PHOTOLYSIS OF FLUORENE AND 9-FLUORENONE A TOXIC ENVIRONMENTAL CONTAMINANT: STUDIES IN THE EFFECT OF SOLVENT AND INTENSITY OF THE SOURCE

  • Rekha Nagwanshi Government Madhav Science PG College, Ujjain, India
  • Dr. Jeeven Singh Solanki Government Madhav Science PG College, Ujjain, India
  • Sandhya Bageriab Laxminarayan College of Technology Indore, India
  • Shubha Jain School of studies in chemistry and Biochemistry, Vikram University Ujjain, India
Keywords: Photolysis, 9-Fluorenone;, Acetonitrile, Benzene, Acetone

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a class of genotoxic environmental
contaminants and are always exposed to solar radiations. Fluorenes are important PAHs
widely distributed in nature and hence the studies in the effect of light on them are of ulmost
significance. Therefore in this paper, we have studied the photo irradiations of fluorene (1)
and 9-fluorenone (2) with UV light in different solvents, which results in the formation of
different products.

Downloads

Download data is not yet available.

References

Sandford S. A., Bernstein M. P., Allamandola L. J., Gillette J. S. and Zare R. N., Deuterium enrichment of polycyclic aromatic hydrocarbons by photo chemically induced exchange with deuterium-rich cosmic ices, Astrophys. J., 538 (2 Pt 1), 691-697, (2000). DOI: https://doi.org/10.1086/309147

Warner S. D., Farant J. P. and Butler I. S., Photochemical degradation of selected nitro polycyclic aromatic hydrocarbons in solution and adsorbed to solid particles, Chemosphere, 54 (8), 1207-1215, (2004). DOI: https://doi.org/10.1016/j.chemosphere.2003.09.020

Adam W., Berger M., Cadet J., Dall'Acqua F., Epe B., Frank S., Ramaiah D., Raoul S., Saha Moller C. R. and Vedaldi D., Photochemistry and photobiology of furo coumarin hydro -peroxides derived from imperatorin: novel intercalating photo-fenton reagents for oxidative DNA modification by hydroxyl radicals, Photochem. Photobiol., 63, 768-778, (1996).

Reed D., Photochemistry of selected nitro-polycyclic aromatic hydrocarbons, Mississippi Acad. Sci. Hattiesburg, Feb 13-14, (MS 2003).

Wang S., Dong S., Hwang H. M., Fu P. P. and Yu H., Solvent effect on the light-induced DNA cleavage by selected polycyclic aromatic hydrocarbons, RCMI Symposium Jackson, April 24-27, (MS 2002).

Dabestani R. T. and Sigman M. E., Adsorption and photochemical behavior of polycyclic aromatic hydrocarbons (PAHs) on a non-semiconductive surface such as silica, J. Adv. Oxi. Tech., 3(3), 315-321, (1998). DOI: https://doi.org/10.1515/jaots-1998-0318

Reyes C., Sigman M. E., Arce R., Barbas J. T. and Dabestani R. T., Photochemistry of acenaphthene at a silica gel/air interface, Photochem. Photobiol. A.: Chem., 112, 277-283, (1998).

Dabestani R. T. and Sigman M. E., Spectroscopy and photochemical transformations of polycyclic aromatic hydrocarbons at silica and alumina-air interfaces, Solid State and Surface Photochem., 4, 01-30, (2000).

Morel M. C., Alers I. and Arce R., Photochemical degradation of 1, 6 and 1, 8-dinitro pyrenes in solution, Polycyclic Arom. Comp., 26(3), 207-219, (2006). DOI: https://doi.org/10.1080/10406630600760576

Hongtao Y., Jian Y., Yuguo J. and Peter P. F., Photochemical reaction of 7, 12-di – methylbenz[a]anthracene (DMBA) and formation of DNA covalent adducts, Int. J. Environ. Res. Public Health, 2(1), 114 –122, (2005). DOI: https://doi.org/10.3390/ijerph2005010114

Babudri F., Bilancia G., Cardone A., Coppo P., DeCola L., Farinola G. M., Hofstraat J. W. and Naso F., Photochemical tuning of light emission in a conjugated polymer containing norbornadiene units in the main chain, Photochem. Photobiol. Sci., 6(4), 361-364, (April 2007). DOI: https://doi.org/10.1039/B611685J

Farwell A. J., Nero V., Croft M., Rhodes S. and Dixon D. G., Phototoxicity of oil sands- derived polycyclic aromatic compounds to Japanese medaka (Oryzias latipes) embryos, Environ. Toxicol. Chem., 25(12), 3266-3274, (Dec 2006). DOI: https://doi.org/10.1897/05-637R1.1

