

ON THE TERNARY QUADRATIC DIOPHANTINE EQUATION
$6 z^{2}=6 x^{2}-5 y^{2}$

M. A. Gopalan ${ }^{* 1}$, S. Nandhini ${ }^{2}$, J. Shanthi ${ }^{3}$

${ }^{* 1}$ Professor, Department of Mathematics, SIGC, Trichy-620002, Tamil Nadu, INDIA
${ }^{2}$ M.Phil Scholar, Department of Mathematics, SIGC, Trichy-620002, Tamil Nadu, INDIA
${ }^{3}$ Lecturer, Department of Mathematics, SIGC, Trichy-620002, Tamil Nadu, INDIA

Abstract:

The ternary homogeneous quadratic equation given by $6 z^{2}=6 x^{2}-5 y^{2}$ representing a cone is analyzed for its non-zero distinct integer solutions. A few interesting relations between the solutions and special polygonal and pyramided numbers are presented. Also, given a solution, formulas for generating a sequence of solutions based on the given solutions are presented.

Keywords:
Ternary quadratic, integer solutions, figurate numbers, homogeneous quadratic, polygonal number, pyramidal numbers.

Notations Used:

1. Polygonal number of rank ' n ' with sides m

$$
\mathrm{t}_{\mathrm{m}, \mathrm{n}}=\mathrm{n}\left(1+\frac{(\mathrm{n}-1)(\mathrm{m}-2)}{2}\right) \quad \mathrm{m}=3,4,5 \ldots, 10 \ldots
$$

2. Stella octangular number of rank ' n '

$$
\mathrm{SO}_{\mathrm{n}}=\mathrm{n}\left(2 \mathrm{n}^{2}-1\right)
$$

Cite This Article: M. A. Gopalan, S. Nandhini, and J. Shanthi, "On the Ternary Quadratic Diophantine Equation $6 z^{2}=6 x^{2}-5 y^{2}$." International Journal of Engineering Technology and Management Research, Vol. 1, No. 1(2015): 14-22. DOI: 10.29121/ijetmr.v1.i1.2015.22.

1. INTRODUCTION

The Diophantine equations offer an unlimited field for research due to their variety [1-3].In particular, one may refer [4-24] for quadratic equations with three unknowns.
This communication concerns with yet another interesting equation $6 z^{2}=6 x^{2}-5 y^{2}$ representing non-homogeneous quadratic equation with three unknowns for determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions are presented.

2. METHOD OF ANALYSIS

The ternary quadratic Diophantine equation representing a cone under consideration is

$$
\begin{equation*}
6 z^{2}=6 x^{2}-5 y^{2} \tag{1}
\end{equation*}
$$

To start with, it is seen that (1) is satisfied by the following non-zero integer triples ($\mathrm{x}, \mathrm{y}, \mathrm{z}$):
(1921,2088,239);(466,504,74);(603,648,117);(439,468,101);
(341,360,91);(138,144,42); $(169,168,71) ;(74,72,34) ;(87,72,57) ;(34,24,26)$.
As the considered equation is symmetric in x, y and z , we have presented only positive integer solutions for clear understanding.

However, we have other choices of solution to (1) which are illustrated below:
Choice 1: Introducing the linear transformations

$$
\begin{align*}
& x=6 X+5 \alpha-30 \beta \\
& y=6 X+6 \alpha-36 \beta \tag{2}\\
& z=\alpha+30 \beta
\end{align*}
$$

In (1), it is written as

$$
\begin{equation*}
\mathrm{X}^{2}=\alpha^{2}+180 \beta^{2} \tag{3}
\end{equation*}
$$

Which is satisfied by

$$
\begin{align*}
& \beta=2 p q \\
& \alpha=180 p^{2}-q^{2} \tag{4}\\
& X=180 p^{2}+q^{2}
\end{align*}
$$

