
[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

DOI: https://doi.org/10.29121/ijetmr.v6.i6.2019.392

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [40]

VERIFICATION OF CARRY LOOK AHEAD ADDER USING

CONSTRAINED RANDOMIZED LAYERED TEST BENCH
Dr. Anuradha M. Sandi *1

*1 Department of Electronics and Communication Engineering, Guru Nanak Dev Engineering

Collage, India

Abstract:

In processors and in digital circuit designs, adder is an important component. As a result, adder

is the main area of research in VLSI system design for improving the performance of a digital

system. The performance depends on power consumption and delay. Adders are not only used

for arithmetic operations, but also for calculating addresses and indices. In digital design we

have half adder and full adder, by using these adders we can implement ripple carry adder

(RCA). RCA is used to perform any number of additions. In this RCA is serial adder and it has

propagation delay problem. With increase in hard & fast circuits, delay also increases

simultaneously. That’s the reason these Carry look ahead adders (CLA) are used. The carry

look ahead adder speeds up the addition by reducing the amount of time required to determine

carry bits. It uses two blocks, carry generator (Gi) and carry propagator (Pi) which finds the

carry bit in advance for each bit position from the nearest LSB, if the carry is 1 then that position

is going to propagate a carry to next adder.

Keywords: VLSI Design; Propagation Delay; Carry Generator; Carry Propagator; Ripple Carry

Adder.

Cite This Article: Dr. Anuradha M. Sandi. (2019). “VERIFICATION OF CARRY LOOK

AHEAD ADDER USING CONSTRAINED RANDOMIZED LAYERED TEST BENCH.”

International Journal of Engineering Technologies and Management Research, 6(6), 40-50.

DOI: https://doi.org/10.29121/ijetmr.v6.i6.2019.392.

1. Introduction

A ripple-carry adder works in the same way as pencil-and-paper methods of addition. Starting at

the rightmost (least significant) digit position, the two corresponding digits are added and a result

obtained. It is also possible that there may be a carry out of this digit position (for example, in

pencil-and-paper methods, "6 + 6 = 2, carry 1"). Accordingly, all digit positions other than the

rightmost one need to take into account the possibility of having to add an extra 1 from a carry that

has come in from the next position to the right.

Carry-look ahead depends on two things:

1) Calculating for each digit position whether that position is going to propagate a carry if one

comes in from the right.

2) Combining these calculated values to be able to deduce quickly whether, for each group of

digits, that group is going to propagate a carry that comes in from the right.

http://www.ijetmr.com/
https://en.wikipedia.org/wiki/Least_significant_digit
http://www.ijetmr.com/
https://crossmark.crossref.org/dialog/?doi=10.29121/ijetmr.v6.i6.2019.392&domain=pdf&date_stamp=2019-06-30

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [41]

Supposing that groups of four digits are chosen the sequence of events goes something like this:

1) All 1-bit adders calculate their results. Simultaneously, the look ahead units perform their

calculations.

2) Assuming that a carry arises in a particular group, that carry will emerge at the left-hand

end of the group within at most five gate delays and start propagating through the group to

its left.

3) If that carry is going to propagate all the way through the next group, the look ahead unit

will already have deduced this. Accordingly, before the carry emerges from the next group,

the look ahead unit is immediately (within one gate delay) able to tell the next group to the

left that it is going to receive a carry – and, at the same time, to tell the next look ahead

unit to the left that a carry is on its way.

 Figure 1: 4-bit carry look ahead adder

The net effect is that the carries start by propagating slowly through each 4-bit group, just as in a

ripple-carry system, but then move four times as fast, leaping from one look ahead-carry unit to

the next. Finally, within each group that receives a carry, the carry propagates slowly within the

digits in that group.

The more bits in a group, the more complex the look ahead carry logic becomes, and the more

time is spent on the "slow roads" in each group rather than on the "fast road" between the groups

(provided by the look ahead carry logic). On the other hand, the fewer bits there are in a group, the

more groups have to be traversed to get from one end of a number to the other, and the less

acceleration is obtained as a result.

It is possible to have more than one level of look ahead-carry logic, and this is in fact usually done.

Each look ahead-carry unit already produces a signal saying "if a carry comes in from the right, I

will propagate it to the left", and those signals can be combined so that each group of, say, four

look ahead-carry units becomes part of a "super group" governing a total of 16 bits of the numbers

being added. The "super group" look ahead-carry logic will be able to say whether a carry entering

the super group will be propagated all the way through it, and using this information, it is able to

propagate carries from right to left 16 times as fast as a naive ripple carry. With this kind of two-

level implementation, a carry may first propagate through the "slow road" of individual adders,

http://www.ijetmr.com/

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [42]

then, on reaching the left-hand end of its group, propagate through the "fast road" of 4-bit look

ahead-carry logic, then, on reaching the left-hand end of its super group, propagate through the

"superfast road" of 16-bit look ahead-carry logic.