Ohshima S., Ohtsuki T., Kimura E., Yamaguchi M., Toyoshima T. and Takekawa M., Photochemical reaction of 6H-benzo[cd]pyren-6-one (Naphthanthrone), Polycyclic Arom. Comp., 28 (4 & 5), 373 – 381, (Aug 2008). DOI: https://doi.org/10.1080/10406630802435027

Sluszny C., Bulatov V., Gridin V. V. and Schechter I., Photochemical study of anthracene crystallites by fourier transform spectroscopic imaging, Photochem. Photobiol., 74 (6), 780-786, (2001). DOI: https://doi.org/10.1562/0031-8655(2001)074<0780:PSOACB>2.0.CO;2

Jiben M., Wenan W., Daming D., Guoxiang X. and Yongmei W., Solid state photochemistry of nitrogenous heteraromatic compounds, Acta. Chimica Sinica, 5(6), 595-602, (1995).

Sabate J., Bayona J. M. and Solanas A. M., Photolysis of PAHs in aqueous phase by UV irradiation, Chemosphere, 44(2), 119-124, (July 2001). DOI: https://doi.org/10.1016/S0045-6535(00)00208-3

Moeini-Nombel L. and Matsuzawa S., Effect of solvents and a substituent group on photooxidation of fluorene, J. Photochem. Photobiol. A.: Chem., 119, 15-23, (1998).

El-Khouly M. E., Photoinduced intermolecular electron transfer process of fullerene (C60) and amine-substituted fluorenes studied by laser flash photolysis, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 67(3- 4), 636-642, (July 2007). DOI: https://doi.org/10.1016/j.saa.2006.08.022

Tham Y. W. F. and Sakugawa H., Preliminary study of the photolysis of fluorene in rainwater, Bull. Environ. Contam. Toxicol., 79(6), (Dec 2007). DOI: https://doi.org/10.1007/s00128-007-9309-1

Gimeno O., Rivas F. J., Beltran F. J. and Carbajo M., Photocatalysis of fluorene adsorbed onto TiO2, Chemosphere, 69(4), 595-604, (Sept 2007). DOI: https://doi.org/10.1016/j.chemosphere.2007.03.004

Liu L., Tang S., Liu M., Xie Z., Zhang W., Lu P., Hanif M. and Ma Y., Photodegradation of poly-fluorene and fluorene oligomers with alkyl and aromatic di substitutions, J. Phys. Chem. B., 110 (28), 13734-13740, (20 July 2006). DOI: https://doi.org/10.1021/jp062612x

Barbas J. T., Sigman M. E., Arce R. and Dabestani R., Spectroscopy and photochemistry of fluorene at a silica gel/air interface, J. Photochem. Photobiol.: A. Chem., 109(3), 229-236, (1997).

Verbeek J. M., Cornelisse J. and Lodder G., Photolysis of the vinyl bromide 9-(α-Bromo benzylidene) fluorene in methanol, effect of wavelength of irradiation, sodium methoxide and oxygen, Tetrahedron, 42(20), 5679-5684, (1986). DOI: https://doi.org/10.1016/S0040-4020(01)88173-4

Corredor C. C., Belfield K. D., Bondar M. V., Przhonska O. V. and Yao S. One and two-photon photo chemical stability of linear and branched fluorene derivatives, J. Photochem. Photobiol. A.: Chem., 184(1-2), 105-112 (15 Nov 2006). DOI: https://doi.org/10.1016/j.jphotochem.2006.03.036

Sugawara T., Bethell D. and Iwamura H., Photolysis of 1, 12-bis(diazo)-1,12-dihydro indeno[2,3-a] fluorene, Esr and optical detection of a σ-type 1, 4-biradical, Tetrahedron Lett., 25(22), 2375-2378, (1984). DOI: https://doi.org/10.1016/S0040-4039(01)80259-8

Kawamata K., Kikuchi K., Okada K. and Oda M., Photo isomerization of α-(9-anthryl) ethyl spiro [cyclopropane-1,9'-fluorene]-2-carboxylates studied by stepwise two-color two- photon flash photoly- sis, J. Phys. Chem., 98(8), 2090-2094, (1994). DOI: https://doi.org/10.1021/j100059a018

Published
2017-12-31
How to Cite
Nagwanshi, R., Solanki, D. J. S., Bageriab, S., & Jain , S. (2017). PHOTOLYSIS OF FLUORENE AND 9-FLUORENONE A TOXIC ENVIRONMENTAL CONTAMINANT: STUDIES IN THE EFFECT OF SOLVENT AND INTENSITY OF THE SOURCE. International Journal of Engineering Technologies and Management Research, 4(12), 55-59. https://doi.org/10.29121/ijetmr.v4.i12.2017.591