In view of (2), the non-zero distinct integer solutions to (1) are given by

$$
\begin{align*}
& x(p, q)=1980 \mathrm{p}^{2}+\mathrm{q}^{2}-60 \mathrm{pq} \\
& \mathrm{y}(\mathrm{p}, \mathrm{q})=2160 \mathrm{p}^{2}-72 p q \tag{5}\\
& z(p, q)=180-\mathrm{q}^{2}+60 \mathrm{pq}
\end{align*}
$$

Properties:

A few interesting properties obtained are as follows:

$$
\begin{aligned}
& \& x(p, p+1)+y(p, p+1)-4140 t_{4, p}+66\left(2 p^{2}-p\right)-2 t_{3, p} \equiv 1(\bmod 197) \\
& \& x(p+1, q)+z(p+1, q)-4320 t_{3, p} \equiv 1(\bmod 2160)
\end{aligned}
$$

$x(p, 1)+y(p, 1)+z(p, 1)-3960 t_{4, p}-36 t_{8, p} \equiv 0(\bmod 108)$
$x(p, p)-1320 t_{5, p}-t_{4, p}+15 t_{10, p} \equiv 0(\bmod 705)$
$y\left(p, p^{2}\right)-2160 t_{4, p}+36 \mathrm{SO}_{\mathrm{p}} \equiv 0(\bmod 36)$

Choice 2:

(3) is written as the system of double equations as given below

$$
\begin{aligned}
\text { System } 1 \rightarrow \mathrm{X}+\alpha & =\beta^{2} \\
\mathrm{X}-\alpha & =180 \\
\text { System } 2 \rightarrow \mathrm{X}+\alpha & =2 \beta^{2} \\
\mathrm{X}-\alpha & =90
\end{aligned}
$$

$$
\begin{aligned}
\text { System } 3 \rightarrow \mathrm{X}+\alpha & =3 \beta^{2} \\
\mathrm{X}-\alpha & =60
\end{aligned}
$$

$$
\text { System } 4 \rightarrow \mathrm{X}+\alpha=5 \beta^{2}
$$

$$
X-\alpha=36
$$

$$
\begin{aligned}
\text { System } 5 \rightarrow X+\alpha & =6 \beta^{2} \\
X-\alpha & =30
\end{aligned}
$$

$$
\text { System } \begin{aligned}
6 \rightarrow X+\alpha & =9 \beta^{2} \\
X-\alpha & =20
\end{aligned}
$$

$$
\begin{aligned}
\text { System } 7 \rightarrow \mathrm{X}+\alpha & =10 \beta^{2} \\
\mathrm{X}-\alpha & =18
\end{aligned}
$$

$$
\text { System } 8 \rightarrow X+\alpha=15 \beta^{2}
$$

$$
X-\alpha=12
$$

$$
\text { System } 9 \rightarrow X+\alpha=18 \beta^{2}
$$

$$
X-\alpha=10
$$

Solving each of the above systems, the corresponding values of X, α and β are determined. Substituting these values of X, α and β in (2) the corresponding integer solutions to (1) are obtained which are exhibited in the table below.

Table: Solutions of (1)