Figure 2: 16-bit carry look ahead adder

2. Materials and Methods

2.1. Carry Look Ahead Method

Carry-look ahead logic uses the concepts of generating and propagating carries. Although in the

context of a carry-look ahead adder, it is most natural to think of generating and propagating in the

context of binary addition, the concepts can be used more generally than this. In the descriptions

below, the word digit can be replaced by bit when referring to binary addition of 2.

The addition of two 1-digit inputs A and B is said to generate if the addition will always carry,

regardless of whether there is an input-carry (equivalently, regardless of whether any less

significant digits in the sum carry). For example, in the decimal addition 52 + 67, the addition of

the tens digits 5 and 6 generates because the result carries to the hundreds digit regardless of

whether the ones digit carries (in the example, the ones digit does not carry (2 + 7 = 9).

Figure 3: 1-bit full adder

http://www.ijetmr.com/

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [43]

Table 1: 1-Bit Full Adder Truth Table

In the case of binary addition A, B generates if and only if both A and B are 1. If we write G (A,

B) to represent the binary predicate that is true if and only if A.B generates, we have

G (A, B) = A.B

The addition of two 1-digit inputs A and B is said to propagate if the addition will carry whenever

there is an input carry (equivalently, when the next less significant digit in the sum carries). For

example, in the decimal addition 37 + 62, the addition of the tens digits 3 and 6 propagate because

the result would carry to the hundreds digit if the ones were to carry (which in this example, it does

not). Note that propagate and generate are defined with respect to a single digit of addition and do

not depend on any other digits in the sum.

In the case of binary addition, A+B propagates if and only if at least one of A or B is 1. If P(A,B) is

written to represent the binary predicate that is true if and only if A+B propagates, one has

P(A+B) =A+B

Sometimes a slightly different definition of propagate is used. By this definition A + B is said to

propagate if the addition will carry whenever there is an input carry, but will not carry if there is

no input carry. Due to the way generate and propagate bits are used by the carry-lookahead logic,

it doesn't matter which definition is used. In the case of binary addition, this definition is expressed

by

P`(A, B)=A^B

For binary arithmetic, or is faster than xor and takes fewer transistors to implement. However, for

a multiple-level carry-lookahead adder, it is simpler to use P`(A,B) Given these concepts of

generate and propagate, a digit of addition carries precisely when either the addition

generates or the next less significant bit carries and the addition propagates. Written in boolean

algebra, with Ci the carry bit of digit i, and Pi and Gi the propagate and generate bits of

digit i respectively,

Ci+1= Gi+(Pi.Ci).

http://www.ijetmr.com/

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [44]

2.2. Implementation Details

For each bit in a binary sequence to be added, the carry-look ahead logic will determine whether

that bit pair will generate a carry or propagate a carry. This allows the circuit to "pre-process" the

two numbers being added to determine the carry ahead of time. Then, when the actual addition is

performed, there is no delay from waiting for the ripple-carry effect (or time it takes for the carry

from the first full adder to be passed down to the last full adder).

Figure 4: Sum and Carry generation using CLA

Equations:

C1=G0+P0C0

C2=G1+P1C1

C3=G2+P2C2

C4=G3+P3C3

Substituting then into yields the expanded equations:

C1 = G0 + P0C0

C2 = G1 + P1C1

C2= G1 + P1 (G0 + P0C0) = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

 C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

The calculation of the gate delay of a 16-bit adder (using 4 CLAs and 1 LCU) is not as straight

forward as the ripple carry adder.

Starting at time of zero:

 calculation of Pi and Gi is done at time 1,

 calculation of Ci is done at time 3,

 calculation of the PG is done at time 2,

 calculation of the GG is done at time 3,

 calculation of the inputs for the CLAs from the LCU are done at:

 time 0 for the first CLA,

1) time 5 for the second, third and fourth CLA,

calculation of the Si are done at:

2) time 4 for the first CLA,

3) time 8 for the second, third & fourth CLA,

 calculation of the final carry bit (C16) is done at time 5.

http://www.ijetmr.com/
https://en.wikipedia.org/wiki/Full_adder
https://en.wikipedia.org/wiki/Gate_delay

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [45]

The maximal time is 8 gate delays (for S[8:15]).

A standard 16-bit ripple-carry adder would take 16 × 3 − 1 = 47 gate delays.

