ROLE OF GEMINI SURFACTANTS IN FIGHT AGAINST COVID19

  • Rajpreet Kaur Principal Investigator (WOS-B)&Research Scholar, AIAS, Amity University, AUUP, Noida, India.
  • Anita Gupta Associate Professor, Amity Institute of Applied Sciences, Amity University, AUUP, Noida, India.
Keywords: COVID-19, Hand Washing, Ozone, Quaternary Ammonium Compounds, And Gemini Surfactants, Micelles

Abstract

COVID-19, a pandemic, threatens the entire world by its multiplicative deadly behavior. Virus has caged the world’s people into their homes / isolation as their protective gear. Transmission rate, Case Fatality Rate, and Asymptomatic Transmission parameters determine the savage of COVID-19. More than a couple of months, mankind is staying locked in one’s home, which has never happened in the lifetime of any other generation. World Health Organization highlights the importance of hand Hygiene (Handwashing) by Soap/surfactant for 20 seconds and the use of alcohol-based Sanitizers as a part of personal health care. Soap functions as a weapon for sterilization of any viruses present on the surface. The lipid envelope of virusesis more susceptible to heat, desiccation or action of surfactants. Single tailed Quaternary ammonium compound surfactant is most commonly used as disinfectant or cleaning agent. Similarly, Gemini surfactants can also play a vital role as disinfectant / sanitizerin future. It is suggested that Gemini surfactants have imperative function in Air sanitation. Also, there is a valid comparison of Coronavirus with other SARS diseases. The deadly nature of virus can be understood by knowing its mechanism of action and mode of transmission. Once a chain of human to human transmission is initiated then it is very tricky to rupture the chain.



References

Lauer, S. A.; Grantz, K. H.; Bi, Q.; Jones, F. K.; Zheng, Q.; Meredith, H. R.; Azman, A. S.; Reich, N. G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of internal medicine2020. https://doi.org/10.7326/M20-0504. DOI: https://doi.org/10.7326/M20-0504

Press Briefing by Members of the President’s Coronavirus Task Force | The White House https://www.whitehouse.gov/briefings-statements/press-briefing-members-presidents-coronavirus-task-force/ (accessed May 20, 2020).

Coronavirus Update (Live): https://www.worldometers.info/coronavirus/(accessed on 03/10/2020

MA, J. Coronavirus (COVID-19): History, Current Knowledge and Pipeline Medications. International Journal of Pharmaceutics & Pharmacology2020, 4 (1), 1–9. https://doi.org/10.31531/2581-3080.1000140. DOI: https://doi.org/10.31531/2581-3080.1000140

Gillim-Ross, L.; Taylor, J.; Scholl, D. R.; Ridenour, J.; Masters, P. S.; Wentworth, D. E. Discovery of Novel Human and Animal Cells Infected by the Severe Acute Respiratory Syndrome Coronavirus by Replication-Specific Multiplex Reverse Transcription-PCR. Journal of Clinical Microbiology2004, 42 (7), 3196–3206. https://doi.org/10.1128/JCM.42.7.3196-3206.2004. DOI: https://doi.org/10.1128/JCM.42.7.3196-3206.2004

Geller, C.; Varbanov, M.; Duval, R. E. Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies. Viruses. November 2012, pp 3044–3068. https://doi.org/10.3390/v4113044. DOI: https://doi.org/10.3390/v4113044

Peiris, J. S. M.; Lai, S. T.; Poon, L. L. M.; Guan, Y.; Yam, L. Y. C.; Lim, W.; Nicholls, J.; Yee, W. K. S.; Yan, W. W.; Cheung, M. T.; Cheng, V. C. C.; Chan, K. H.; Tsang, D. N. C.; Yung, R. W. H.; Ng, T. K.; Yuen, K. Y. Coronavirus as a Possible Cause of Severe Acute Respiratory Syndrome. Lancet2003, 361 (9366), 1319–1325. https://doi.org/10.1016/S0140-6736(03)13077-2. DOI: https://doi.org/10.1016/S0140-6736(03)13077-2

Ksiazek, T. G.; Erdman, D.; Goldsmith, C. S.; Zaki, S. R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J. A.; Lim, W.; Rollin, P. E.; Dowell, S. F.; Ling, A. E.; Humphrey, C. D.; Shieh, W. J.; Guarner, J.; Paddock, C. D.; Roca, P.; Fields, B.; DeRisi, J.; Yang, J. Y.; Cox, N.; Hughes, J. M.; LeDuc, J. W.; Bellini, W. J.; Anderson, L. J. A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. New England Journal of Medicine2003, 348 (20), 1953–1966. https://doi.org/10.1056/NEJMoa030781. DOI: https://doi.org/10.1056/NEJMoa030781

