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ABSTRACT 
Using a classical example for technology diffusion, the mechanization 

of agriculture in Spain since 1951, we considered the forecasting-intervals 
from the near-optimal Bertalanffy-Pütter (BP) models. We used BP-
models, as they considerably reduced the hitherto best fit (sum of squared 
errors) reported in literature. And we considered near-optimal models 
(their sum of squared errors is almost best), as they allowed to quantify 
model-uncertainty. This approach supplemented traditional sensitivity 
analyses (variation of model parameters), as for the present models and 
data even slight changes in the best-fit parameters resulted in very poorly 
fitting model curves.

  
1. INTRODUCTION 
 

 BACKGROUND 
 
Technology forecasting uses a wide range of methods (Firat et al., 2008). This paper focuses on a popular 

phenomenological approach, trend analysis for the diffusion of technologies by means of sigmoidal (S-shaped) model 
curves. Here, an often considered three-parameter model was the Verhulst model of logistic growth (e.g. Adamuthe 
& Thampi, 2019; Naseri & Elliott, 2013; Yamakawa et al., 2013). This paper proposes a five-parameter model to 
describe the success (growth, diffusion) of a technology, the Bertalanffy-Pütter (BP) model. It generalizes many 
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conventional three-parameter models (e.g. logistic growth) and therefore improves their fit. In addition, the two 
additional parameters allow to identify near-optimal three-parameter models that do not differ significantly from 
the best-fit BP-model. Comparing the forecasts from these near-optimal models with the forecast from the best-fit 
model results in new quantitative indicators for assessing model-uncertainty ex ante. We illustrate this approach for 
data from literature, where we explore, which levels of model-uncertainty occurred in the past for forecasting. We 
expect that such empirical studies will lead to sensible recommendations for practitioners about what model-
uncertainty needs to be assumed for different timespans of prognosis.  

 
 PROBLEM 

 
Model uncertainties arise, when gaps in knowledge about the true drivers and mechanisms of growth cannot be 

reduced by an analysis of the past observations. For instance, as was observed for the prognosis of cancer, many 
growth curves with different shapes in the future may fit well to given historic data (Kühleitner et al., 2019). The 
paper develops a new approach to assess model-uncertainty and it illustrates it for forecasting. In order to measure 
model-uncertainty quantitatively, Bai & Jin (2016) suggested to use the relative error of the prediction. However, ex 
ante we could not compute this future error of prediction.  

We propose a different approach. We identify models that fit well to the current data and that therefore in a 
technical sense defined below have a certain “probability to be true”. Thereby, we use the Akaike information 
criterion AIC (Akaike, 1974) and its associated probability (Akaike weights): For given data, the model with the 
lowest AIC is most likely to be true and comparing other models with this one, their probabilities to be true are 
computed from the differences in AIC. 

Based on this notion, we define a forecasting interval by the lower and upper bounds of the predictions drawn 
from likely models. Thereby, we consider all BP-models with a certain probability to be true, when compared to the 
best-fitting one. The forecasts based on these models define the forecasting interval. This concept resembles the 
confidence interval, but the confidence interval assumes a fixed model that is fitted to random variations of the data, 
while for the forecasting interval the data remain fixed.  

 
2. MATERIALS AND METHODS  
 

 MATERIALS 
 
The computations used Mathematica 12.0 software of Wolfram Research. The results of optimization were 

exported to a spreadsheet (Microsoft Excel) and reimported into Mathematica for further analysis of the model-
uncertainty.  

 
 DATA 

 
We use data about the mechanization of agriculture in Spain by means of tractor ownership. The primary 

sources were census data and government reports over the period 1951-1976 (Mar-Molinero, 1980). While the data 
may appear to be outdated, they cover an interesting phase for agriculture in Spain: During the early 1950s, the 
ancient regime of Franco gave up its disastrous policy of economic autarky and in the 1960s and 70s this was 
followed by a policy of modernization of the agricultural sector (Táboas et al., 2019). Further, the data for 1951-1976 
were used repeatedly to test approaches to forecasting (e.g. Nguimkeu, 2014; Franses, 1994; Meade, 1984; Mar-
Molinero, 1980). Gurung et al. (2018) is a recent related study about the mechanization of agriculture in India.  

