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Abstract: 

Compressive sensing is a relatively new technique in the signal processing field which allows 

acquiring signals while taking few samples. It works on two principles: sparsity, which 

pertains to the signals of interest, and incoherence, which pertains to the sensing modality. 

Since, in conventional system all signals follow the Nyquist criteria, in which the sampling 

rate must be at least twice the maximum frequency of modulating signal. But, in this new 

concept we can recover the signal below the Nyquist rate. This paper presents the basic 

concept of compressive sensing and area of applications, where we can apply this technique. 
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1. Introduction

Compressed sensing is a signal processing technique for efficiently acquiring and reconstructing 

a signal, by finding solutions to underdetermine linear systems. This takes advantage of the 

signal's sparseness or compressibility in some domain, allowing the entire signal to be 

determined from relatively few measurements. In recent years, compressed sensing (CS) has 

attracted considerable attention in areas of applied mathematics, computer science, and electrical 

engineering by suggesting that it may be possible to surpass the traditional limits of sampling 

theory [1]. CS builds upon the fundamental fact that we can represent many signals using only a 

few non-zero coefficients in a suitable basis or dictionary. 

Since, in conventional system all signals follow the Nyquist criteria, in which the sampling rate 

must be at least twice the maximum frequency of modulating signal. But, in this new concept 

that is developed by Emmanuel Candes, Terence Tao and David Donoho around the year 2004, 

we can acquire the signal below the Nyquist rate. [2] 

For achieving this we have to do the work on compressing sensing/sampling. It takes the name 

from the premise of data acquisition and compression can be performed simultaneously, This is 

possible because many real world signals are sparse. 
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A signal is said to be sparse if it contain mostly zeros, and only a few non-zero elements. If 

signals have non-zero elements, it is called s-sparse. 

 

 
Figure 1: the framework of compressed sensing 

 

2.  Principle of Compressive Sensing

 
Compressed sensing (CS) has emerged as a new framework for signal acquisition and sensor 

design. CS enables a potentially large reduction in the sampling and computation costs for 

sensing signals that have a sparse or compressible representation. While the Nyquist-Shannon 

sampling theorem states that a certain minimum number of samples is required in order to 

perfectly capture an arbitrary band limited signal, when the signal is sparse in a known basis we 

can vastly reduce the number of measurements that need to be stored. Consequently, when 

sensing sparse signals we might be able to do better than suggested by classical results. This is 

the fundamental idea behind CS: rather than first sampling at a high rate and then compressing 

the sampled data, we would like to find ways to directly sense the data in a compressed form | 

i.e., at a lower sampling rate. To make this possible, CS relies on two principles: sparsity and 

incoherence [3].  

 

 2.1. Sparsity 

 

Sparsity expresses the idea that the ―information rate‖ of a continuous time signal may be much 

smaller than suggested by its bandwidth, or that a discrete-time signal depends on a number of 

degrees of freedom which is comparably much smaller than its (finite) length. More precisely, 

CS exploits the fact that many natural signals are sparse or compressible in the sense that they 

have concise representations when expressed in the proper basis Ψ. 

 

 2.2. Incoherence 

 

Incoherence extends the duality between time and frequency and expresses the idea that objects 

having a sparse representation in Ψ must be spread out in the domain in which they are acquired, 

just as a Dirac or a spike in the time domain is spread out in the frequency domain. Put 
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differently, incoherence says that unlike the signal of interest, the sampling/sensing waveforms 

have an extremely dense representation in Ψ. 

 

 3. Compressible Signals 

 

An important assumption used in the context of compressive sensing (CS) is that signals exhibit 

a degree of structure. So far the only structure we have considered is sparsity [4], i.e., the number 

of non-zero values the signal has when representation in an orthonormal basis [5]. The signal is 

considered sparse if it has only a few nonzero values in comparison with its overall length. 