Woo, P. C. Y.; Lau, S. K. P.; Chu, C.; Chan, K.; Tsoi, H.; Huang, Y.; Wong, B. H. L.; Poon, R. W. S.; Cai, J. J.; Luk, W.; Poon, L. L. M.; Wong, S. S. Y.; Guan, Y.; Peiris, J. S. M.; Yuen, K. Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia. Journal of Virology2005, 79 (2), 884–895. https://doi.org/10.1128/jvi.79.2.884-895.2005. DOI: https://doi.org/10.1128/JVI.79.2.884-895.2005

van der Hoek, L.; Pyrc, K.; Jebbink, M. F.; Vermeulen-Oost, W.; Berkhout, R. J. M.; Wolthers, K. C.; Wertheim-Van Dillen, P. M. E.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a New Human Coronavirus. Nature Medicine2004, 10 (4), 368–373. https://doi.org/10.1038/nm1024. DOI: https://doi.org/10.1038/nm1024

Fouchier, R. A. M.; Hartwig, N. G.; Bestebroer, T. M.; Niemeyer, B.; de Jong, J. C.; Simon, J. H.; Osterhaus, A. D. M. E. A Previously Undescribed Coronavirus Associated with Respiratory Disease in Humans. Proceedings of the National Academy of Sciences of the United States of America2004, 101 (16), 6212–6216. https://doi.org/10.1073/pnas.0400762101. DOI: https://doi.org/10.1073/pnas.0400762101

Esper, F.; Weibel, C.; Ferguson, D.; Landry, M. L.; Kahn, J. S. Evidence of a Novel Human Coronavirus That Is Associated with Respiratory Tract Disease in Infants and Young Children. The Journal of Infectious Diseases2005, 191 (4), 492–498. https://doi.org/10.1086/428138. DOI: https://doi.org/10.1086/428138

Bradburne, A. F.; Bynoe, M. L.; Tyrrell, D. A. J. Effects of a “New” Human Respiratory Virus in Volunteers. British Medical Journal1967, 3 (5568), 767–769. https://doi.org/10.1136/bmj.3.5568.767. DOI: https://doi.org/10.1136/bmj.3.5568.767

Almeida, J. D.; Tyrrell, D. A. The Morphology of Three Previously Uncharacterized Human Respiratory Viruses That Grow in Organ Culture. The Journal of general virology1967, 1 (2), 175–178. https://doi.org/10.1099/0022-1317-1-2-175. DOI: https://doi.org/10.1099/0022-1317-1-2-175

van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; Lloyd-Smith, J. O.; de Wit, E.; Munster, V. J. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. The New England journal of medicine. NLM (Medline) April 16, 2020. https://doi.org/10.1056/NEJMc2004973. DOI: https://doi.org/10.1056/NEJMc2004973

Ghinai, I.; McPherson, T. D.; Hunter, J. C.; Kirking, H. L.; Christiansen, D.; Joshi, K.; Rubin, R.; Morales-Estrada, S.; Black, S. R.; Pacilli, M.; Fricchione, M. J.; Chugh, R. K.; Walblay, K. A.; Ahmed, N. S.; Stoecker, W. C.; Hasan, N. F.; Burdsall, D. P.; Reese, H. E.; Wallace, M.; Wang, C.; Moeller, D.; Korpics, J.; Novosad, S. A.; Benowitz, I.; Jacobs, M. W.; Dasari, V. S.; Patel, M. T.; Kauerauf, J.; Charles, E. M.; Ezike, N. O.; Chu, V.; Midgley, C. M.; Rolfes, M. A.; Gerber, S. I.; Lu, X.; Lindstrom, S.; Verani, J. R.; Layden, J. E. First Known Person-to-Person Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the USA. The Lancet2020, 395 (10230), 1137–1144. https://doi.org/10.1016/S0140-6736(20)30607-3. DOI: https://doi.org/10.1016/S0140-6736(20)30607-3

Kucharski, A. J.; Russell, T. W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R. M.; Sun, F.; Jit, M.; Munday, J. D.; Davies, N.; Gimma, A.; van Zandvoort, K.; Gibbs, H.; Hellewell, J.; Jarvis, C. I.; Clifford, S.; Quilty, B. J.; Bosse, N. I.; Abbott, S.; Klepac, P.; Flasche, S. Early Dynamics of Transmission and Control of COVID-19: A Mathematical Modelling Study. The Lancet Infectious Diseases2020, 20 (5), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4. DOI: https://doi.org/10.1016/S1473-3099(20)30144-4

Chan, J. F. W.; Yuan, S.; Kok, K. H.; To, K. K. W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C. C. Y.; Poon, R. W. S.; Tsoi, H. W.; Lo, S. K. F.; Chan, K. H.; Poon, V. K. M.; Chan, W. M.; Ip, J. D.; Cai, J. P.; Cheng, V. C. C.; Chen, H.; Hui, C. K. M.; Yuen, K. Y. A Familial Cluster of Pneumonia Associated with the 2019 Novel Coronavirus Indicating Person-to-Person Transmission: A Study of a Family Cluster. The Lancet2020, 395 (10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9. DOI: https://doi.org/10.1016/S0140-6736(20)30154-9

Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, Epidemiology, Pathogenesis, and Control of Covid-19. Viruses. MDPI AG 2020. https://doi.org/10.3390/v12040372. DOI: https://doi.org/10.3390/v12040372

Kumar, D. Corona Virus: A Review of COVID-19. Eurasian Journal of Medicine and Oncology2020. https://doi.org/10.14744/ejmo.2020.51418. DOI: https://doi.org/10.14744/ejmo.2020.51418

Worldometer. Coronavirus Cases. Worldometer. 2020, pp 1–22. https://doi.org/10.1101/2020.01.23.20018549V2.

Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet2020, 395 (10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5. DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C. W.; Xia, Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). Journal of General Internal Medicine. Springer May 1, 2020. https://doi.org/10.1007/s11606-020-05762-w. DOI: https://doi.org/10.1007/s11606-020-05762-w

Department of Error: Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China (The Lancet (2020) 395(10223) (497–506), (S0140673620301835), (10.1016/S0140-6736(20)30183-5)). The Lancet. Lancet Publishing Group February 15, 2020, p 496. https://doi.org/10.1016/S0140-6736(20)30252-X. DOI: https://doi.org/10.1016/S0140-6736(20)30252-X

Wong, G.; Liu, W.; Liu, Y.; Zhou, B.; Bi, Y.; Gao, G. F. MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease. Cell Host and Microbe. Cell Press October 14, 2015, pp 398–401. https://doi.org/10.1016/j.chom.2015.09.013. DOI: https://doi.org/10.1016/j.chom.2015.09.013

Zaki, A. M.; van Boheemen, S.; Bestebroer, T. M.; Osterhaus, A. D. M. E.; Fouchier, R. A. M. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. New England Journal of Medicine2012, 367 (19), 1814–1820. https://doi.org/10.1056/NEJMoa1211721. DOI: https://doi.org/10.1056/NEJMoa1211721

Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine2020, 382 (8), 727–733. https://doi.org/10.1056/NEJMoa2001017. DOI: https://doi.org/10.1056/NEJMoa2001017

Frieman, M.; Baric, R. Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation. Microbiology and Molecular Biology Reviews2008, 72 (4), 672–685. https://doi.org/10.1128/mmbr.00015-08. DOI: https://doi.org/10.1128/MMBR.00015-08

Chan, K. H.; Peiris, J. S. M.; Lam, S. Y.; Poon, L. L. M.; Yuen, K. Y.; Seto, W. H. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Advances in Virology2011, 2011. https://doi.org/10.1155/2011/734690. DOI: https://doi.org/10.1155/2011/734690

Darnell, M. E. R.; Subbarao, K.; Feinstone, S. M.; Taylor, D. R. Inactivation of the Coronavirus That Induces Severe Acute Respiratory Syndrome, SARS-CoV. Journal of Virological Methods2004, 121 (1), 85–91. https://doi.org/10.1016/j.jviromet.2004.06.006. DOI: https://doi.org/10.1016/j.jviromet.2004.06.006

Esposito, S.; Bosis, S.; Niesters, H. G. M.; Tremolati, E.; Begliatti, E.; Rognoni, A.; Tagliabue, C.; Principi, N.; Osterhaus, A. D. M. E. Impact of Human Coronavirus Infections in Otherwise Healthy Children Who Attended an Emergency Department. Journal of Medical Virology2006, 78 (12), 1609–1615. https://doi.org/10.1002/jmv.20745. DOI: https://doi.org/10.1002/jmv.20745

Falsey, A. R.; Walsh, E. E.; Hayden, F. G. Rhinovirus and Coronavirus Infection–Associated Hospitalizations among Older Adults. The Journal of Infectious Diseases2002, 185 (9), 1338–1341. https://doi.org/10.1086/339881. DOI: https://doi.org/10.1086/339881

Chiu, S. S.; Hung Chan, K.; Wing Chu, K.; Kwan, S. W.; Guan, Y.; Man Poon, L. L.; Peiris, J. S. M. Human Coronavirus NL63 Infection and Other Coronavirus Infections in Children Hospitalized with Acute Respiratory Disease in Hong Kong, China. Clinical Infectious Diseases2005, 40 (12), 1721–1729. https://doi.org/10.1086/430301. DOI: https://doi.org/10.1086/430301