SYSTEM	\mathbf{x}	\mathbf{y}	\mathbf{z}
1	$22 \mathrm{k}^{2}-60 \mathrm{k}+90$	$24 \mathrm{k}^{2}-72 \mathrm{k}$	$2 \mathrm{k}^{2}+60 \mathrm{k}-90$
2	$11 \beta^{2}-30 \beta+45$	$12 \beta^{2}-36 \beta$	$\beta^{2}+30 \beta-45$
3	$66 \mathrm{k}^{2}-60 \mathrm{k}+30$	$72 \mathrm{k}^{2}-72 \mathrm{k}$	$6 \mathrm{k}^{2}+60 \mathrm{k}-30$
4	$110 \mathrm{k}^{2}-60 \mathrm{k}+18$	$120 \mathrm{k}^{2}-72 \mathrm{k}$	$10 \mathrm{k}^{2}+60 \mathrm{k}-18$
5	$33 \beta^{2}-30 \beta+15$	$36 \beta^{2}-36 \beta$	$\beta^{2}+30 \beta-45$
6	$198 \mathrm{k}^{2}-60 \mathrm{k}+10$	$216 \mathrm{k}^{2}-72 \mathrm{k}$	$18 \mathrm{k}^{2}+60 \mathrm{k}-10$
7	$55 \beta^{2}-30 \beta+9$	$60 \beta^{2}-36 \beta$	$5 \beta^{2}+30 \beta-9$
8	$330 \mathrm{k}^{2}-60 \mathrm{k}+6$	$360 \mathrm{k}^{2}-72 \mathrm{k}$	$30 \mathrm{k}^{2}+60 \mathrm{k}-6$
9	$99 \beta^{2}-30 \beta+5$	$108 \beta^{2}-36 \beta$	$9 \beta^{2}+30 \beta-5$

Choice 3:

In (3), it is written as

$$
\begin{equation*}
\alpha^{2}+180 \beta^{2}=X^{2}=X^{2} * 1 \tag{6}
\end{equation*}
$$

Assume

$$
\begin{equation*}
\mathrm{X}(\mathrm{a}, \mathrm{~b})=a^{2}+180 b^{2} \tag{7}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{(2+i \sqrt{5})(2-i \sqrt{5)}}{3^{2}} \tag{8}
\end{equation*}
$$

Substituting (7) \& (8) in (6) and applying the method of factorization define

$$
(\alpha+i 6 \sqrt{5} \beta)=(a+i 6 \sqrt{5} b)^{2} * \frac{(2+i \sqrt{5})}{3}
$$

Equating the real and imaginary parts and replacing a by 6 A and b by 6 B , we have

$$
\begin{align*}
& \alpha=24 A^{2}-720 A B-4320 B^{2} \tag{9}\\
& \beta=2 A^{2}+48 A B-360 B^{2} \tag{10}
\end{align*}
$$

and from (7), $\quad X=36 A^{2}+6480 B^{2}$
Substituting the above values of α, β, X in (2), the corresponding integer solutions to (1) are given by

$$
\begin{align*}
& x(A, B)=276 A^{2}-5040 A B+28080 B^{2} \\
& y(A, B)=288 A^{2}-6048 A B+25920 B^{2} \tag{11}\\
& z(A, B)=84 A^{2}+720 A B-15120 B^{2}
\end{align*}
$$

Properties:

A few interesting properties obtained are as follows:

* $x(A+1, A)-y(A+1, A)-789 t_{10, A} \equiv 996(\bmod 2343)$
* $x(A-1, A)-y(A-1, A)-z(A-1, A)-5824 t_{8, A} \equiv 96(\bmod 11552)$
* $y(A+1, A)-z(A+1, A)-30660 t_{4, \mathrm{~A}}+2544 t_{7, \mathrm{~A}}-204=0$
* $\quad z(A, A)=-14316 t_{4, A}$
* $\mathrm{x}(\mathrm{A}, \mathrm{A})+\mathrm{z}(\mathrm{A}, \mathrm{A})-432 \mathrm{t}_{6, \mathrm{~A}}+77760 \mathrm{t}_{4, \mathrm{~A}} \equiv 0(\bmod 432)$

Note that instead of (8), one may also write 1 as

$$
1=\frac{(-2+i \sqrt{5})(-2-i \sqrt{5)}}{3^{2}}
$$

For this choice, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x(A, B)=36 A^{2}-2160 A B+71280 B^{2} \\
& y(A, B)=-2592 A B+77760 B^{2} \\
& z(A, B)=36 A^{2}-2160 A B-6480 B^{2}
\end{aligned}
$$

3. REMARKABLE OBSERVATIONS

Let ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$) be any given integer solution to (1). We illustrate below the method of obtaining a general formula for generating sequence of integer solutions based on the given solution.