 

Few structured signals are truly sparse; rather they are compressible. A signal is compressible if 

its sorted coefficient magnitudes in Ψ decay rapidly. To consider this mathematically, let x be a 

signal which is compressible in the basis Ψ: 

 

x = Ψα,                                                                                                                                           (1) 

 

Where α are the coefficients of x in the basis Ψ. If x is compressible, then the magnitudes of the 

sorted coefficients αs observe a power law decay: 

 

| αs |≤C1s-q , s = 1, 2,….                                                                                                               (2) 

 

We define a signal as being compressible if it obeys this power law decay. The larger q is, the 

faster the magnitudes decay, and a signal is more compressible. Because the magnitudes of 

coefficients decay so rapidly, compressible signals can be represented well by K N coefficients. 

The best K-term approximation of a signal is the one in which the K largest coefficients are kept, 

with the rest being zero. The error between the true signal and its K term approximation is 

denoted the K-term approximation error σK (x), defined as  

 

                                                                                                    (3) 

 

For compressible signals, we can establish a bound with power law decay as follows: 

 

σK(x) C2K(1/2-s)                                                                                                                          (4) 

 

In fact, one can show that σK(x) 2 will decay as K-r if and only if the sorted coefficients αi decay 

as i-r+1/2 

 

 4. Norms 

 

A. Mathematically a norm is a total size or length of all vectors in a vector space or matrices [6]. 

For simplicity, we can say that the higher the norm is, the bigger the (value in) matrix or vector 

is. Most of the time, the norm appears in an equation like this: ||x|| where x can be a vector or a 

matrix. Norms may come in many forms and many names: 
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 4.1. L0-Norm 

 

The first norm we are going to discuss is a L0-norm. By definition, L0-norm of x is 

 

||x||0 = 
0
√ (Σi xi

0
) 

 

Strictly speaking, L0-norm is not actually a norm. It is a cardinality function which has its 

definition in the form of LPnorm, though many people call it a norm. It is a bit tricky to work 

with because there is a presence of zeroth-power and zeroth-root in it. Obviously any x>0 will 

become one, but the problems of the definition of zeroth-power and especially zeroth-root is 

messing things around here. So in reality, most mathematicians and engineers use this definition 

of L0-norm instead: 

 

||x||0 = # (i| xi ≠ 0) 

 

that is a total number of non-zero elements in a vector. 

 

Because it is a number of non-zero elements, there are so many applications that use L0-norm. 

Lately it is even more in focus because of the rise of the Compressive Sensing scheme, which is 

try to find the sparsest solution of the underdetermined linear system. The sparsest solution 

means the solution which has fewest non-zero entries, i.e. the lowest L0-norm. This problem is 

usually regarding as an optimization problem of L0-norm or L0-optimisation. 

 

 4.1.1. L0-Optimisation 

 

Many applications, including Compressive Sensing, try to minimize the L0-norm of a vector 

corresponding to some constraints, hence called ―L0-minimisation‖. A standard minimization 

problem is formulated as: 

 

min ||x||0 subject to Ax=b 

 

However, doing so is not an easy task. Because the lack of L0-norm’s mathematical 

representation, L0- minimisation is regarded by computer scientist as an NP-hard problem, 

simply says that it’s too complex and almost impossible to solve. 

In many case, L0-minimisation problem is relaxed to be higher-order norm problem such as L1-

minimisation and L2-minimisation. 

 

 4.2. L1-Norm 

 

Following the definition of norm, L1-norm of x is defined as 

 

||x||1 = Σi |xi| 

 

This norm is quite common among the norm family. It has many name and many forms among 

various fields, namely Manhattan norm is its nickname. If the L1-norm is computed for a 

difference between two vectors or matrices, that is 
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SAD(x1, x2) = || x1-x2||1 = Σ |x1i - x2i| 

 

It is called Sum of Absolute Difference (SAD) among computer vision scientists. 

In more general case of signal difference measurement, it may be scaled to a unit vector by: 

 

  
 

Where n is a size of x. 

 

Which is known as Mean-Absolute Error (MAE). 