Chen, Y. C.; Huang, L. M.; Chan, C. C.; Su, C. P.; Chang, S. C.; Chang, Y. Y.; Chen, M. L.; Hung, C. C.; Chen, W. J.; Lin, F. Y.; Lee, Y. T.; Chen, D. S.; Lee, Y. T.; Teng, C. M.; Yang, P. C.; Ho, H. N.; Chen, P. J.; Chang, M. F.; Wang, J. T.; Kao, C. L.; Wang, W. K.; Hsiao, C. H.; Hsueh, P. R. SARS in Hospital Emergency Room. Emerging Infectious Diseases2004, 10 (5), 782–788. https://doi.org/10.3201/eid1005.030579. DOI: https://doi.org/10.3201/eid1005.030579

Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome Composition and Divergence of the Novel Coronavirus (2019-NCoV) Originating in China. Cell Host and Microbe2020, 27 (3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001. DOI: https://doi.org/10.1016/j.chom.2020.02.001

Stöhr, K. A Multicentre Collaboration to Investigate the Cause of Severe Acute Respiratory Syndrome. Lancet. Elsevier Limited May 17, 2003, pp 1730–1733. https://doi.org/10.1016/S0140-6736(03)13376-4. DOI: https://doi.org/10.1016/S0140-6736(03)13376-4

Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.; Song, T.; He, J.; Yen, H. L.; Peiris, M.; Wu, J. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. New England Journal of Medicine. Massachussetts Medical Society March 19, 2020, pp 1177–1179. https://doi.org/10.1056/NEJMc2001737. DOI: https://doi.org/10.1056/NEJMc2001737

Infection prevention and control https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/infection-prevention-and-control (accessed May 21, 2020).

Scientific Challenges for a safe Covid-19 Vaccine, Health News, ET HealthWorld https://health.economictimes.indiatimes.com/news/industry/scientific-challenges-for-a-safe-covid-19-vaccine/75595176 (accessed May 21, 2020).

Commendable That India Able To keep COVID-19 Cases Low: WHO’s Chief Scientist https://www.outlookindia.com/website/story/india-news-commendable-that-india-able-to-keep-covid-19-cases-lower-than-other-nations-whos-chief-scientist/352541 (accessed May 21, 2020).

COVID-19: A Bigger Challenge to the Indian Healthcare System – Developing Economics https://developingeconomics.org/2020/04/13/covid-19-a-bigger-challenge-to-the-indian-healthcare-system/ (accessed May 21, 2020).

Every state a country: Huge population makes India’s Covid-19 fight bigger than nations put together - India News https://www.indiatoday.in/india/story/coronavirus-cases-india-states-population-comparison-countries-graphic-1668354-2020-04-18 (accessed May 21, 2020).

COVID-19 Corona Tracker https://www.coronatracker.com/ (accessed October 3, 2020).

The Golden Rules for Hand Hygiene Best Practices.

Akyol, A.; Ulusoy, H.; Özen, I. Handwashing: A Simple, Economical and Effective Method for Preventing Nosocomial Infections in Intensive Care Units. Journal of Hospital Infection. W.B. Saunders Ltd 2006, pp 395–405. https://doi.org/10.1016/j.jhin.2005.10.007. DOI: https://doi.org/10.1016/j.jhin.2005.10.007

Randle, J.; Clarke, M.; Storr, J. Hand Hygiene Compliance in Healthcare Workers. Journal of Hospital Infection. November 2006, pp 205–209. https://doi.org/10.1016/j.jhin.2006.06.008. DOI: https://doi.org/10.1016/j.jhin.2006.06.008

Creedon, S. A. Healthcare Workers’ Hand Decontamination Practices: Compliance with Recommended Guidelines. Journal of Advanced Nursing2005, 51 (3), 208–216. https://doi.org/10.1111/j.1365-2648.2005.03490.x. DOI: https://doi.org/10.1111/j.1365-2648.2005.03490.x

Kampf, G. The Six Golden Rules to Improve Compliance in Hand Hygiene. Journal of Hospital Infection2004, 56 (SUPPL. 2), 3–5. https://doi.org/10.1016/j.jhin.2003.12.023. DOI: https://doi.org/10.1016/j.jhin.2003.12.023

How Soap Kills COVID-19 on Hands https://en.unesco.org/news/how-soap-kills-covid-19-hands (accessed May 21, 2020).

