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ABSTRACT 
Aiming at the problem of "dimension disaster" in hyperspectral image classification, 
a method of dimension reduction based on manifold data analysis and sparse 
subspace projection (MDASSP) is proposed. The sparse coefficient matrix is 
established by the new method, and the sparse subspace projection is carried out by 
the optimization method. To keep the geometric structure of the manifold, the 
objective function is regularized by the manifold learning method. The new method 
combines sparse coding and manifold learning to generate features with better 
classification ability. The experimental results show that the new method is better 
than other methods in the case of small samples. 

 
Keywords: Hyperspectral Image, Classification, Sparse Representation, Manifold 
Learning, Subspace Projection 

 

1. INTRODUTION 
         Hyperspectral images use high spectral resolution in the process of data 
acquisition. Hyperspectral images contain a lot of spatial and spectral 
information. This information makes it possible to classify land features.  In 
recent years, hyperspectral image classification has attracted more and more 
attention in remote sensing image processing [ Wei et al. (2019), Wang et al. 
(2019), Feng et al. (2019), Ren and Bao (2019), Fuding et al. (2019)].  The 
main difficulty is that the dimension of the image pixel sample point is too 
high, which is not conducive to classification recognition.  High dimensional 
data leads to several problems.  First, the higher the dimension of sample 
points, the more complex the classification algorithm and the higher the 
computational overhead.  Secondly, hyperspectral images have correlation in 
each band, and redundant bands may reduce the classification performance 
of the classifier.  Finally, due to the high cost of labeling and lack of labeled 
sample points, the training effect of the classifier is poor.  In a word, the 
"dimensional disaster" problem hinders the improvement of hyperspectral 
image classification accuracy.  At the same time, the high dimension of data 
and the lack of labeled sample points have always been a problem in machine 
learning.  Reducing dimension is an effective way to solve this problem.   
       Data dimension reduction can preserve the effective discriminant 
information of original high-dimensional data and reduce the complexity of 
the classification model.  At present, a large number of scientific research. 
literatures are devoted to the study of dimension reduction of hyperspectral  

https://doi.org/10.29121/granthaalayah.v9.i6.2021.3923
https://dx.doi.org/10.29121/ijetmr.v8.i9.2021.1040
mailto:zjzheng9999@163.com
https://dx.doi.org/10.29121/ijetmr.v8.i9.2021.1040
https://orcid.org/0000-0003-0276-4437
mailto:zjzheng9999@163.com
https://crossmark.crossref.org/dialog/?doi=10.29121/ijetmr.v8.i9.2021.1040&domain=pdf&date_stamp=2021-09-28
mailto:zjzheng9999@163.com
mailto:zjzheng9999@163.com


Zhijun Zheng and Yanbin Peng 
 

International Journal of Engineering Technologies and Management Research 37 
 

data sample points.  Literature [Uddin et al. (2019)] proposed a hyperspectral 
dimension reduction method based on Segmented Principal Component Analysis 
(SPCA).  Literature [Jayaprakash et al. (2020)] proposed a hyperspectral dimension 
reduction method based on Linear Discriminant Analysis (LDA) 

However, these classical subspace learning methods cannot obtain low-
dimensional manifold structures embedded in high-dimensional data.  Recent 
studies show that there are often embedded nonlinear low-dimensional manifold 
structures in high-dimensional data.  Manifold learning has become a very effective 
method for dimensionality reduction of hyperspectral images. Its representative 
methods include isometric Mapping (ISOMAP).  Laplacian Eigenmaps (LE) and 
Locally Linear Embedding (LLE), etc. [Wan et al. (2017), Dongyang and Li (2018)].   

However, these nonlinear methods can only reduce the dimension of the 
training sample set.  To solve this problem, He proposed Local Preserving Projection 
(LPP) and Neighborhood Preserving Embedding (NPE) algorithms to extend LE and 
LLE respectively [Qiao et  (2010)], so that the manifold learning method can be 
extended to the test sample set [ Kianisarkaleh and Ghassemian (2016),  Zhai et al. 
(2016), Gao et al. (2016)].   

