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Abstract:

In this paper we have developed the kernel of N-dimensional fractional Fourier transform by
extending the definition of first dimensional fractional Fourier transform. The properties of
kernel up to N- dimensional are also presented here which is missing in the literature of
fractional Fourier transform. The properties of kernel of fractional Fourier transforms up to
N- dimensional will help the researcher to extend their research in this aspect.
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1. Introduction

The idea of fractional operator of Fourier transform (FT) was introduced by V. Namias in 1980
[4]. In which he had descripted first time the comprehensive definition and mathematical frame
work of Fractional Fourier Transform (FRFT).

The Fractional Fourier transform (FRFT) depends on a parameter « that is associated with the
angle in phase plane. This leads to the generalization of notion of space (or time) and frequency
domain which are central concepts of signal processing. The kernel of the fractional FT is except
for a phase factor, equal to the propagator of the non-stationary Schrodinger equation for the
harmonic Oscillator, this transform is also used in optics [10,11]. FRFT was first introduced as a
way to solve certain classes of ordinary and partial differential equations arising in quantum
mechanics [4]. FRFT has found applications in areas of signal processing such as repeated altering,
fractional convolution and correlation, beam forming, optional filter, convolution, filtering and
wavelet transforms, time frequency representation [7]. The FRFT is basically a time-frequency
distribution. It provides us with an additional degree of freedom (order of the transform), which is
in most cases results in significant gain over the classical Fourier transform. With the development
of FRFT and related concepts, we see that the ordinary frequency domain is merely a special case
of a continuum of fractional Fourier domains. Every property and application of the ordinary
Fourier transform becomes a special case of the FRFT. So, in every area in which Fourier
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transforms and frequency domain concepts are used, there exists the potential for improvement by
using the FRFT [ 3,5,9]

2. Results and Discussions

In this section we will consider the definition of fractional Fourier transform as one, two and three
dimensional along with properties of kernel and their proof and will extend this concept to n-
dimensional fractional Fourier transform.

2.1. 1-Dimensional Fractional Fourier Transform

The operator of FRFT has an order parameter « that is an arbitrary angle ag, and it will reduce

to Fourier transform whenever the rotation of angle « isg a detailed discussion is found in
[1-4] The one-dimensional fractional Fourier transform is defined as
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The k%(x,,u,) is the kernel and defined as
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2.2. Properties of kernel
Following are the properties of 1-dimensional fractional Fourier transform kernel
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The proofs of these properties given in (4) are discussed by Almaida in [4]
2.3. 2-Dimensional Fractional Fourier Transform

The 2-dimensional fractional Fourier transform is also the generalization of 2-dimensional Fourier
transform several properties of (2-D) FRFT have been developed by generalizing the properties of
the ordinary (2-D) Fourier Transform (FT). The two dimensional fractional Fourier transform with
parameter « of f(x;,x,) denoted by F*v*2{f (x,,x,)} performs a linear operation given by the
integral transform [12,14,16,18]

Faa z{f(xp xZ)}(ull uz) = Faxia 2(u1, uz)

= f ff(xl,xz)Kal'“z(xl,xz;ul,uZ) dx,dx, (5)
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Where K* v%2(x,, x,; Uy, Uy) = K*1(x1, u )K*2(x,, u,) and defined as
K®v%2(xq, xp; Uuq, Up)

— a(a)eb(a)((x12+u12+x22+u22) cos a—2(x1u1+x2u2)) (6)

In case of the two-dimensional FRFT there are two angles of rotation expressed as a; = mg,
a, = m%if one of these angle is zero, the 2-D FRFT reduced to 1-D FRFT. The properties of 2-D
transformation kernel are defined in [15] as
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2.4. Three-Dimensional Fractional Fourier Transform
In a similar manner the 3-D FRFT can be defined as

:F'a 1,a 2, 3{f(x1’ xZi x3)} — Ta’ 1, 2,83 (ul' u,z, ug)

o 00 oo

= J f Jf(xl,xz)l(“1'“2*“3(x1,x2,x3;ul,uz,u3) dx;dx, dx; (8)
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Whel’e K% 14243 (xl, X3,X3;, U, Uy, U3) dEfIned as

Http://www.ijetmr.com®©International Journal of Engineering Technologies and Management Research [38]


http://www.ijetmr.com/

[Igbal et. al., Vol.7 (Iss.1): January 2020] ISSN: 2454-1907
DOI: 10.29121/ijetmr.v7.i1.2020.495

aq1,a,a .
K v%2%3(xy, X3, X35 Uy, Ug, Ug)
— a(a)eb(a)((x12+u12+x22+u22+x32+u32)cos a—z(x1u1+x2u2+x3u3)) (9)

In case of the 3-D FRFT there are three angles of rotation expressed as a; = n, g a, = nzg ,

a; = ng gif one of or two of these angles are zero, the 3-D FRFT reduced to 2-D FRFT and 1-D
FRFT. The properties of 3-D transformation kernel are defined as
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The kernel properties are given in (7) and (10) can easily be proved by extending the concept of

(4).
2.5. N-Dimensional Fractional Fourier Transform

Extending the concept of 1-D, 2-D, and 3-D FRFT, the fractional Fourier transform can be
extended up to n-dimensional Then dimensional fractional Fourier transform with parameter «
of is also defined as

a1, 2,4 3,...,.0 .
K& 0@ 2@ 3@ n(x, X)) Xg, wr)y X Up, Ug, Ug, wony Up)

b(a)((x12+u12 +X224+up 2+ +xn 2 +un?) cos a—-2(xquq +x3u; +---+xnun)) (1 1)

= a(a)e

Where a, = n1§; a, = nz% s Uy =Ty, g In a similar manner the properties of n -D
transformation kernel are defined as
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The proof first three properties are very simple. here we are giving proof of 5" property of (12)
Which can be written as

Z
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Since from (4) we have

J2 k%, u) kP (wy, z9)duy = k%P (x;,u,) which is proved by Almaida in [4]

We can write
© © N
j f Hk“l (x, u)kPi(x;, z) du; = Hk“ ithi = @ 1+B 1@ 2t B 2@ ntBu (x5, Xg, o, Xys Uy, Uy, Uz, e, Upy)
—o0 —oo =

Hence, we have the result. Similarly, other properties can be proved.
3. Conclusion

We successfully established the properties of kernels up to N-dimensional fractional Fourier
transform which will helpful to extend all the properties of 1-dimensional fractional Fourier
transform up to N-dimensional fractional Fourier
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