Chao, W. C.; Shen, J. Y.; Lu, J. F.; Wang, J. S.; Yang, H. C.; Wee, K.; Lin, L. J.; Kuo, Y. C.; Yang, C. H.; Weng, S. H.; Huang, H. C.; Chen, Y. H.; Chou, P. T. Probing Water Environment of Trp59 in Ribonuclease T1: Insight of the Structure-Water Network Relationship. Journal of Physical Chemistry B2015, 119 (6), 2157–2167. https://doi.org/10.1021/jp503914s. DOI: https://doi.org/10.1021/jp503914s

Ray, D.; Kundu, A.; Pramanik, A.; Guchhait, N. Exploring the Interaction of a Micelle Entrapped Biologically Important Proton Transfer Probe with the Model Transport Protein Bovine Serum Albumin. Journal of Physical Chemistry B2015, 119 (6), 2168–2179. https://doi.org/10.1021/jp504037y. DOI: https://doi.org/10.1021/jp504037y

Tolen, T.; Ruengvisesh, S.; Taylor, T. Application of Surfactant Micelle-Entrapped Eugenol for Prevention of Growth of the Shiga Toxin-Producing Escherichia Coli in Ground Beef. Foods2017, 6 (8), 69. https://doi.org/10.3390/foods6080069. DOI: https://doi.org/10.3390/foods6080069

Weiss, J.; McClements, D. J. Mass Transport Phenomena in Oil-in-Water Emulsions Containing Surfactant Micelles: Solubilization. Langmuir2000, 16 (14), 5879–5883. https://doi.org/10.1021/la9914763. DOI: https://doi.org/10.1021/la9914763

Mirastschijski, U.; Schwab, I.; Coger, V.; Zier, U.; Rianna, C.; He, W.; Maedler, K.; Kelm, S.; Radtke, A.; Belge, G.; Lindner, P.; Stahl, F.; Scharpenberg, M.; Lasota, L.; Timm, J. Lung Surfactant Accelerates Skin Wound Healing: A Translational Study with a Randomized Clinical Phase I Study. Scientific Reports2020, 10 (1). https://doi.org/10.1038/s41598-020-59394-5. DOI: https://doi.org/10.1038/s41598-020-59394-5

Olmeda, B.; Martínez-Calle, M.; Pérez-Gil, J. Pulmonary Surfactant Metabolism in the Alveolar Airspace: Biogenesis, Extracellular Conversions, Recycling. Annals of Anatomy2017, 209, 78–92. https://doi.org/10.1016/j.aanat.2016.09.008. DOI: https://doi.org/10.1016/j.aanat.2016.09.008

Bernhard, W.; Haslam, P. L.; Floros, J. From Birds to Humans: New Concepts on Airways Relative to Alveolar Surfactant. American Journal of Respiratory Cell and Molecular Biology. January 2004, pp 6–11. https://doi.org/10.1165/rcmb.2003-0158TR. DOI: https://doi.org/10.1165/rcmb.2003-0158TR

Bernhard, W. Lung Surfactant: Function and Composition in the Context of Development and Respiratory Physiology. Annals of Anatomy. Elsevier GmbH November 1, 2016, pp 146–150. https://doi.org/10.1016/j.aanat.2016.08.003. DOI: https://doi.org/10.1016/j.aanat.2016.08.003

Boyer, J. L. Bile Formation and Secretion. Comprehensive Physiology2013, 3 (3), 1035–1078. https://doi.org/10.1002/cphy.c120027. DOI: https://doi.org/10.1002/cphy.c120027

Secretion of Bile and the Role of Bile Acids In Digestion http://www.vivo.colostate.edu/hbooks/pathphys/digestion/liver/bile.html (accessed May 21, 2020).

Buchweitz, M.; Kroon, P. A.; Rich, G. T.; Wilde, P. J. Quercetin Solubilisation in Bile Salts: A Comparison with Sodium Dodecyl Sulphate. Food Chemistry2016, 211, 356–364. https://doi.org/10.1016/j.foodchem.2016.05.034. DOI: https://doi.org/10.1016/j.foodchem.2016.05.034

Natural Organics Removal Using Membranes: Principles, Performance, and Cost - Andrea Schafer - Google Books https://books.google.co.in/books?id=nUzMBQAAQBAJ&pg=PA23&lpg=PA23&dq=nature+uses+concept+of+micelles+naturally&source=bl&ots=Dc_BmXRAb0&sig=ACfU3U1PRJE3A0jA5-suIsRG98RU7MfPgQ&hl=en&sa=X&ved=2ahUKEwim6MqY7cPpAhUwxTgGHdn1Bd0Q6AEwEHoECAkQAQ#v=onepage&q=nature%20uses%20concept%20of%20micelles%20naturally&f=false (accessed May 21, 2020).