The data were rescaled to start at t = 0, meaning the year 1951. (This rescaling was used in literature.) We used 
equation (1) to model the stock of tractors y(t) over time t in years. Thereby, we first searched for the best fitting 
BP-model for the data till 1976. In order to assess prognosis, we also identified the best fitting BP-models to ten 
truncated data (number of tractors till the year 1966, 1967, … 1975) that we used to test the forecast for 1976 in 
hindsight. We supplemented this example by considering in addition the 1977-2009 data from the World Bank Open 
Data repository starting in 1961 (World Bank, 2019) and identifying the best-fit BP model for the extended data till 
2009. The combined data are listed in Table 1. 
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Table 1: Stock of tractors in Spain during the period 1951-2009.1 
Year2 Stock3 Year Stock Year Stock Year Stock Year Stock Year Stock 

0 1.3800 10 7.1080 20 28.2370 30 54.8080 40 75.5740 50 92.5690 
1 1.5800 11 9.2750 21 30.6190 31 57.1170 41 76.6270 51 94.6050 
2 1.9000 12 11.4410 22 33.0360 32 59.2010 42 77.5300 52 94.3650 
3 2.1440 13 13.0130 23 35.5550 33 61.1430 43 78.9750 53 96.6600 
4 2.6020 14 14.7880 24 37.9070 34 63.3210 44 80.5590 54 98.0810 
5 2.9960 15 16.9190 25 40.0928 35 65.7830 45 82.3610 55 100.0220 
6 3.4180 16 18.0720 26 42.1390 36 67.8680 46 84.1930 56 101.6040 
7 4.0680 17 20.4360 27 45.5680 37 70.1930 47 86.2140 57 103.0440 
8 4.7080 18 23.4540 28 49.1600 38 72.2660 48 88.1980 58 103.8730 
9 5.6840 19 25.9820 29 52.3910 39 74.0830 49 89.9700   
1) Source: data combined from Figure 5 of Mar-Molinero (1980) and open data from World Bank (2019).  
2) Start with 1951 (year 0); 1976 corresponds to year 25. 
3) One unit is a stock of 10,000 tractors.  

 
 BERTALANFFY-PÜTTER (BP) MODEL 

 
The growth function y(t) of the BP-model is a solution of the following differential equation (Pütter, 1920), 

which can be solved analytically, though in general not by means of elementary functions (Ohnishi et al., 2014).  
 

𝑦𝑦′(𝑡𝑡) = 𝑝𝑝 ∙ 𝑦𝑦(𝑡𝑡)𝑎𝑎 − 𝑞𝑞 ∙ 𝑦𝑦(𝑡𝑡)𝑏𝑏  
 
The five model parameters are determined from fitting the model to historical data: Four parameters are 

displayed in the equations, namely the non-negative exponent-pair a < b and the constants p and q. An additional 
parameter is the initial value, i.e. y (0) = c > 0.  

Each exponent-pair (a, b) defines a unique BP-model BP (a, b) with three free parameters. Well-known 
examples are bounded exponential growth BP (0, 1), logistic growth BP (1, 2), the von Bertalanffy model BP (1, 2/3), 
and the West model BP (1, 3/4). The Solow (1957) model of economic growth is a class of BP-models; it coincides 
with the generalized Bertalanffy model (b = 1 and a< 1). Also, the Richards model is a class of BP-models (a = 1 and 
b> 1). The Gompertz-model is the limit case BP (1, 1) with a different differential equation, where b converges to a = 
1 from above (Marusic & Bajzer, 1993). These models have been used in forecasting, e.g. business trends (Dhakal, 
2018), tumor growth (Murphy at al., 2016), or epidemic trajectories (Pell et al., 2018). In biology, these models have 
been proposed to model the growth of plants (Richards, 1959) or the mass growth of vertebrates (e.g. West et al., 
2001; Bertalanffy, 1949).  

In literature, there are several other five-parameter growth models, such as the model of Bass (1969) for market 
diffusion or the model of Monod (1949) for bacterial kinetics. We decided to use the BP-model, as it was very flexible. 
In comparison to other five-parameter models, this versatility had the disadvantage that for the BP-model the 
standard optimization tools (e.g. command Non-Linear Model Fit in Mathematica) did not always identify the best-
fit parameters (numerical instability). However, as explained below, we could overcome this difficulty, whence this 
model is now feasible for practitioners. As to another limitation, the BP-model is not suitable in situations, where 
both growth and decay occur. Rather, it is intended to improve the fit to the data in situations, where initially e.g. 
logistic growth has been considered as a viable model.  