 

 4.3. L2-Norm 

 

The most popular of all norms is the L2-norm. It is used in almost every field of engineering and 

science as a whole. Following the basic definition, L2-norm is defined as 

 

||x||2 = √ (Σ i xi
2
) 

 

L2-norm is well known as a Euclidean norm, which is used as a standard quantity for measuring 

a vector difference. As in L1-norm, if the Euclidean norm is computed for a vector difference, it 

is known as a Euclidean distance: 

 

||x1-x2||2= √ (Σi(x1i - x2i) 
2
) 

 

Or in its squared form, known as a Sum of Squared Difference (SSD) among Computer Vision 

scientists: 

 

  
 

It’s most well-known application in the signal processing field is the Mean-Squared Error (MSE) 

measurement, which is used to compute a similarity, a quality, or a correlation between two 

signals. MSE is 

 

  
 

As previously discussed in L0-optimisation section, because of many issues from both a 

computational view and a mathematical view, many L0-optimisation problems relax themselves 

to become L1– and L2-optimisation instead. 

 

 4.3.1. L2-optimisation 

 

As in L0-optimisation case, the problem of minimizing L2-norm is formulated by 
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min ||x||2 subject to Ax=b 

 

Assume that the constraint matrix A has full rank; this problem is now an underdetermined 

system which has infinite solutions. The goal in this case is to draw out the best solution, i.e. has 

lowest L2-norm, from these infinitely many solutions. This could be a very tedious work if it was 

to be computed directly. Luckily it is a mathematical trick that can help us a lot in this work.  

 

By using a trick of Lagrange multipliers, we can then define a Lagrangian 

 

 
 

Where λ is the introduced Lagrange multiplier. Take derivative of this equation equal to zero to 

find an optimal solution and get 

 

 
 

Plug This Solution into the Constraint To Get  

 

 

 
And finally  

 

  
 
By using this equation, we can now instantly compute an optimal solution of the L2-optimisation 

problem. This equation is well known as the Moore-Penrose Pseudoinverse and the problem 

itself is usually known as Least Square problem, Least Square regression, or Least Square 

optimisation.  

 
However, even though the solution of Least Square method is easy to compute, it’s not necessary 

be the best solution. Because of the smooth nature of L2-norm itself, it is hard to find a single, 

best solution for the problem.  

 
In contrary, the L1-optimisation can provide much better result than this solution.  

 
 4.3.2. L1-optimisation  

 
As usual, the L1-minimisation problem is formulated as  

 
min || x ||1 subject to Ax = b  
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Because the nature of L1-norm is not smooth as in the L2-norm case, the solution of this problem 

is much better and more unique than the L2-optimisation.  

 
However, even though the problem of L1-minimisation has almost the same form as the L2-

minimisation, it’s much harder to solve. Because this problem doesn’t have a smooth function, 

the trick we used to solve L2-problem is no longer valid. The only way left to find its solution is 

to search for it directly. Searching for the solution means that we have to compute every single 

possible solution to find the best one from the pool of ―infinitely many‖ possible solutions.  

 
Since there is no easy way to find the solution for this problem mathematically, the usefulness of 

L1-optimisation is very limited for decades. Until recently, the advancement of computer with 

high computational power allows us to ―sweep‖ through all the solutions. By using many 

helpful algorithms, namely the Convex Optimisation algorithm such as linear programming, or 

non-linear programming, etc. it’s now possible to find the best solution to this question. Many 

applications that rely on Ll-optimisation, including the Compressive Sensing, are now possible.  

 
Now that we have discussed many members of norm family, starting from L0-norm, L1-norm, 

and L2-norm. It’s time to move on to the next one. As we discussed in the very beginning that 

there can be any one, whatever norm following the same basic definition of norm, it’s going to 

take a lot of time to talk about all of them. Fortunately, apart from L0-, L1–, and L2-norm, the 

rest of them usually uncommon and therefore don’t have so many interesting things to look at. 