Nakama, Y. Surfactants. In Cosmetic Science and Technology: Theoretical Principles and Applications; Elsevier Inc., 2017; pp 231–244. https://doi.org/10.1016/B978-0-12-802005-0.00015-X. DOI: https://doi.org/10.1016/B978-0-12-802005-0.00015-X

Berg, J. C. Chapter V The Role of Surfactants. In Textile Science and Technology; Elsevier, 2002; Vol. 13, pp 149–198. https://doi.org/10.1016/S0920-4083(02)80008-1. DOI: https://doi.org/10.1016/S0920-4083(02)80008-1

Chapter 8 Application of Surface Activity in Therapeutics. In Studies in Interface Science; Elsevier, 2005; Vol. 21, pp 233–293. https://doi.org/10.1016/S1383-7303(05)80047-X. DOI: https://doi.org/10.1016/S1383-7303(05)80047-X

Wang, H.; Guo, W.; Zheng, C.; Wang, D.; Zhan, H. Effect of Temperature on Foaming Ability and Foam Stability of Typical Surfactants Used for Foaming Agent. Journal of Surfactants and Detergents2017, 20 (3), 615–622. https://doi.org/10.1007/s11743-017-1953-9. DOI: https://doi.org/10.1007/s11743-017-1953-9

Fink, J. K. Surfactants. In Hydraulic Fracturing Chemicals and Fluids Technology; Elsevier, 2013; pp 121–127. https://doi.org/10.1016/B978-0-12-411491-3.00010-8. DOI: https://doi.org/10.1016/B978-0-12-411491-3.00010-8

Jafarinejad, S. Oil-Spill Response. In Petroleum Waste Treatment and Pollution Control; Elsevier, 2017; pp 117–148. https://doi.org/10.1016/B978-0-12-809243-9.00004-3. DOI: https://doi.org/10.1016/B978-0-12-809243-9.00004-3

Free, M. L. The Use of Surfactants to Enhance Particle Removal from Surfaces. In Developments in Surface Contamination and Cleaning: Second Edition; Elsevier Inc., 2016; Vol. 1, pp 595–626. https://doi.org/10.1016/B978-0-323-29960-2.00013-7.

Kato, K. Tribological Implication of Particles. In Developments in Surface Contamination and Cleaning: Second Edition; Elsevier Inc., 2016; Vol. 1, pp 147–172. https://doi.org/10.1016/B978-0-323-29960-2.00005-8. DOI: https://doi.org/10.1016/B978-0-323-29960-2.00005-8

Cole, D. A.; Attavar, S.; Zhang, L. Surface Analysis Methods for Contaminant Identification. In Developments in Surface Contamination and Cleaning: Second Edition; Elsevier Inc., 2016; Vol. 1, pp 333–394. https://doi.org/10.1016/B978-0-323-29960-2.00008-3. DOI: https://doi.org/10.1016/B978-0-323-29960-2.00008-3

Kohli, R. Microabrasive Technology for Precision Cleaning and Processing. In Developments in Surface Contamination and Cleaning: Second Edition; Elsevier Inc., 2016; Vol. 1, pp 627–666. https://doi.org/10.1016/B978-0-323-29960-2.00014-9. DOI: https://doi.org/10.1016/B978-0-323-29960-2.00014-9

Free, M. L. The Use of Surfactants to Enhance Particle Removal from Surfaces. In Developments in Surface Contamination and Cleaning: Second Edition; Elsevier Inc., 2016; Vol. 1, pp 595–626. https://doi.org/10.1016/B978-0-323-29960-2.00013-7. DOI: https://doi.org/10.1016/B978-0-323-29960-2.00013-7

Randall, K.; Cheng, S. W.; Kotchevar, A. T. Evaluation of Surfactants as Solubilizing Agents in Microsomal Metabolism Reactions with Lipophilic Substrates. In Vitro Cellular and Developmental Biology - Animal2011, 47 (9), 631–639. https://doi.org/10.1007/s11626-011-9449-9. DOI: https://doi.org/10.1007/s11626-011-9449-9

Brycki, B. E.; Kowalczyk, I. H.; Szulc, A.; Kaczerewska, O.; Pakiet, M. Multifunctional Gemini Surfactants: Structure, Synthesis, Properties and Applications. In Application and Characterization of Surfactants; InTech, 2017. https://doi.org/10.5772/intechopen.68755. DOI: https://doi.org/10.5772/intechopen.68755

Seredyuk, V.; Alami, E.; Nydén, M.; Holmberg, K.; Peresypkin, A. v.; Menger, F. M. Adsorption of Zwitterionic Gemini Surfactants at the Air-Water and Solid-Water Interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects2002, 203 (1–3), 245–258. https://doi.org/10.1016/S0927-7757(01)01106-2. DOI: https://doi.org/10.1016/S0927-7757(01)01106-2

Sharma, R.; Kamal, A.; Abdinejad, M.; Mahajan, R. K.; Kraatz, H. B. Advances in the Synthesis, Molecular Architectures and Potential Applications of Gemini Surfactants. Advances in Colloid and Interface Science. Elsevier B.V. October 1, 2017, pp 35–68. https://doi.org/10.1016/j.cis.2017.07.032. DOI: https://doi.org/10.1016/j.cis.2017.07.032