In recent years, sparse representation can adaptively describe the 
reconstructed relationship between data.  Representative methods include Sparsity 
Preserving Projections (SPP) [Qiao et  (2010)] and Manifold Sparsity Preserving 
Projections (MSPP)[Tabejamaat and Mousavi (2017)]. SPP aims to keep the sparse 
reconstruction relationship of data by minimizing the objective function related to 
L1 regularization.  The resulting projection is not affected by rotation, reordering, 
and translation of the data.  Compared with LPP and NPE methods, SPP can 
automatically select its neighborhood, which is more convenient in practical 
application.   

Based on existing research [Uddin et al. (2019), Jayaprakash et al. (2020), Wan 
et al. (2017), Dongyang and Li (2018), Qiao et  (2010),  Kianisarkaleh and 
Ghassemian (2016),  Zhai et al. (2016), Gao et al. (2016), Wang et al. (2017), Lv  et 
al. (2017), Tabejamaat and Mousavi (2017), Dong et al. (2021), Yc (2021), Yuan  
(2021)], this paper proposes a hyperspectral image classification method based on 
Manifold Data Analysis and Sparse Subspace Projection (MDASSP).  Good results 
have been achieved in small samples.  In this method, the sparse coefficient matrix 
is established by L1 regularization, and the sparse subspace projection of the 
original data is obtained by solving an optimization problem.  The correlation of the 
original data is preserved in low dimensional space. To keep the manifold geometry 
structure of the original data, the manifold learning method is introduced to 
regularize the objective function.  Experiments on real hyperspectral data sets show 
that the new method can improve the classification accuracy under small samples. 

 

2. MANIFOLD DATA ANALYSIS AND SPARSE SUBSPACE PROJECTION 
METHOD 

In the hyperspectral image classification problem, the training sample set is 
expressed as: 1 2[ , ,..., ]n=P p p p . Wherein, n  is the number of sample points, and 
the dimension of sample points is k . ( ) {1,2,..., }ilab c∈p is the corresponding 
category information, c is the category number. The purpose of dimensionality 
reduction is to find a projection matrix M and convert the original data of dimension 
k  into projection data of dimension q  ( q k< ).  The conversion formula is: 
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T
i i=o M p . Where, io  is the dimension reduction vector corresponding to the 

sample point ip . In the new sample space, the classifier trains and classifies 
dimensionality reduction vectors.  

Sparse Representation [Hairong and Turgay (2018)] is also called Sparse 
Coding.  The aim is to express most or all of the original signals with a linear 
combination of fewer basic signals.  The opposite concept of sparse representation 
is dense representation.  The dense representation sample can be transformed into 
the appropriate sparse representation by finding the appropriate dictionary for the 
sample points of the dense representation.  Thus, the classification and recognition 
task can be simplified, and the model complexity is also reduced.  The sparse 
representation method in this paper uses the remaining sample points in the dataset 
to reconstruct the given sample points.  Sparsity ensures that most of the 
reconstruction coefficients are zero, and only a few coefficients related to a given 
sample point are non-zero.  The sparse coefficient can reflect the correlation 
between sample points.   

Given a pixel sample point ip , Sparse representation method uses P  to 

refactoring ip .  This problem can be translated into the following optimization 
problem:   

0min || ||

. .
i

i

i is t =
g

g

p Pg
                                                         (1) 

Wherein, ,( 0)n
i i i∈ =g gR is a n  dimensional vector 

 used to represent the reconstruction coefficient of the sample point ip . 

0L  norm is used to ensure the sparsity of coefficients.  However, 0L regularization 
problem is a NP hard problem.  Therefore, 1L regularization is used to 
approximately replace 0L regularization, so the optimization problem becomes:   

1min || ||

. .
i

i

i is t =
g

g

p Pg
                                                         (2) 

The optimization problem of 1L regularization can be solved by LARS algorithm 
[Efron et al. (2004)].  For each sample point ip , LARS algorithm can be used to 
calculate the corresponding reconstruction coefficient ig .  Therefore, a sparse 
coefficient matrix 1 2[ , ,..., ]G g g g= n can be constructed.   

