical and HFD 
values for a given N, averaged over 100 unique time series.  

 
Figure 5 Surface showing the percentage error between the Higuchi algorithm and theoretical 
HFD=1.7. The curve of least error is shown as a thick grey line 
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Figure 6 Surface showing the percentage error between the Higuchi algorithm and theoretical 
HFD=1.5. The curve of least error is shown as a thick grey line 

 

 
Figure 7 Surface showing the percentage error between the Higuchi algorithm and theoretical 
HFD=1.3. The curve of least error is shown as a thick grey line 

 

 
Figure 8 Surface showing the percentage error between the Higuchi algorithm and theoretical 
HFD=1.1. The curve of least error is shown as a thick grey line 
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By taking a simple average of these minimum error curves of least error we are 
able to derive a best-fit curve using a cubic function, shown in Figure 9 as the dashed 
curve, for the average relationship between the time series length and the tuning 
parameter, for different HFD values: 

 
ln(𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) = 0.04235[ln(𝑁𝑁)]3 − 1.392[ln(𝑁𝑁)]2 + 15.15ln(𝑁𝑁) − 47.29. 

 
 This function can be used to generate a tuning parameter estimate that can be 

expected to yield accurate results for the HFD, for cases where N<200,000. 

 
Figure 9 Comparison of the average minimum error curve (solid) and the best fit cubic function 
(dashed). 

 
4. APPLICATION TO GENETICS 
We next demonstrate analysis on physical data, that of a complete genome of a 

bacterial organism, viz. the proteobacteria Acidovorax avenae which attacks the 
Cucurbitaceae family. These data are freely available from the National Center for 
Biotechnology Information (NCBI), which is part of the United States National 
Library of Medicine (NLM), a branch of the National Institutes of Health (NIH). 

 
Figure 10 Acidovorax avenae complete genome represented by the Peng Abry and Sellan (1996) 
method. 
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In order to analyze hidden patterns in the genome, the nucleotide sequence 
must be converted from a symbolic sequence, meaning A, G, C, T; to a numeric 
representation. The Peng method Peng et al. (1992) was followed wherein DNA is 
represented as a “random walk” with two parameters ruling the direction of the 
“walk” and the resulting displacement. Starting from the first nucleotide, every time 
we encounter a pyrimidine base, we move up one position. On the other hand, when 
a purine base is encountered in the series, we move down one position. The 
nucleotide distance from the first nucleotide is then plotted versus the 
displacement, as in Figure 10, Figure 11 shows the computed HFD against tuning 
parameter kmax from time series of length N=200,000 that are subsets from the 
original series shown in Figure 10. We took 39 non-overlapping series and 
computed curves for each of them. Figure 11 shows that the curves (black lines) 
computed from different subsets of the genome are very similar, which indicates 
that the fractal dimension does not vary significantly along the genome.  

In each case the results show a clear plateau and an HFD<1.5, indicating a 
persistent time series, though with widely divergent values due to the different 
tuning parameter.  

 
Figure 11 HFD calculated for varying length kmax between 2 and 100,000 for nonoverlapping time 
series of length N=200,000 from Acidovorax Avenae. The grey triangle shows where our research 
indicates the appropriate kmax should be situated. 

 
The plateau region is shown with the arrows and, using a plateau as the 

measure of where to select kmax, suggests the best tuning parameter should be in the 
range kmax =10-50, thus yielding HFD~1.49. However, our analysis, given time series 
length N=200,000, recommends a value around kmax =1,000 (grey triangle) which 
yields HFD~1.42. This difference allows one to easily see where the Higuchi 
algorithm best approximates the correct HFD, and where it produces over- or 
underestimates. 

 
5. CONCLUSIONS AND RECOMMENDATIONS  
The Higuchi algorithm Higuchi (1988) is one of many widely used methods to 

compute fractal properties of complex nonlinear physical signals from a wide 
variety of research areas Esteller et al. (2001), Wanliss  and  Reynolds (2003), 
Mitsutake et al. (2004), Cersosimo and Wanliss (2007). Over the past decades the 
Higuchi algorithm has been extensively used to study pathologies in biological 
systems and to discriminate between healthy signals and those displaying 
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pathologies. It is often preferred when large amounts of data are analyzed because 
it is stable, rapid, accurate, relatively low-cost, and excels better known linear 
methods for study fractal properties of a time series. However, the method requires 
the user to input a free tuning parameter, kmax., the selection of which influences 
computational efficiency of the algorithm and, more importantly, the value of the 
computed HFD. Thus, all the benefits of the algorithm can be negated by poor 
selection of the tuning parameter. Different values of kmax can produce widely 
divergent estimates for the HFD from the same time series, thus it is imperative to 
have a method for appropriately determining the best tuning.  

It has been suggested (e.g., by Doyle et al. (2004) and Wajnsztejn et al. (2016)) 
Doyle et al. (2004), Wajnsztejn et al. (2016) that the best kmax to derive the most 
precise HFD should be where the calculated HFD (kmax) approaches a local maximum 
or asymptote, considered to be a saturation point. However, as we have 
demonstrated in Figure 3, it is not a given that any physical data will result in such 
a plateau or saturation point. This methodology can produce spurious results and 
can be a time consuming, iterative process. 

In this paper we have explored Monte Carlo computer realisations of wavelet 
derived fBm time series, with known HFD. We have demonstrated that calculation 
of an accurate HFD depends not only on the appropriate kmax but is also dependent 
on time series length, N. We have calculated a relationship that determines the 
appropriate kmax to obtain the best HFD, given the time series length. We find that a 
third order polynomial will yield an appropriate kmax given the particular time series 
length, N. In general, persistent time series, with HFD<1.5, tended to need smaller 
kmax than antipersistent series.  

In a future work we will extend these results to larger data sets and explore the 
effects from simulations of synthetic synthetic time series with known fractal 
properties, to see how well the method performs, and how it is influenced by the 
generation algorithms. 
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