Xu, Q.; Wang, L.; Xing, F. Synthesis and Properties of Dissymmetric Gemini Surfactants. Journal of Surfactants and Detergents2011, 14 (1), 85–90. https://doi.org/10.1007/s11743-010-1207-6. DOI: https://doi.org/10.1007/s11743-010-1207-6

Smith, G. A. Fatty Acid, Methyl Ester, and Vegetable Oil Ethoxylates. In Biobased Surfactants; Elsevier, 2019; pp 287–301. https://doi.org/10.1016/b978-0-12-812705-6.00008-3. DOI: https://doi.org/10.1016/B978-0-12-812705-6.00008-3

Gerba, C. P. Quaternary Ammonium Biocides: Efficacy in Application. Applied and Environmental Microbiology. American Society for Microbiology 2015, pp 464–469. https://doi.org/10.1128/AEM.02633-14. DOI: https://doi.org/10.1128/AEM.02633-14

Tuladhar, E.; de Koning, M. C.; Fundeanu, I.; Beumer, R.; Duizer, E. Different Virucidal Activities of Hyperbranched Quaternary Ammonium Coatings on Poliovirus and Influenza Virus. Applied and Environmental Microbiology. American Society for Microbiology April 1, 2012, pp 2456–2458. https://doi.org/10.1128/AEM.07738-11. DOI: https://doi.org/10.1128/AEM.07738-11

Shirai, J.; Kanno, T.; Tsuchiya, Y.; Mitsubayashi, S.; Seki, R. Effects of Chlorine, Iodine, and Quaternary Ammonium Compound Disinfectants on Several Exotic Disease Viruses. Journal of Veterinary Medical Science2000, 62 (1), 85–92. https://doi.org/10.1292/jvms.62.85. DOI: https://doi.org/10.1292/jvms.62.85

Tsao, I. ‐F; Wang, H. Y.; Shipman, C. Interaction of Infectious Viral Particles with a Quaternary Ammonium Chlorid (QAC) Surface. Biotechnology and Bioengineering1989, 34 (5), 639–646. https://doi.org/10.1002/bit.260340508. DOI: https://doi.org/10.1002/bit.260340508

Weber, D. J.; Barbee, S. L.; Sobsey, M. D.; Rutala, W. A. The Effect of Blood on the Antiviral Activity of Sodium Hypochlorite, a Phenolic, and a Quaternary Ammonium Compound. Infection Control & Hospital Epidemiology1999, 20 (12), 821–827. https://doi.org/10.1086/501591. DOI: https://doi.org/10.1086/501591

Koziróg, A.; Kregiel, D.; Brycki, B. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of AsaiaLannensis. Molecules2017, 22 (11). https://doi.org/10.3390/molecules22112036. DOI: https://doi.org/10.3390/molecules22112036

Kamal, M. S. A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. Journal of Surfactants and Detergents. Springer Verlag March 1, 2016, pp 223–236. https://doi.org/10.1007/s11743-015-1776-5. DOI: https://doi.org/10.1007/s11743-015-1776-5

Kamal, M. S.; Sultan, A. S.; Hussein, I. A. Screening of Amphoteric and Anionic Surfactants for CEOR Applications Using a Novel Approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects2015, 476, 17–23. https://doi.org/10.1016/j.colsurfa.2015.03.023. DOI: https://doi.org/10.1016/j.colsurfa.2015.03.023

Zana, R. Dimeric and Oligomeric Surfactants. Behavior at Interfaces and in Aqueous Solution: A Review. Advances in Colloid and Interface Science. Elsevier March 29, 2002, pp 205–253. https://doi.org/10.1016/S0001-8686(01)00069-0. DOI: https://doi.org/10.1016/S0001-8686(01)00069-0

Zana, R. Dimeric (Gemini) Surfactants: Effect of the Spacer Group on the Association Behavior in Aqueous Solution. Journal of Colloid and Interface Science. Elsevier 2002, pp 203–220. https://doi.org/10.1006/jcis.2001.8104. DOI: https://doi.org/10.1006/jcis.2001.8104

Sikirić, M.; Šmit, I.; Tušek-Božić, L.; Tomašić, V.; Pucić, I.; Primožič, I.; Filipović-Vinceković, N. Effect of the Spacer Length on the Solid Phase Transitions of Dissymmetric Gemini Surfactants. Langmuir2003, 19 (24), 10044–10053. https://doi.org/10.1021/la034799e. DOI: https://doi.org/10.1021/la034799e

Sikirić, M.; Primožič, I.; Filipović-Vinceković, N. Adsorption and Association in Aqueous Solutions of Dissymmetric Gemini Surfactant. Journal of Colloid and Interface Science2002, 250 (1), 221–229. https://doi.org/10.1006/jcis.2002.8304. DOI: https://doi.org/10.1006/jcis.2002.8304

