EVOLUTION OF MODULATIONAL INSTABILITY IN TRAVELLING WAVE SOLUTION OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATION

  • Ram Dayal Pankaj Department of Mathematics, J.N.V. University, Jodhpur (Rajasthan), India
  • Arun Kumar Department of Mathematics, Government College, Kota (Rajasthan), India
  • Chandrawati Sindhi Department of Mathematics, J.N.V. University, Jodhpur (Rajasthan), India
Keywords: Jacobi Elliptic Functions, Ritz Variational Method, Spatially Periodic Trial Function

Abstract

The Ritz variational method has been applied to the nonlinear partial differential equation to construct a model for travelling wave solution. The spatially periodic trial function was chosen in the form of combination of Jacobian Elliptic functions, with the dependence of its parameters

Downloads

Download data is not yet available.

References

E. Kit and L. Shemer (2002) J. Fluid Mech. 450, 201–205. DOI: https://doi.org/10.1017/S0022112001006498

D. Anderson (1983) Phys. Rev. A 27 (6), 3135–3145.

N. J. Zabusky and M. D. Kruskal (1965) Phys. Rev. Lett. 15(6), 240–243. DOI: https://doi.org/10.1103/PhysRevLett.15.240

H. Airault, H. P. McKean, and J. Moser,Comm. (1977) PureAppl. Math. 30(1), 95–148.

E.R.Tracy, H.H.Chen and Y.C. Lee (1984) Phys. Rev. Lett. 53, 218 – 221.

B. Hafizi (1981) Phys.Fluids 24(10), 1791–1798.

Q. S. Chang, B. L. Guo, and H. Jiang (1995) Math. Comp. 64(210), 537–553, S7–S11.

A. O. Smirnov (1989) Mat.Zametki 45(6), 66–73, 111 (Russian).

M. Sigal, Comm. (1993) Math. Phys. 153(2), 297–320.

P. L. Christiansen, J. C. Eilbeck, V. Z. Enolskii, and N. A. Kostov, (1995)Proc. Roy.Soc. London Ser. A 451(1943), 685–700.

A.V. Porubov and D. F. Parker, (1999) Wave Motion 29(2), 97–109. DOI: https://doi.org/10.1016/S0165-2125(98)00033-X

F. F. Sun, (2003), Master’s thesis, National University, Singapore.

V. E. Zakharov and A. B. Shabat, Ž.Ėksper. (1971)Teoret. Fiz 61(1), 118–134, (1972) Soviet Physics JETP 34(1), 62–69.

Arun Kumar, (2009), International Journal of Computational and Applied Mathematics ISSN 1819-4966, 4(2) 159–164.

LIANG Zu-Feng, TANG Xiao-Yan,(2010) CHIN. PHYS. LETT. Vol. 27(3)030201.

Hirota R (1973) J. Math Phys. 14 805. DOI: https://doi.org/10.1063/1.1666399

Jiao X Y and Lou S Y (2009) Chin. Phys. Lett. 26 040202.

Zhao S L, Zhang D J and Chen D Y (2009) Chin. Phys. Lett.26 030202.

Gao Y, Tang X Y and Lou S Y (2009) Chin. Phys. Lett. 26 030502

Yang J R and Mao J J (2008) Chin. Phys. Lett. 25 1527

Yan T, Yu J L and Huang N N (2008) Chin. Phys. Lett. 2552

Tang X Y, Lou S Y and Zhang Y (2002) Phys.Rev.E 66046601

Tang X Y and Lou S Y (2003)J. Math. Phys. 44 4000

Tang X Y and Lou S Y (2009) Front. Phys. Chin. 2 235

Tang X Y and Liang Z F (2006) Phys. Lett.A 351 398

Published
2018-01-31
How to Cite
Pankaj , R. D., Kumar, A., & Sindhi, C. (2018). EVOLUTION OF MODULATIONAL INSTABILITY IN TRAVELLING WAVE SOLUTION OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATION . International Journal of Engineering Technologies and Management Research, 5(1), 1-7. https://doi.org/10.29121/ijetmr.v5.i1.2018.42