Sparse coefficient matrix describes the correlation between original sample 
points.  The purpose of sparse subspace projection is to find a projection matrix 

k q×∈M R .  This matrix can transform the k  dimension vector of the original space 
into q dimension vector ( q k< ), while ensuring the invariable correlation between 
sample points.  The solving process is transformed into an optimization problem, 
which is expressed as follows:   

T T 2

1
min || ||

n

i i
i=

−∑M
M p M Pg                              (3) 
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Wherein, M is the projection matrix.  The optimization objective function can 
be derived as follows:   

T T 2 T T T T T

1
|| || ( ) ( )

n

i i b
i=

− = − − =∑ M p M Pg M P I G I G P M M PG P M                        (4) 

Wherein, I  is the identity matrix of n  order. T
b ( ) ( )= − −G I G I G . In order 

to avoid degradation, constraint conditions T T =M PP M I are added.  

Therefore, the optimization problem becomes the following form: 
T T

b

T T

min

. .s t =
M

M PG P M

M PP M I
                                                           (5) 

In order to maintain the manifold geometry structure of the data, a manifold 
learning method is introduced to regularize the objective function:   

T T 2 marg min || ||i j ij
ij

−∑M
M p M p S                               (6) 

Wherein, S is the similarity matrix.  The manifold regular term can be derived 
as follows:   

T T 2 m T m m T T m T|| || ( )i j ij
ij

− = − =∑ M p M p S M P C S P M M PG P M  

Therefore, the optimization problem becomes the following form: 
T T

T T

min

. .s t =
M

M PGP M

M PP M I
                                                           (7) 

Wherein, m
b= +G G G .                                        

The optimization problem is equivalent to the generalized feature 
decomposition problem as follows: 

T Tλ=PGP m PP m                                                         (8) 

The projection vector jm  in the objective function of optimization problem (7) 
corresponds to the eigenvector corresponding to the jth eigenvalue of generalized 
eigendecomposition problem (8).  Therefore, the eigenvectors 1 1[ , ,..., ]q=M m m m  
corresponding to the smallest q eigenvalues after generalized eigendecomposition 
constitute the solution of optimization problem (7). 

 

3. RESULTS AND DISCUSSIONS  

In order to verify the effectiveness of hyperspectral image classification method 
based on manifold data analysis and sparse subspace projection (MDASSP), 
experiments are carried out on real hyperspectral data sets.  Salinas data set was 
collected by AVIRIS sensor located over Salinas Valley in California, USA.  The 
original data contains 224 band images, of which band 108-112, 154-167, and band 
224th cannot be reflected by water and are generally not used.  We have 204 bands 
left.  The spatial resolution of the dataset is 3.7m.  The size of the image is 
512×217.  It therefore contains 111,104 pixels in total.  Among them, 56,975 pixels 
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are background pixels and 54,129 pixels can be applied to classification.  These 
pixels are grouped into a total of 16 categories including Fallow, Celery, etc.  

Figure 1(a) is the pseudo-color image generated by the superposition of the 
two-dimensional matrix of three bands (1,50,150) extracted as three channels of 
RGB image.  Figure 1 (b) is its real ground object annotation map.  There are a total 
of 16 feature categories (as shown in Table 1).  The values are integers 1 to 16, and 
the integer 0 represents the background.  The color corresponding to each feature 
category is shown on the vertical bar to the right of Figure 1 (b).  

  

(a) Pseudo-color map 

Figure 1 Salinas dataset 

(b) Ground truth map 

 

          
The preprocessing of the dataset consists of two steps: first, remove the noise 

bands that cannot be reflected by water, and then normalize the data.  After 
preprocessing, the labeled sample points were randomly divided into training set 
and test set.  The training set is used to learn the projection matrix of lower 
dimensional space.  All test set sample points are mapped to low-dimensional space 
by projection matrix, and then classified in low-dimensional space by nearest 
neighbor classifier.  In order to evaluate the performance of different algorithms, 
the experiment was repeated 20 times with randomly selected training sets, and 
finally the average classification accuracy of each method was obtained.   