So we’re going to look at the extreme case of norm which is a L∞-norm (L-infinity norm).  

 
 4.4. L-Infinity Norm  

 
As always, the definition for L∞-norm is  

 

 
 
Now this definition looks tricky again, but actually it is quite strait forward. Consider the vector 

x, let’s say if xj is the highest entry in the vector x, by the property of the infinity itself, we can 

say that  

 

 
Then  

 

 
Then  

 

 
 

Now we can simply say that the L∞-norm is  

 
||x|| ∞ = max (|xi|)  



 

 

  

[Sharma *, Vol.5 (Iss.2: SE): February, 2018]                                                                                  ISSN: 2454-1907 

[Communication, Integrated Networks & Signal Processing-CINSP 2018]           DOI: 10.5281/zenodo.1202511 

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research  [256] 
 

That is the maximum entries’ magnitude of that vector. That surely demystified the meaning of 

L∞-norm.  

 
Compressed sensing relies on L1 techniques. In statistics, the least squares method was 

complemented by the L1 norm. The L1-norm was used in computational statistics. The L1-norm 

was also used in signal processing.  

 
At first glance, compressed sensing might seem to violate the sampling theorem, because 

compressed sensing depends on the sparsity of the signal in question and not its highest 

frequency. This is a misconception, because the sampling theorem guarantees perfect 

reconstruction given sufficient, not necessary, conditions. A sampling method fundamentally 

different from classical fixed-rate sampling cannot "violate" the sampling theorem. Sparse 

signals with high frequency components can be highly under-sampled using compressed sensing 

compared to classical fixed-rate sampling.  

 
4.4.1. Compressibility and Lp   Spaces

 
A signal's compressibility is related to the Lp space to which the signal belongs. An infinite 

sequence x (n) is an element of an Lp space for a particular value of p if and only if its Lp norm is 

finite:  

 

                                                                                 (5) 
 
The smaller p is, the faster the sequence's values must decay in order to converge so that the 

norm is bounded. In the limiting case of p = 0, the ―norm‖ is actually a pseudo-norm and counts 

the number of non-zero values. As p decreases, the size of its corresponding Lp space also 

decreases.  

 
Suppose that a signal is sampled infinitely finely, and call it x [n]. In order for this sequence to 

have a bounded Lp norm, its coefficients must have a power-law rate of decay with q > 1/p. 

Therefore a signal which is in an Lp space with p ≤ 1 obeys a power law decay, and is therefore 

compressible.  

 
5.  Application of Cs 

 
The field of compressive sensing is related to several topics in signal processing and 

computational mathematics, such as underdetermined linear-systems, group testing, heavy 

hitters, sparse coding, multiplexing, sparse sampling, and finite rate of innovation [7]. Its broad 

scope and generality has enabled several innovative CS-enhanced approaches in signal 

processing and compression. There are following areas of compressive sensing, such as:  

 
 5.1. Photography and Shortwave-Infrared Cameras  

 
Compressed sensing is used in a mobile phone camera sensor. The approach allows a reduction 

in image acquisition energy per image by as much as a factor of 15 at the cost of complex 



 

 

  

[Sharma *, Vol.5 (Iss.2: SE): February, 2018]                                                                                  ISSN: 2454-1907 

[Communication, Integrated Networks & Signal Processing-CINSP 2018]           DOI: 10.5281/zenodo.1202511 

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research  [257] 
 

decompression algorithms; the computation may require an off-device implementation. 

Compressed sensing is used in single-pixel cameras. Single-pixel camera that takes stills using 

repeated snapshots of randomly chosen apertures from a grid. Image quality improves with the 

number of snapshots, and generally requires a small fraction of the data of conventional imaging.  

Commercial shortwave-infrared cameras based upon compressed sensing are available. These 

cameras have light sensitivity from 0.9 μm to 1.7 μm, which are wavelengths invisible to the 

human eye.  

