OPTIMIZING REACTION CONDITIONS OF BIODIESEL PRODUCTION FROM WASTE COOKING OIL USING GREEN SOLID CATALYST

  • I Nengah Simpen Department of Chemistry, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Badung, Bali, Indonesia
  • I Made Sutha Negara Department of Chemistry, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Badung, Bali, Indonesia
  • Sofyan Dwi Jayanto Department of Chemistry, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Badung, Bali, Indonesia
Keywords: Biodiesel, Crab Shell, Cao/K2O-Tio2 Green Solid Catalyst, Waste Cooking Oil

Abstract

Biodiesel production from waste cooking oil in two steps reaction of esterification and transesterification is low efficient, due to twice methanol consumption and need more reaction time. Optimizing reaction conditions of CaO as a matrix of solid catalyst prepared from crab shell (green CaO) and modified by K2O/TiO2 for converting waste cooking oil to biodiesel have been carried out. Catalytic process of waste cooking oil to biodiesel took place in one step reaction of esterification and transesterification. The research result showed that optimum conditions in its one step reaction such as methanol to oil molar ratio was 9:1, amount of CaO/K2O-TiO2 catalyst to oil was 5% and reaction time of 60 minutes with biodiesel yield was 88.24%. Physical and chemical properties of biodiesel which produced from one step reaction of esterification and transesterification of waste cooking oil were suitable with Indonesian National Standard (SNI-04-7182-2006) namely density at 40oC of 850 kg/m3, kinematic viscosity at 40oC of 3.32 cSt, water content of 0.046%, iodine number of 59.25 g I2/100g and acid value of 0.29 mg KOH/g. Gas chromatography-mass spectrometry (GC-MS) analysis of biodiesel formed fatty acid methyl esters from conversion of waste cooking oil.

Downloads

Download data is not yet available.

References

Abed, K.A., Gad, M.S., Morsi, A.K.E., Sayed, M.M. and Elyazeed, S.A. Effect of biodiesel fuels on diesel engine emissions. Egyptian Journal of Petroleum. 28. 2019. 183-188. DOI: https://doi.org/10.1016/j.ejpe.2019.03.001

Abbah, E.C., Nwandikom, G.I., Egwuonwu, C.C. and Nwakuba, N.R. Effect of reaction temperature on the yield of biodiesel from neem seed oil. American Journal of Energy Science. 3(3). 2016. 16-20.

Astuti, N.K.D., Simpen. IN. dan Suarsa. IW. Transesterifikasi minyak biji karet (hevea brasiliensis) menggunakan katalis heterogen cangkang kepiting limbah seafood termodifikasi K2O. Jurnal Kimia. 13(1). 2019. 1-8. DOI: https://doi.org/10.24843/JCHEM.2019.v13.i01.p01

Aziz, I., Nurbayti, S. dan Ulum, B. Pembuatan produk biodiesel dari minyak goreng bekas dengan cara esterifikasi dan transesterifikasi. Valensi. 2(3). 2011. 443-448. DOI: https://doi.org/10.15408/jkv.v2i3.115

Bobade, S.N. and Khyade, V.B. Detail study on the properties of pongamia pinnata (karanja) for the production of biofuel. Research Journal of Chemical Sciences. 2(7). 2012. 16-20.

Borges, M.E. and Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renewable and Sustainable Energy Reviews. 16. 2012. 2839-2849. DOI: https://doi.org/10.1016/j.rser.2012.01.071

Degfie, T. A., Mamo, T.T. and Mekonnen, Y.S. Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nanocatalyst. Scientific Reports-Natureresearch. 9. 2019. 1-8. DOI: https://doi.org/10.1038/s41598-019-55403-4

Degirmenbasi, N., Coskun, S., Boz, N. and Kaylon, D.M. Biodiesel synthesis from canola oil via heterogeneous catalyst using functionalizes cao nanoparticles. Fuel. 153. 2015. 620-627. DOI: https://doi.org/10.1016/j.fuel.2015.03.018

Encinar, J.M., Gonzalez, J.F., Pardal, A. and Martinez, G. Rape oil transesterification over heterogeneous catalyst. Fuel Processing Technology. 91. 2010. 1530-1536. DOI: https://doi.org/10.1016/j.fuproc.2010.05.034