Case (i):

Let

$$
\begin{align*}
& \mathrm{x}_{1}=-2 \mathrm{x}_{0}+\mathrm{h} \\
& \mathrm{y}_{1}=2 \mathrm{y}_{0}+\mathrm{h} \quad, \mathrm{~h} \neq 0 \tag{12}\\
& \mathrm{z}_{1}=2 \mathrm{z}_{0}
\end{align*}
$$

be the second solution of (1),Substituting (12) in (1) \& performing a few calculations, we have

$$
\begin{aligned}
& \mathrm{h}=20 \mathrm{y}_{0}+24 \mathrm{x}_{0} \text { and then } \\
& \mathrm{x}_{1}=22 \mathrm{x}_{0}+22 \mathrm{y}_{0} \\
& \mathrm{y}_{1}=22 \mathrm{y}_{0}+24 \mathrm{x}_{0}
\end{aligned}
$$

This is written in the form of matrix as

$$
\begin{equation*}
\binom{\mathrm{x}_{1}}{\mathrm{y}_{1}}=M\binom{\mathrm{x}_{0}}{\mathrm{y}_{0}} \tag{13}
\end{equation*}
$$

where $M=\left(\begin{array}{ll}24 & 20 \\ 24 & 22\end{array}\right)$
Repeating the above process, the general solution $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ to (1) is given by

$$
\begin{equation*}
\binom{\mathrm{x}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{n}}}=M^{n}\binom{\mathrm{x}_{0}}{\mathrm{y}_{0}} \tag{14}
\end{equation*}
$$

To find M^{n}, the eigen values of M are $\alpha=1, \beta=1$.
We know that

$$
M^{n}=\frac{\alpha^{n}}{\alpha-\beta}(M-\beta I)+\frac{\beta^{n}}{\beta-\alpha}(M-\alpha I)
$$

Using the above formula, we have

$$
M^{n}=\frac{1}{4 \sqrt{480}}\left[\begin{array}{cc}
2 \sqrt{480}\left(A^{n}\right) & 20\left(B^{n}\right) \\
24\left(B^{n}\right) & 2 \sqrt{480}\left(A^{n}\right)
\end{array}\right]
$$

Thus the general solution $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right)$ to (1) is given by

$$
\left.\mathrm{x}_{\mathrm{n}}=\frac{1}{4 \sqrt{480}}\left[\left(2 \sqrt{480} A^{n}\right) x_{0}+20 B^{n}\right) \mathrm{y}_{0}\right]
$$

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{n}}=\frac{1}{4 \sqrt{480}}\left[\left(24 B^{n}\right) \mathrm{x}_{0}+\left(2 \sqrt{480} A^{n}\right) \mathrm{y}_{0}\right] \\
& \mathrm{z}_{\mathrm{n}}=2^{n} \mathrm{z}_{0}
\end{aligned}
$$

Where

$$
\begin{aligned}
& A^{n}=(22+2 \sqrt{480})^{n}+(22-2 \sqrt{480})^{n} \\
& B^{n}=(22+2 \sqrt{480})^{n}-(22-2 \sqrt{480})^{n}
\end{aligned}
$$

Case (ii):

$$
\text { Let } \begin{array}{ll}
\mathrm{x}_{1}=3 \mathrm{x}_{0}+\mathrm{h} & \\
\mathrm{y}_{1}=3 \mathrm{y}_{0}, & \mathrm{~h} \neq 0 \\
\mathrm{z}_{1}=3 \mathrm{z}_{0}+\mathrm{h} &
\end{array}
$$

Repeating the process as in the case (i) the corresponding general solution $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right)$ to (1) is given by