2.3. Cadence Design Systems

1) American multinational design automation (EDA) software and engineering services

company, founded in 1988 by the merger of SDA Systems and ECDA inc.

2) The company produces software, hardware and silicon structures for designing integrated

circuits, systems on chips (SoCs) and printed circuit boards.

Overview

 Cadence Design Systems, headquartered in san jose california, in the North San Jose

Innovation District, is a supplier of electronic design technologies and engineering services

in the electronic design automation (EDA) industry.

 Cadence products primarily target SoC design engineers, and are used to move a design

into packaged silicon, with products for custom and analog design, digital design, mixed-

signal design, verification, and package/PCB design, as well as a broad selection of IP, and

also hardware for emulation and FPGA prototyping.

 The company also provides products that assist with the development of complete

hardware and software platforms that support end applications.

Features of Cadence

 Easy-to-use interactive simulation environment.

 Built-in waveform display and signal analysis capabilities.

 Integral part of the Virtuoso custom design platform

3. Results and Discussions

Carry Look Ahead (CLA) design is based on the principle of looking at lower adder bits of

argument and addend if higher orders carry generated. This adder reduces the carry delay by

reducing the number of gates through which a carry signal must propagate. As shown in figure in

the generation and propagation stage, the generation values, propagation values are computed.

Internal carry generation is calculated in second stage. And in final stage, the sum is calculated.

The architecture of CLA is given in fig 5 and flow chart of CLA is given in fig 6.

Figure 5: architecture of CLA

http://www.ijetmr.com/
https://en.wikipedia.org/wiki/Ripple-carry_adder

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [46]

The fact when the carry will be generated is when both bits A and B are 1, and when one of the

two bits is 1 and the carry-in (carry of the previous stage) is 1.

Table 2: Truth Table Of CLA

Figure 6: flow chart of CLA

3.1. Layered Testbench

A key concept for any modern verification methodology is the Layered test bench. Although this

process may seem to make the testbench more complex, it actually helps to make your task easier

by dividing the code into smaller pieces that can be developed separately. A single routine cannot

randomly generate all types of stimulus and it becomes complex and not maintainable.

http://www.ijetmr.com/

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [47]

Transaction Class
Transaction class is the base class for all other components in the LTB. The transaction class

specifies the variables that are to be randomized. It also holds the constraints for randomization.

All the other classes access the variables from the transaction class.

Generator Class
The generator class generates the stimulus required for verification. The stimulus generation will

be mainly based on randomization of variables, based on the variables from base/ transaction class.

The generated variables are sent through mailbox to driver as object level.

Mailbox
A mailbox is a mechanism to exchange messages between processes. Data can be sent to a mailbox

by one process and retrieved by another. Data can be any valid system Verilog data types, including

class data types. Mailboxes are created with the new () method. The number of messages in a

mailbox can be obtained via the num () method. The num () method returns the number of

messages currently in the mailbox.

The returned value should be used with care because it is valid only until the next get () or put ()

is executed on the mailbox. The put () method places a message in a mailbox. The put () method

stores a message in the mailbox in strict FIFO order. The get () method retrieves a message from

a mailbox. The get () method removes one message from queue.

Driver

The driver drives signal from object level to signal level and forces to the DUT connected. Here,

in this LTB the generated data send through mailbox is collected by driver and converted into

signal level and forced to DUT. Before sending data to DUT, through another mailbox driver sends

set of values generated to scoreboard also.

Receiver & Scoreboard
The receiver receives the data from DUT i.e., its outputs. It collects from signal level to object

level and sends it back to scoreboard through a mailbox. Scoreboard usually checks the data

collected from driver to that of data collected from receiver for their functional correctness.

http://www.ijetmr.com/

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [48]

Interfaces
Interfaces are used to define physical existence of the signals. Virtual interfaces are used so as to

apply OOPs concepts on interfaces, which we can’t perform on real interface signals. All the LTB

components are considered to work under Environment and environment is invoked under the test

bench.

3.2. Simulation Result

(a)

(b) (c)

http://www.ijetmr.com/

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [49]

(d)

(e)

Figure 7 (a): 16-bit CLA simulation waveform (b)16-bit CLA synthesized diagram (c) 4-bit CLA

synthesized diagram (d) 16-bit CLA Power analysis (e) 16-bit CLA Area analysis

4. Conclusions and Recommendations

The selected adder circuit with minimum area , power and delay is carry increment adder for 4-

bit, in case of an 8-bit, there is a competence between Carry Look ahead and Carry increment adder

and in case of 16-bit , carry skip adder has minimum area and delay which proves to be easy

solution in improving the speed of the adder circuit over other conventional adder circuits in

discussion suffering from disadvantage of either occupying more number of slices or look up tables

per unit of cell or have highest minimum propagation delay owing to their critical carry path for

same power . The selected adder circuit is also found to have comparatively less power

consumption in comparison to other adder circuits. Hence it can be concluded that the above

respective adder circuits on the basis of different word size can be used to speed up the final

addition in parallel multiplier circuits and other architectures which uses adder circuits, exhibiting

maximum efficiency.