Han, Y.; Wang, Y. Aggregation Behavior of Gemini Surfactants and Their Interaction with Macromolecules in Aqueous Solution. Physical Chemistry Chemical Physics2011, 13 (6), 1939–1956. https://doi.org/10.1039/c0cp01196g. DOI: https://doi.org/10.1039/c0cp01196g

Kaur, R.; Singh, K.; Khullar, P.; Gupta, A.; Ahluwalia, G. K.; Bakshi, M. S. Applications of Molecular Structural Aspects of Gemini Surfactants in Reducing Nanoparticle-Nanoparticle Interactions. Langmuir2019. https://doi.org/10.1021/acs.langmuir.9b02855. DOI: https://doi.org/10.1021/acs.langmuir.9b02855

Mohajeri, E.; Dehghan, G. Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: PolyoxyethyleneSorbitan Fatty Acid Esters; Vol. 2012. DOI: https://doi.org/10.1155/2012/961739

McPherson, A. Micelle Formation and Crystallization as Paradigms for Virus Assembly. BioEssays2005, 27 (4), 447–458. https://doi.org/10.1002/bies.20196. DOI: https://doi.org/10.1002/bies.20196

Li, P. X.; Li, Z. X.; Shen, H. H.; Thomas, R. K.; Penfold, J.; Lu, J. R. Application of the Gibbs Equation to the Adsorption of Nonionic Surfactants and Polymers at the Air-Water Interface: Comparison with Surface Excesses Determined Directly Using Neutron Reflectivity. Langmuir2013, 29 (30), 9324–9334. https://doi.org/10.1021/la4018344. DOI: https://doi.org/10.1021/la4018344

Bordes, R.; Holmberg, K. Amino Acid-Based Surfactants - Do They Deserve More Attention? Advances in Colloid and Interface Science. Elsevier August 12, 2015, pp 79–91. https://doi.org/10.1016/j.cis.2014.10.013. DOI: https://doi.org/10.1016/j.cis.2014.10.013

Hayes, D. G.; Smith, G. A. Biobased Surfactants: Overview and Industrial State of the Art. In Biobased Surfactants; Elsevier, 2019; pp 3–38. https://doi.org/10.1016/b978-0-12-812705-6.00001-0. DOI: https://doi.org/10.1016/B978-0-12-812705-6.00001-0

Somasundaran, P.; Fu, E.; McCue, K.; Boesenberg, D. Handbook for Cleaning/Decontamination of Surfaces i Chemical Disinfection of Hard Surfaces-Household, Industrial and Institutional Settings.

Clark, P. G.; Wagener, T. J. Removal of Particles by Chemical Cleaning. In Developments in Surface Contamination and Cleaning: Second Edition; Elsevier Inc., 2008; Vol. 1, pp 579–593. https://doi.org/10.1016/B978-0-323-29960-2.00012-5. DOI: https://doi.org/10.1016/B978-0-323-29960-2.00012-5

Use of Disinfectants: Alcohol and Bleach. 2014.

RJ, R. A Plausible Penny Costing Effective Treatment for Corona Virus - Ozone Therapy. Journal of Infectious Diseases and Epidemiology.

Dubuis, M. E.; Dumont-Leblond, N.; Laliberté, C.; Veillette, M.; Turgeon, N.; Jean, J.; Duchaine, C. Ozone Efficacy for the Control of Airborne Viruses: Bacteriophage and Norovirus Models. PLoS ONE2020, 15 (4). https://doi.org/10.1371/journal.pone.0231164. DOI: https://doi.org/10.1371/journal.pone.0231164

Elvis, A. M.; Ekta, J. S. Ozone Therapy: A Clinical Review. Journal of Natural Science, Biology and Medicine. January 2011, pp 66–70. https://doi.org/10.4103/0976-9668.82319. DOI: https://doi.org/10.4103/0976-9668.82319

Ozone Can Be Used To Destroy The New Coronavirus And Disinfect Areas - Thailand Medical News https://www.thailandmedical.news/news/ozone-can-be-used-to-destroy-the-new-coronavirus-and-disinfect-areas (accessed May 31, 2020).

Karaca, H.; Velioglu, Y. S. Ozone Applications in Fruit and Vegetable Processing. Food Reviews International2007, 23 (1), 91–106. https://doi.org/10.1080/87559120600998221. DOI: https://doi.org/10.1080/87559120600998221

Nath, A.; Mukhim, K.; Swer, T.; Dutta, D.; Verma, N.; Deka, B. C.; Gangwar, B. A Review on Application of Ozone in the Food Processing and Packaging; 2014; Vol. 1.

Published
2020-12-09
How to Cite
Kaur, R., & Gupta, A. (2020). ROLE OF GEMINI SURFACTANTS IN FIGHT AGAINST COVID19. International Journal of Engineering Technologies and Management Research, 7(12), 1-16. https://doi.org/10.29121/ijetmr.v7.i12.2020.807