THE INCREASE OF STOMATA OPENING AREA IN CORN PLANT STIMULATED BY DUNDUBIA MANIFERA INSECT SOUND

  • I Gusti Putu Suryadarma Biology Education Department, Mathematics and Natural Sciences Faculty, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta, 55281, Indonesia
  • Widiastuti Physics Education Department, Mathematics and Natural Sciences Faculty, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta, 55281, Indonesia
  • Nur Kadarisman Physics Education Department, Mathematics and Natural Sciences Faculty, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta, 55281, Indonesia
  • Wipsar Sunu Brams Dwandaru Physics Education Department, Mathematics and Natural Sciences Faculty, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta, 55281, Indonesia
Keywords: Dundubia Manifera Insect Sound, Stomata Opening Area, Elliptic Equation, Corn Plants

Abstract

This study aims i) to determine the effect of Dundubia manifera insect sound on the stomata opening area of corn plant (Zea Mays L.) at frequencies of (in Hz) 3000, 3500, 4000, 4500, and 5000, and ii) to know the peak frequency that can optimize the stomata opening of the corn plant. The insect sound has been manipulated into peak frequencies and validated using Octave 4.2.1 software. The experiment uses one corn-field for the treatment and control plants. Sampling is taken three times, i.e.: 15 minutes before sound exposure, during sound exposure for 30 minutes, and 15 minutes after sound exposure. The stomata opening area is observed using a microscope by observing the output via NIS Elements Viewer program. The length and width of the stomata openings are measured using Image Raster 3.0 and the area of the stomata opening is calculated using the elliptic equation. This study shows that the stomata opening area when given sound exposure is larger than without sound exposure. The largest stomata opening area is obtained at a frequency of 3000 Hz, viz.: 93.7 µm².

Downloads

Download data is not yet available.

References

Fricker M. and Willmer C., Stomata. Second Edition. London: Chapman and Hall, 1996. DOI: https://doi.org/10.1007/978-94-011-0579-8

He J., Zhang RX., Peng K., Tagliavia C., Li S., Xue S., Liu A., Hu H., Zhang J., Hubbard KE., Held K., McAinsh MR., Gray JE., Kudla J., Schroeder JI., Liang YK., and Hetherington AM., New Phytologist, 218, 2018, 232-241. DOI 10.1111/nph.14957. DOI: https://doi.org/10.1111/nph.14957

Schroeder JI., Allen GJ., Hugouvieux V., Kwak JM., and Waner D., Annual Review of Plant Physiology and Plant Molecular Biology, 52, 2001, 627-658. DOI 10.1146/annurev.arplant.52.1.627 DOI: https://doi.org/10.1146/annurev.arplant.52.1.627

Vavasseur A. and Agepati SR., New Phytologist, 165, 2005, 665-682. DOI 10.1111/j.1469- 8137.2004.01276.x DOI: https://doi.org/10.1111/j.1469-8137.2004.01276.x

Chaturvedi R., Plant – Water Relation. Guwahati: Department of Biotechnology Indian Institute of Technology, 2006.

Lodish H., Berk A., Zipursky SL., Matsudaira P., Baltimore D., and Darnell J., Molecular Cell Biology: 4th edition. New York: National Center for Biotechnology Information (NCBI) and U.S. National Library of Medicine, W. H. Freeman and Company, 2000.

North American insect and Spiders, Annual Cicada – Tibicen linnei; Available at: http://www.cirrusimage.com/homoptera_cicada_T_linnei.htm.

Yi J., Bochu W., Xiujuan W., Daohong W., Chuaren D., Toyama Y., and Sakanishi A., Colloids and Surfaces B: Biointerfaces, 29, 2003, 115-118. DOI 10.1016/S0927-7765(02)00155-8. DOI: https://doi.org/10.1016/S0927-7765(02)00155-8

Xiujuan W., Bochu W., Yi J., Chuanren D. and Sakanishi A., Colloids and Surfaces B: Biointerfaces, 29, 2003, 99-102. DOI 10.1016/S0927-7765(02)00152-2. DOI: https://doi.org/10.1016/S0927-7765(02)00152-2

Li B., Wei J., Wei X., Tang K., Liang Y., Shu K., Wang B., Colloids and Surfaces B: Biointerfaces, 63, 2008, 269-275. DOI 10.1016/j.colsurfb.2007.12.012. DOI: https://doi.org/10.1016/j.colsurfb.2007.12.012

Zhao HC., Wu J., Xi BS., and Wang BC., Colloids and Surfaces B: Biointerfaces, 25, 2002, 29-32. DOI DOI 10.1016/S0927-7765(01)00294-6. DOI: https://doi.org/10.1016/S0927-7765(01)00294-6

Voss LJ., Mc Adam SAM., Knoblauch M., Rathje JM., Brodribb T., Hedrich R., and RoelfsemaMRG., New Phytologist, 219, 2018, 206-215. DOI 10.1111/nph.15153. DOI: https://doi.org/10.1111/nph.15153

Xiaocheng Y., Bochu W., and Chuanren, D., Colloids and Surfaces B: Biointerfaces, 30, 2003, 67- 72. DOI 10.1016/S0927-7765(03)00027-4. DOI: https://doi.org/10.1016/S0927-7765(03)00027-4

Toh S., Inoue S., Toda Y., Yuki T., Suzuki K., Hamamoto S., Fukatsu K., Aoki S., Uchida M., Asai E., Uozumi N., Sato A., Kinoshita T., Plant and Cell Physiology, 59, 2018, 1568-1580. DOI 10.1093/pcp/pcy061. DOI: https://doi.org/10.1093/pcp/pcy061

Dittberner H., Korte A., Altmann TM., Weber APM., Monroe G., and Meaux JD., Molecular Ecology, 2018; 27: 4052-4065. DOI 10.1111/mec.14838. DOI: https://doi.org/10.1111/mec.14838

Yi J., Bochu W., Xiujuan W., Chuanren D., and Xiaocheng Y., Colloids and Surfaces B: Biointerfaces, 27, 2003, 65-69. DOI 10.1016/S0927-7765(02)00037-1. DOI: https://doi.org/10.1016/S0927-7765(02)00037-1

Bochu W., Xin C., Zhen W., Qizhong F., Hao Z. and Liang R., Colloids and Surfaces B: Biointerfaces, 32, 2003, 29-34. DOI 10.1016/S0927-7765(03)00128-0. DOI: https://doi.org/10.1016/S0927-7765(03)00128-0

Kim JY., Lee JS., Kwon TR., Lee SI., Kim JA., Lee GM., Park CP. and Jeong MJ. Postharvest Biology Technology, 110, 2015, 43-50. DOI: https://doi.org/10.1016/j.postharvbio.2015.07.015

DOI 10.1016/j.postharvbio.2015.07.015.

Published
2019-05-31
How to Cite
Suryadarma, I. G. P., Widiastuti, Nur Kadarisman, & Dwandaru, W. S. B. (2019). THE INCREASE OF STOMATA OPENING AREA IN CORN PLANT STIMULATED BY DUNDUBIA MANIFERA INSECT SOUND . International Journal of Engineering Technologies and Management Research, 6(5), 107-116. https://doi.org/10.29121/ijetmr.v6.i5.2019.377