Acknowledgements

It gives me immense pleasure to express my deep sense of gratitude to Principal and Management,

Guru Nanak Dev Engineering College Bidar, Karnataka, INDIA for their inspiration and academic

support by providing good facilities.

http://www.ijetmr.com/

[Sandi *, Vol.6 (Iss.6): June 2019] ISSN: 2454-1907

 DOI: 10.5281/zenodo.3245207

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research [50]

References

[1] Y.Choi, “Parallel Prefix Adder Design” Proc. 17th IEEE Symposium on Computer Arithmetic, pp

90-98, 27th June 2005.

[2] A. Beaumont-Smith, C.C. Lim: Parallel Prefix Adder Design, 15th Symposium on Computer

Arithmetic, p.218-225, 200.

[3] G. Yang, S.-O. Jung, K.-H. Baek, S.H. Kim, S. Kim, S.-M. Kang, “A 32-bit Carry Lookahead

Adder using Dual-path all-N logic,” IEEE Trans. VLSI Systems, vol. 13, no. 8, pp. 992-996, 2005.

[4] P. Kogge and H. Stone, - A Parallel Algorithm for the Efficient Solution of a General class of

Recurrence Relation, IEEE Transactions on computers, vol, C-22, no.8, pp.786-793, Aug1973

[5] Swaroop Ghosh, Patrick Ndai, Kaushik Roy. “A Novel Low Overhead Fault Tolerant Kogge-Stone

Adder using Adaptive Clocking”, date 2008.

[6] Jin-Fa Lin, Yin- Tsung Hwang and Ming – Hwa Sheu, -, “Low Power 10-Transistor Full adder

Design Based on Degenerate pass Transistor Logic.” IEEE Trans. VLSI Systems, vol. 13, No.6,

pp.686-695, Jun 2012.

[7] Pakkiraiah Chakali, Madhu Kumar Patnala, “Design of High speed Kogge-Stone based Carry

Select Adder,”International Journal of Emerging Science and Engineering (IJESE), Volume-1,

Issue-4, February 2013

[8] Chakali, Pakkiraiah, and Madhu Kumar Patnala. "Design of High Speed Kogge-Stone Based Carry

Select Adder." International Journal of Emerging Science and Engineering (IJESE), vol. 1, no. 4,

pp. 34-37, Feb. 2013.

[9] Mala, T. Ratna, R. Vinay Kumar, and T. Chandra Kala. "Design and Verification of Area Efficient

High-Speed Carry Select Adder." IJRCCT, vol. 1, no. 6, pp. 345-349, Nov. 2012.

[10] Sunil M, Ankit R D, Manjunatha G D and Premananda B S “Design And Implementation of Fast

Parallel Prefix Kogge Stone Adder.” In International Journal of Electrical and Electronics

Engineering & Telecommunications, vol. 3, no. 1, January 2014.

[11] Begum, Mohammed Haseena, and V. Vamsi Mohana Krishna. "Design and Verification Of Low

Power And Area Efficient Kogge-Stone Carry Select Adder." In International Journal of

Engineering Research and Technology, ESRSA Publications, vol. 2, no. 8, pp. 462-467, Aug 2013.

[12] B. Ramkumar, Harish M Kittur, “Low –Power and Area-Efficient Carry Select Adder”, IEEE

transaction on very large scale integration (VLSI) systems, vol.20, no.2, pp.371-375, Feb 2012.

[13] Adilakshmi Siliveru, M.Bharathi, “Design of Kogge-Stone and Brent-Kung adders using

Degenerate Pass Transistor Logic.” IJESE, ISSN: 2319–6378, Volume-1, Issue-4, February 2013.

[14] K-H.Cheng, W-S. Lee and Y-C.Huang, “ A 1.2 V 500 MHZ 32-bit Carry Lookahead Adder,” 8th

IEEE International Conference on Electronics, Circuits and Systems, Vol 2, September 2-5, 2001,

pp. 765-768.

[15] Y. Kim and L-S Kim, ’64-bit Carry-Select Adder with Reduced Area,” Electronics letters, Vol. 37,

Issue 10, May 10, 2001, pp. 614-615.

 *Corresponding author.

E-mail address: anu29975@ gmail.com

http://www.ijetmr.com/