 
 5.2. Holography and Facial Recognition  

 
Compressed sensing can be used to improve image reconstruction in holography by increasing 

the number of voxels one can infer from a single hologram. It is also used for image retrieval 

from undersampled measurements in optical and millimeter-wave holography. Compressed 

sensing is being used in facial recognition also.  

 
 5.3. Magnetic Resonance Imaging  

 
Compressed sensing has been used to shorten magnetic resonance imaging scanning sessions on 

conventional hardware. Compressed sensing addresses the issue of high scan time by enabling 

faster acquisition by measuring fewer Fourier coefficients. This produces a high-quality image 

with relatively lower scan time.  

 
 5.4. Network Tomography  

 
Compressed sensing has showed outstanding results in the application of network tomography to 

network management. Network delay estimation and network congestion detection can both be 

modeled as underdetermined systems of linear equations where the coefficient matrix is the 

network routing matrix. Moreover, in the Internet, network routing matrices usually satisfy the 

criterion for using compressed sensing.  

 
 5.5. Aperture Synthesis in Radio Astronomy  

 
In the field of radio astronomy, compressed sensing has been proposed for deconvolving an 

interferometric image. In fact, the Högbom CLEAN algorithm that has been in use for the 

deconvolution of radio images since 1974, is similar to compressed sensing's matching pursuit 

algorithm.  

 
 5.6. Transmission Electron Microscopy  

 
Compressed sensing combined with a moving aperture has been used to increase the acquisition 

rate of images in a transmission electron microscope. In scanning mode, compressive sensing 

combined with random scanning of the electron beam has enabled both faster acquisition and 

less electron dose, which allows for imaging of electron beam sensitive materials.  
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 6. Steps for Compressive Sensing  

 
In the 1990s, image compression algorithms were revolutionized by the introduction of the 

wavelet transform. The reasons for this can be summarized with two major points: the wavelet 

transform is a much sparser representation for photograph-like images than traditional Fourier-

based representations, and it can be applied and inverted in O (n) computations [8].  

 
Optimization techniques are a quick and easy way to find solutions of sparse signals, because 

most of the optimization techniques take advantage of non-adaptive linear projections to preserve 

the structure of the signal. The most common optimization algorithm are: the Optimal Matching 

Pursuit (OMP), Compressive Sampling Matching Pursuit (CSMP), Stagewise Orthogonal 

Matching Pursuit (StOMP) [9].  

 
The implementation steps of the algorithm are as follows  

[10]:  

 
1) Select an appropriate wavelet function and set a required decomposition level, then 

execute the wavelet packet foil decomposition on the original image.  

2) Determine the optimal basis of the wavelet packet in the light of the Shannon entropy 

criterion.  

3) As the main information and energy of the original image are concentrated in the low 

frequency subband by the wavelet packet transform, which plays a very important role in 

the image reconstruction, all the low-frequency coefficients are compressed losslessly in 

order to reduce the loss of the useful information.  

4) According to the theory of CS, select an appropriate random measurement matrix, and 

make measurement encoding on all the high frequency coefficients in line with the 

optimal basis of the wavelet packet, and obtain the measured coefficients.  

5) Restore all the high-frequency coefficients with the method of OMP from the measured 

coefficients.  

6) Implement the wavelet packet inverse transform to all the restored low-frequency and 

high frequency coefficients, and reconstruct the original image.  

 
 7. Conclusions  

 
CS theory introduced a wide range of new applications in each and every fields e.g. 

communication, medical, image processing, wireless sensor network (WSN) etc. In this paper we 

made an attempt to define basics of compressive sensing, compressible signals, norms, 

application of compressive sensing and the steps involved in compressive sensing technique. It 

breaks through the limitation of the traditional sample theory, provides a new way for data 

sampling. Compared to the traditional algorithm, it improves the performance of reconstruction 

images with fewer computations, which makes it has a widely used in many applications. The 

core idea of this theory is reconstructing the original image by solving underdetermined liner 

equations with fewer observation data.  
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