 
 DATA FITTING 

 
The most common method for data-fitting, used also for this paper, is the method of least squares, which fits a 

(nonlinear) model to past data (Satoh & Matsumura, 2018). Thus, model selection aimed at finding parameters that 
minimized the sum of squared errors SSE. If y(t) is a solution of equation (1), using certain exponents a < b and 
parameters p, q, c, and if (ti, yi) are the N data, then SSE is defined by equation (2):  
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𝑆𝑆𝑆𝑆𝐸𝐸 = ��𝑦𝑦𝑖𝑖 − 𝑦𝑦(𝑡𝑡)�
2

𝑁𝑁

𝑖𝑖=1

 

 
As explained above, for model (1) the standard optimization tools did not find best-fit parameters to minimize 

(2). We did overcome this difficulty by considering exponent-pairs (a, b) on a grid with step size 0.01 in both 
directions; initially 0 ≤ 𝑎𝑎 ≤ 2.5, 𝑎𝑎 < 𝑏𝑏 ≤ 𝑎𝑎 + 3.5. (The grid was adaptively enlarged during optimization; for one 
dataset we searched about 200,000 grid points.) Figure 1 plots the search-grid (yellow area) and it displays the 
exponent-pairs of named models by dots (e.g. Verhulst model) or lines (e.g. Richards’ model interpreted as a model 
class). Compared to the search-grid, these models were rather exceptional. 

 

 
Figure 1: Named models (blue) and model classes (italics and lines) and part of the search region (yellow) of 

BP-models (plot using Mathematic 12.0). 
 

For each exponent-pair of the grid we identified the best fitting model parameters (p, q, c) that minimized SSE. 
This defined the following function of equation (3), assuming for the minimization (right hand side) model (1) with 
exponents a, b: 

 
𝑆𝑆𝑆𝑆𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎, 𝑏𝑏) = min

𝑐𝑐,𝑜𝑜,𝑞𝑞
(𝑆𝑆𝑆𝑆𝐸𝐸) 

 
The best fitting model had the overall least sum of squared errors (SSEmin). We identified its exponent-pair 

(amin, bmin) with an accuracy of 0.01 (as we searched only grid-points) and its parameters pmin, qmin, cmin that minimized 
SSEopt(amin, bmin) = SSEmin.  

For each grid-point (a, b), the optimization of p, q, and c was done using a custom-made variant of the method 
of simulated annealing (Vidal, 1993). The details and the code were outlined in another paper (Renner-Martin et al., 
2018, Kühleitner et al., 2019). The outcome was exported into a spreadsheet, whose rows listed the best fit 
parameters a, b, c, p, q, and SSE for each grid-point. The exponent-pair (amin, bmin) was identified from the row, where 
the least value of SSE was attained.  

 
 COMPARISON OF MODELS 

 
We use SSE of equation (2) as the primary measure to assess the fit of a model to data. Related measures used 

in forecasting literature (for a survey: Hyndman & Koehler, 2006) are the root-mean-square error, 𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = �𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁

, 

and R-squared, 𝑅𝑅2 = 1− 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

. Here, SQT is the total sum of squares (variance of the N data yi times N–1 or N, 
depending on the estimator for the variance). The use of SSE was based on assuming normally distributed errors. 
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Different statistical assumptions have led to weighted sums of squared errors. In addition, we used the Akaike 
information criterion, 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁 ∙ ln(𝑆𝑆𝑆𝑆𝐸𝐸/𝑁𝑁) + 2 ∙ 𝐾𝐾; c.f. Burnham & Anderson (2002) or Motulsky & Christopoulos 
(2003). Here, N is the number of the data-points. For the 1951-1976 data, N = 26; for the truncated data, N ranges 
from 16 to 25; and for the 1951-2009 data, N = 59. Further, K = 4 is the number of optimized parameters (c, p, q and 
SSE as an implicit parameter). As we compared a finite set of three-parameter BP-models BP (a, b) using exponent-
pairs chosen from a grid, we did not penalize the best fitting model by a higher number of parameters (the optimal 
exponent-pair was roughly approximated, but not yet computed). Thus, for these models, the least AICmin was 
achieved for the model defined from the exponent-pair (amin, bmin).  