Enweremadu, C.C. and Mbarawa, M.M. Technical aspects of production and analysis of biodiesel from used cooking oil-a review. Renewable and Sustainable Energy Reviews. 13. 2009. 2205-24. DOI: https://doi.org/10.1016/j.rser.2009.06.007

Essamlali, Y. Amadine, O. Larzek, M. Len, C. and Zahouily, M. Sodium modified hydroxyapatite: highly efficient and stable solid-base catalyst for biodiesel production. Energy Convertion and Management. 149. 2017. 355-367. DOI: https://doi.org/10.1016/j.enconman.2017.07.028

Guo, F. and Fang, Z., Biodiesel production with solid catalysts. Biodiesel Feedstocks and Processing Technologies. 2011. 1-21. DOI: https://doi.org/10.5772/25602

Istadi, I., Sebastianus, A., Prasetyo. and Nugroho, T.S. Characterization of K2O/CaO-ZnO catalyst for transesterification of soybean oil to biodiesel. Procedia Environmental Sciences. 23. 2015. 394-399. DOI: https://doi.org/10.1016/j.proenv.2015.01.056

Lestari, K.A.T., Simpen, I N. dan Santi, S.R., Optimasi rasio molar dan waktu reaksi pada pembuatan biodiesel dari minyak biji malapari (Pongamia pinnata L.) dengan katalis abu sekam padi termodifikasi litium. Cakra Kimia. 5(1). 2017. 43-51. DOI: https://doi.org/10.24843/CK.2017.v05.i01.p06

Mahreni. Peluang dan tantangan komersialisasi biodiesel-review. Jurnal Eksergi. 10(2). 2010. 15-26. DOI: https://doi.org/10.31315/e.v10i2.335

Mangesh, G.K. and Ajay, K.D. Waste cooking oil-an economical source for biodiesel: a review. Industrial and Enginering Chemistry Research. 45. 2006. 2901-2913. DOI: https://doi.org/10.1021/ie0510526

Math, M.C., Kumar, S.P. and Chetty, S.V. Technologies for biodiesel production from used cooking oil - a review. Energy for Sustainable Development. 14. 2010. 339-45. DOI: https://doi.org/10.1016/j.esd.2010.08.001

Musa, I.A. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum. 25. 2016. 21-31. DOI: https://doi.org/10.1016/j.ejpe.2015.06.007

Niju, S., Begum, K.M.M.S. and Anantharaman, N. Enhancement of biodiesel synthesis over highly active CaO derived from natural white bivalve clam shell. Arabian Journal of Chemistry. 9. 2016. 633-639. DOI: https://doi.org/10.1016/j.arabjc.2014.06.006

Panudare, D.C. and Rathod, V.K. Application of waste cooking oil other than biodiesel: review. Irranian Journal of Chemical Engineering. 12(3). 2015. 55-76.

Salinas, D., Guerrero, S. and Araya, P. Transesterification of canola oil on potassium-supported TiO2 catalysts. Catalysis Communications. 11. 2010. 773-777. DOI: https://doi.org/10.1016/j.catcom.2010.02.013

Setiawati, E. dan Fatmir, E. Teknologi pengolahan biodiesel dari minyak goreng bekas dengan teknik mikrofiltrasi dan transesterifikasi sebagai alternatif bahan bakar mesin diesel. Jurnal Riset Industri. 6(2). 2012. 117-127.

Sivasamy, A., Cheah, K.Y., Fornasiero, P., Kemausuor, F., Zinoviev, S. and Miertus, S., Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem. 2. 2009. 278-300. DOI: https://doi.org/10.1002/cssc.200800253

SNI. Persyaratan mutu dan metode uji biodiesel. 04-7182-2006. Badan Standarisasi Nasional. 2006.

Zhang, J., Chen, S., Yang, R. and Yan, Y. Biodiesel production from vegetable oil using heterogeneus acid and alkali catalyst. Fuel. 89. 2010. 2939-2944. DOI: https://doi.org/10.1016/j.fuel.2010.05.009

Published
2020-09-05
How to Cite
Simpen, I. N., Negara , I. M. S., & Jayanto, S. D. (2020). OPTIMIZING REACTION CONDITIONS OF BIODIESEL PRODUCTION FROM WASTE COOKING OIL USING GREEN SOLID CATALYST. International Journal of Engineering Technologies and Management Research, 7(8), 65-71. https://doi.org/10.29121/ijetmr.v7.i8.2020.764