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}}=\frac{1}{6}\left[\left(4(9)^{n}+2(3)^{n}\right) \mathrm{x}_{0}+\left(2(9)^{n}+2(3)^{n}\right) \mathrm{z}_{0}\right] \\
& \mathrm{y}_{\mathrm{n}}=3^{n} \mathrm{y}_{0} \\
& \mathrm{z}_{\mathrm{n}}=\frac{1}{6}\left[\left(-4(9)^{n}-4(3)^{n}\right) \mathrm{x}_{0}+\left(2(9)^{n}+2(3)^{n}\right) \mathrm{z}_{0}\right]
\end{aligned}
$$

Case (iii):

Let

$$
\begin{aligned}
& \mathrm{x}_{1}=\mathrm{x}_{0} \\
& \mathrm{y}_{1}=\mathrm{y}_{0}-2 \mathrm{~h} \\
& \mathrm{z}_{1}=\mathrm{z}_{0}+2 \mathrm{~h}
\end{aligned} \quad, \mathrm{~h} \neq 0
$$

Repeating the procedure as presented in Case (i), the corresponding general solution ($\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}$) to (1) is given by

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}}=\mathrm{x}_{0} \\
& \mathrm{y}_{\mathrm{n}}=\frac{-1}{22}\left[\left(10(21)^{\mathrm{n}}-12(1)^{\mathrm{n}}\right) \mathrm{y}_{0}+\left(2(-21)^{\mathrm{n}}-2(1)^{n}\right) \mathrm{z}_{0}\right] \\
& \mathrm{z}_{\mathrm{n}}=\frac{-1}{22}\left[\left(10(-21)^{\mathrm{n}}-10(1)^{\mathrm{n}}\right) \mathrm{y}_{0}+\left(12(-21)^{\mathrm{n}}+10(1)^{n}\right) \mathrm{z}_{0}\right]
\end{aligned}
$$

4. CONCLUSION

In this paper, we have obtained infinitely many non-zero distinct integer solutions to the ternary quadratic Diophantine equation represented by $\quad 6 z^{2}=6 x^{2}-5 y^{2}$

As quadratic equations are rich in variety, one may search for their choices of quadratic equation with variables greater than or equal to 3 and determine their properties through special numbers.

5. ACKNOWLEDGEMENT

The financial support from the UGC, New Delhi (F-MRP-5122/14(SERO/UGC) dated march 2014) for a part of this work is gratefully acknowledged.