DCNPE method in literature [Lv et al. (2017)], LADA method in literature [Wang 
et al. (2017)], DLPP method in literature [Deng et al. (2015)], Kernel Principal 
Component Analysis (KPCA for short), sparse preserving projection (SPP for short) 
and domain-preserving embedding (NPE for short) are selected and compared with 
MDASSP method.  For better comparison, the parameters of each method are 
adjusted to the best.  In order to demonstrate the classification effect of the new 
method in the case of small samples, 3~7 labeled sample points were randomly 
selected from each class to form the training set.  The comparison of classification 
accuracy of various methods in different training sets is shown in Figure 2 .   
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(a)i=3 

 
(b)i=4 

 
(c)i=5 
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(d)i=6 

 
(e)i=7 

Figure 2 Comparisons of average classification accuracy of Salinas dataset 

 

In this experiment, i (i =3,4,5,6,7) marked sample points were randomly 
selected from each ground feature category to form the training set.  The remaining 
sample points constitute the test set.  The training set is used to learn the projection 
matrix of low dimensional space.  The test set is first projected into low dimensional 
space by matrix and then classified and identified.  Subgraphs (a)~(e) of Figure 2 
respectively correspond to the average classification accuracy curves of different 
dimensionality reduction methods after randomly selecting 3-7 training samples for 
each class.  The baseline method does not reduce the dimension of hyperspectral 
data, but uses the original data to classify and identify to calculate the average 
accuracy.  As shown in the figure, for all algorithms, the classification accuracy 
increases with the increase of the number of training samples.  This is because the 
more the number of training sample points, the more information can be used, and 
the algorithm can extract more effective discrimination information.  At the same 
time, the classification accuracy increases with the increase of feature number after 
dimensionality reduction, indicating that the increase of feature number preserves 
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more discriminant ability for data.  When the dimension is greater than 10, the 
classification accuracy gradually tends to be stable, indicating that most of the 
effective discrimination information has been obtained at this time.  In addition, the 
classification accuracy of most methods is greater than the baseline method after 
the dimension is greater than 5.  This indicates that dimensionality reduction of data 
can not only reduce the complexity of classification model, save calculation time, but 
also improve the classification effect.   Among them, MDASSP has achieved the best 
classification effect due to its advantages of sparse representation and manifold 
learning.  

 
Figure 3 Mapping of classification results of various methods on the Salinas dataset 

 
In order to observe the results, we draw a map of the classification results of 

each method.  In this experiment, 7 labeled sample points were randomly selected 
from each type of sample to form a training set.  All sample points are projected into 
low-dimensional space by learning the dimensionality reduction matrix through 
training set.  Classification and recognition are carried out in low dimensional space, 
and then the classification results are mapped with different colors.  As shown in 
Figure 3, there are 7 corresponding methods from left to right: 
(1)MDASSP(85.28%);  (2)DCNPE(84.36%);  (3)LADA(84.28%);  (4)DLPP(81.05%)
;  (5)KPCA(80.51%);  (6)SPP(80.46%);  (7)NPE(74.45%).  The corresponding 
classification accuracy is in parentheses.  Among them, the map of MDASSP method 
is the smoothest, because it has the least error sample points.  Especially in vineyard 
areas (the largest subdivision), there are fewer misfractions than other methods.  In 
addition, the classification accuracy of celery field and corn field is close to 1.   

 

4. CONCLUSIONS AND RECOMMENDATIONS  
This paper aims to solve the problem of "dimensional disaster" of hyperspectral 

image data.  Sparse representation and manifold learning are combined to reduce 
the dimension of hyperspectral data.  The two methods are combined to form a 
constrained optimization problem.  The effective projection matrix is obtained by 
optimizing the solution of the problem, and the projection data is classified and 
recognized.  Experimental results show that compared with other classification 
methods, the new method can improve the classification accuracy under small 
samples.  In the next step, we plan to combine a large number of unlabeled training 
sample points to build a semi-supervised learning algorithm. 
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