If the model with AICmin is compared to another model with larger AIC, then the probability that the other model 
is true (in an information theoretic meaning) is given by the relative Akaike weight 𝑒𝑒−𝑑𝑑/2/(1 + 𝑒𝑒−𝑑𝑑/2), using the 
difference d = AIC–AICmin. This probability is at most 50% (comparing the model with the least AIC with an almost as 
good model). 

 
 FORECASTING INTERVALS 

 
The starting point of our new approach are the data and SSEmin together with all u-near-optimal exponent-pairs 

(a, b). Thereby, an exponent-pair (a, b) is u-near-optimal with model-uncertainty u, if SSEopt(a, b) ≤ (1+u)⋅SSEmin. For 
each exponent-pair we also consider the best fitting growth curve ya,b(t); it is specified by its parameters a, b, c, p, q. 
All models that are displayed in the yellow search region of Figure 1 by their exponent-pairs are meant to realize the 
best possible fit to the given data, i.e. depending on a and b (which defined the model) the model parameters p, q and 
c were optimized according formula (3). Therefore, for the data that represent the past, there was barely a difference 
between the model curves for models whose SSE did not differ much from SSEmin. 

In analogy to confidence intervals we now define: For a point of time T the forecasting interval Iu(T) for the level 
u of model-uncertainty has as its end-points the least upper and the largest lower bounds of the function values 
ya,b(T) associated to u-near-optimal exponent-pairs. For the computation of a forecasting interval Iu(t), filtering in 
the table of optimal parameters identified the rows with SSE ≤ (1+u)⋅SSEmin. The parameters of each of these rows 
defined a growth function ya,b that was evaluated at T. The minimum and maximum of these values defined the 
boundaries of the interval. 

In order to obtain a closer analogy to the confidence intervals, we related model-uncertainty in the following 
way to the probability that a model is true in the information theoretic sense, using AIC and more specifically, the 
relative Akaike weight. For, as follows from the above section, if the exponent-pair (a, b) is near-optimal with model-
uncertainty u, then the probability that this exponent-pair is true is given by the following formula (4) for the relative 
Akaike-weight.  

prob(𝑎𝑎, 𝑏𝑏) =
1

1 + �(1 + 𝑢𝑢)𝑁𝑁
 

  
3. RESULTS AND DISCUSSIONS  
 

 PREVIOUS OUTCOMES 
 
The trend for tractors has been studied repeatedly. There is a consensus in literature that the growth of tractors 

would follow a logistic model. Mar-Molinero (1980) compared several models and for the 1951-1976 tractor data 
he reported SSE = 4.9768 as the best fit, obtained by the logistic model. Subsequent authors (e.g. Meade, 1984; 
Franses, 1994; Nguimkeu, 2014) confirmed this conclusion. 

Mar-Molinero (1980) also reported an “unexplained residual sum of squares” of 2.57. However, he referred to 
autocorrelation, using a fit of a time series: 𝑟𝑟𝑜𝑜 = 𝜌𝜌 ∙ 𝑟𝑟𝑜𝑜−1 + 𝜀𝜀𝑜𝑜 for the residuals 𝑟𝑟𝑜𝑜 = 𝑦𝑦𝑜𝑜 − 𝑦𝑦(𝑡𝑡) and the unexplained 
error 𝜀𝜀𝑜𝑜 . This paper aims at improving the fit by using a better growth curve, but it does not follow up on the 
autocorrelation. 
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 DATA FITTING 
 
In order to identify the best-fit BP-model for the 1951-1976 tractor data, and for the truncated data, we searched 

between 0.9-1.3×105 grid-points. Figure 2 plots the best fitting growth curves. Their best-fit parameters are listed in 
Table 2 and their exponent-pairs are plotted in Figure 3.  

 
Table 2: Parameters for the best fit of model (1) to the data from 1951 up to the indicated year. 
Year1 Best fit parameters Goodness of fit 

amin bmin cmin pmin qmin SSEmin RMSE R2 
1966 1.91 2.12 1.47507 0.182778 0.0976106 0.581875 0.190702 0.998599 
1967 1.89 2.13 1.47848 0.166224 0.0808923 0.58954 0.186223 0.998926 
1968 1.72 1.9 1.37506 0.252761 0.14337 1.29791 0.268526 0.998208 
1969 1.42 1.62 1.20355 0.312459 0.155705 2.92583 0.392417 0.996969 
1970 1.34 1.42 1.13237 0.700413 0.519034 3.53807 0.420599 0.997196 
1971 1.24 1.4 1.08056 0.423065 0.227006 3.64734 0.416753 0.997732 
1972 1.22 1.38 1.08142 0.424588 0.22552 3.69308 0.409716 0.998164 
1973 1.17 1.4 1.06337 0.341165 0.136074 3.74722 0.403637 0.998487 
1974 1.17 1.37 1.07238 0.37085 0.165032 3.84279 0.400145 0.998725 
1975 1.15 1.34 1.03507 0.396099 0.182001 3.89954 0.394945 0.998921 
1976 1.12 1.32 0.997355 0.396746 0.173354 3.91475 0.38803 0.999085 
2009 0.75 1.02 0.253028 0.590051 0.159631 64.9233 1.049 0.999085 

1) This indicates the data from 1951 to the displayed year 
 

 
Figure 2: Stock of tractors for 1951-1976 (black dots) with the best fitting growth curve of the BP-class (top 

line) and forecasts using the best fitting growth curves for the data till 1966, 1967, … 1975 (increasing order of the 
curves); the best fit parameters are from Table 2 (plot using Mathematica 12.0). 

 
Judging from R2 (Table 2), for all (truncated) data the fit of all curves to these data was excellent (99.7-99.9% of 

the variance in the data was explained by the models). Further, the best fitting model curve for the 1951-1976 data 
with SSE = 3.91475 displayed a significant improvement of 21% over the previous SSE = 4.9768 reported in literature 
for logistic growth. However, the extrapolations of the growth curves for the truncated data to the remaining data 
underestimated the future growth (Figure 2). In particular, the best fitting growth curves to the data till 1966, 1967, 
… and 1969 did rapidly approach their asymptotic limits and therefore their prognosis for T = 1976 remained 
considerably below the true value. However, the error became smaller, the more data were used. Further, the best 
fit exponent-pairs for different years were spread widely along a regression line (Figure 3). For comparison, we also 
plotted the optimal exponents for the extended data 1951-2009. 
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Figure 3: Optimal exponent-pairs (Table 2) and linear trend b = 0.2094+0.988⋅a (dotted, plot using MS Excel). 
 

 FORECASTING 
 
Figure 4 displays the near-optimal exponent-pairs for the truncated data for 1951-1971. This figure was 

obtained as a by-product of our approach to data-fitting, where for each of almost 127,000 exponent-pairs (a, b) the 
best-fit exponents to the truncated data were found by an optimization. The red area displays about 2700 near-
optimal exponent-pairs, for which SSEopt did not exceed the overall best SSEmin (attained at the black dot) by more 
than u = 10%. The blue area corresponds to the near-optimal exponent-pairs with u = 34%. The best fitting models 
using these exponent-pairs have a probability of 5% or more to be true, when compared to the best-fit model. We 
repeated these computations for the truncated tractor data till 1970, 1971, … and 1975. (In view of Figure 2, the data 
truncated at 1969 or earlier were unsuitable for prognosis and in view of Figure 3 their best-fit exponent-pairs were 
remote from the exponent-pair for the data till 1976.)  

 

 
Figure 4: Part of the searched grid points (yellow) for the fit of model (1) to the tractor data for 1951-1971, 

near-optimal exponent-pairs assuming a model-uncertainty of u = 34% (blue: this corresponds to a probability of 
5%) and of u = 10% (red: probability 28%), optimal exponent-pair for these data (black, see Table 2), exponent-
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pair to obtain an upper bound for the prognosis for 1976 (green, see Table 3) and selected exponent-pairs of 
named models (light blue: logistic, Gompertz and von Bertalanffy); plot using Mathematica 12.0. 

 
Next, for each of near-optimal exponent-pair (a, b) the best fitting growth curve ya,b(t) was identified and its 

“future” values were also evaluated (“future” referring to the perspective of the fitted data). Their upper and lower 
bounds defined forecasting intervals. Figure 5 plots the resulting forecasting band corresponding to Figure 4, 
prognosis for the stock of tractors based on the data for 1951-1971. For the present data and the chosen model-
uncertainty all data points from 1972-1976 (plotted in green) were within this forecasting band.  

 

 
Figure 5: Forecasting band (red, defined from the red dots in Figure 4) around the best fitting growth curve 

(green) to the tractor data for 1951-1971 (black), and comparison with the data for 1972-1976 (green), assuming 
a model-uncertainty of u = 10%; plot using Mathematica 12.0. 

 
These computations were repeated for all truncated data. Table 3 summarizes these results in the following 

way: It identifies the least model uncertainty that was needed to include the true value for 1976 in the forecasting 
interval. For instance, for each red exponent-pair (a, b) of Figure 5 (model-uncertainty u = 10%) the value of the 
growth curve ya,b was evaluated for the year 1976; the values ranged between 34.9 and 40.4. The observed value at 
1976 was 40.1 and the best-fitting curve to the 1951-1971 data attained a lower value. For Table 3 (line for 1971) 
we identified all model curves ya,b that attained a higher value and selected the one with the least SSE (Table 3 
displays it as “needed SSE”).  

 
Table 3: Minimal model-uncertainty so that the true value for 1976 was in the forecasting interval. 

Year Model that achieves the required bound1 Needed
2 SSE 

Logistic3SSElogisti

c 
Model-

uncertainty
4 

Probability
4 a b c p q 

1970 1.1
9 

1.2
7 

1.04613 0.76236 0.547886 3.8450
8 

3.74498 8.677% 30.3197% 

1971
5 

1.0
9 

1.3
5 

0.98425
8 

0.34281 0.116463 3.9023
2 

3.83045 6.991% 32.9706% 

1972 1.1 1.3
1 

0.98896
6 

0.38888
5 

0.161407 3.959 3.92061 7.201% 31.7592% 

1973 1.0
8 

1.2
9 

0.94000
7 

0.40638
2 

0.168379 3.9978
5 

4.05518 6.689% 32.2009% 

1974 1.1
2 

1.2
6 

0.95506
5 

0.52504
2 

0.29214 3.9584
6 

4.35074 3.01% 41.1955% 
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1975 1.0
8 

1.3
7 

0.99076
5 

0.32237
9 

0.096825
7 

3.9483
1 

4.68163 1.251% 46.1232% 

1) For each year, we searched for the exponent pair (a, b), whose SSEopt(a, b) was minimal subject to the 
constraint that its best fitting growth curve ya,b was above the 1976 value. The parameters of this ya,b are 
listed.  

2) SSEopt of the displayed exponent-pairs; it was above SSEmin for the data (see Table 2) and “model 
uncertainty” 

3) SSEopt (1, 2) of the logistic model. 
4) The computations were based on SSEmin (7th column of Table 2). 
5) This model is represented by the green dot in Figure 4. 

 
Table 3 shows that forecasting of the true value based on the truncated data did not require unlikely models: 

The probabilities of the used models ranged between 30-46% and SSEopt of these models exceeded SSEmin by 1-9%. 
Thus, the prognosis for up to six years remained within the range of variability that could be expected from the data. 
Note that for the forecast based on the years till 1973, 1974, or 1975, the logistic model was outside this minimal 
range (i.e. SSElogistic exceeded the needed SSE).  

 
4. CONCLUSIONS AND RECOMMENDATIONS  
 
Forecasting requires the use of models that are capable to represent the hitherto observed data accurately. 

Model class (1) has some obvious advantages: it is a very flexible class of growth models and it includes a wide range 
of common growth models. Therefore, in general the best-fitting model of the BP-class will fit better than any of the 
above-mentioned named model. Thus, for the tractor data the use of models from the BP-class resulted in a 
significant improvement over the fit by the logistic growth function that was previously used in forecasting.  

This approach requires extensive computations, where about hundred thousand models from the BP-class need 
to be optimized (different models are defined from different exponent-pairs). Yet, these optimization results serve 
an additional important purpose, as they may be used to quantify the model-uncertainty of forecasting. As is 
displayed by the forecasting intervals (Figure 5), the near-optimal model curves remained close to the data (on 
which data-fitting was based). Nevertheless, subsequently there were considerable differences.  

For the present data it was feasible to consider forecasting intervals based on all models with a probability of 
5% or more to be true. Using this approach, we have shown that the considered data were suitable for a prognosis 
over a time span of five years. 
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APPENDICES 
 

The method section lists the data and explains their sources. Further, the authors provided the supplementary 
material, namely the following spreadsheet (MS Excel) with the outcomes of the optimizations.  
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S-File. Computation of SSEopt(a, b), based on Table 1 for the stock of tractors for the period 1951-1971, for 
certain grid-points, namely exponents a and b, and for them the best fit-parameters (optimization results) initial 
number m0, p, q, and SSE. 
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