6. REFERENCES

[1] Dickson LE.History of Theory of Numbers and Diophantine Analysis,Vol 2,Dove publications,New York 2005.
[2] Mordell LJ. Diophantine Equations" Academic Press, Newyork 1970.
[3] Carmicheal RD.The Theory of Numbers and Diophantine Analysis , Dover publications,,Newyork 1959.
[4] Gopalan MA,Geetha D. Lattice points on the Hyperboloid of two sheets $\mathrm{x}^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$ Impact J Sci Tech 2010;4:23-32.
[5] Gopalan MA ,Vidhyalakshmi S,Kavitha A,Integral points on the Homogeneous cone $\mathrm{z}^{2}=2 \mathrm{x}^{2}-7 \mathrm{y}^{2}$,The Diophantus J Math 2012;1(2):127-136.
[6] Gopalan MA,Vidhyalakshmi S, Sumathi G.Lattice points on the Hyperboloid of one sheet $4 \mathrm{z}^{2}=2 \mathrm{x}^{2}+3 \mathrm{y}^{2}-4$. Diophantus J Math 2012; 1(2): 109-115.
[7] Gopalan MA,Vidhyalakshmi S,Lakshmi K. Integral points on the Hyperboloid of two sheets $3 \mathrm{y}^{2}=7 \mathrm{x}^{2}-\mathrm{z}^{2}+21$. Diophantus J Math 2012; 1(2): 99-107.
[8] Gopalan MA,Vidhyalakshmi S, Mallika S.Observations on Hyperboloid of one sheet $\mathrm{x}^{2}+2 \mathrm{y}^{2}-z^{2}=2$. Bessel J Math 2012; 2(3): 221-226.
[9] Gopalan MA ,Vidhyalakshmi S,Usha Rani TR , Mallika S,Integral points on the Homogeneous cone $6 z^{2}+3 y^{2}-2 x^{2}=0$,The Impact J Sci Tech 2012;6(1):7-13.
[10] Gopalan MA,Vidhyalakshmi S,Sumathi G,Lattice points on the Elliptic parabolid $\mathrm{z}=9 \mathrm{x}^{2}+4 \mathrm{y}^{2}$,Advances in Theoretical and Applied Mathematics 2012;m7(4):379385
[11] Gopalan MA ,Vidhyalakshmi S,Usha Rani TR,Integral points on the nonhomogeneous cone $2 z^{2}+4 x y+8 x-4 z=0$, Global Journal of Mathamatics and Mathamatical sciences 2012;2(1):61-67
[12] Gopalan MA ,Vidhyalakshmi S,Lakshmi K.,Lattice points on the Elliptic paraboloid $16 y^{2}+9 z^{2}=4 x$, Bessel J of Math 2013; 3(2): 137-145.
[13] Gopalan MA ,Vidhyalakshmi S,Uma Rani J , Integral points on the Homogeneous cone $4 y^{2}+x^{2}=37 z^{2}$, Cayley J of Math 2013;2(2):101-107.
[14] Gopalan MA,Vidhyalakshmi S, Kavitha A. Observations on the Hyperboloid of two sheets $7 \mathrm{x}^{2}-3 \mathrm{y}^{2}=\mathrm{z}^{2}+z(y-x)+4$. International Journal of Latest Research in Science and technology 2013; 2(2): 84-86.
[15] Gopalan MA ,Sivagami B. Integral points on the homogeneous cone $z^{2}=3 x^{2}+6 y^{2}$. ISOR Journal of Mathematics 2013; 8(4): 24-29.
[16] Gopalan MA,Geetha V. Lattice points on the homogeneous cone $z^{2}=2 x^{2}+8 y^{2}-6 x y$. Indian journal of Science 2013; 2: 93-96.
[17] Gopalan MA, Vidhyalakshmi S,Maheswari D. Integral points on the homogeneous cone $35 \mathrm{z}^{2}=2 \mathrm{x}^{2}+3 \mathrm{y}^{2}$. Indian journal of Science 2014; 7: 6-10.
[18] Gopalan MA, Vidhyalakshmi S,Umarani J. On the Ternary Quadratic Diophantine Equation $6\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-8 x y=21 z^{2}$. Sch J Eng Tech 2014; 2(2A): 108112.
[19] Meena K,Vidhyalakshmi S, Gopalan MA , Priya IK . Integral points on the cone $3\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-5 \mathrm{xy}=47 \mathrm{z}^{2}$. Bulletin of Mathematics and statistic Research 2014; 2(1): 65-70.
[20] Gopalan MA, Vidhyalakshmi S ,Nivetha S.On Ternary Quadratic Diophantine Equation $4\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-7 x y=31 z^{2}$. Diophantus J Math 2014; 3(1): 1-7.
[21] Meena K,Vidhyalakshmi S, Gopalan MA ,Thangam SA. Integral solutions on the homogeneous cone $28 \mathrm{z}^{2}=4 \mathrm{x}^{2}+3 \mathrm{y}^{2}$. Bulletin of Mathematics and statistic Research 2014; 2(1): 47-53.
[22] Santhi J ,Gopalan MA, Vidhyalakshmi S. Lattice points on the homogeneous cone $8\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-15 x y=56 z^{2}$. Sch Journal of Phy Math Stat 2014; 1(1): 29-32.
[23] Gopalan MA, Vidhyalakshmi S ,Mallika S.On Ternary Quadratic Diophantine Equation $8\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-15 x y=80 z^{2}$. BOMSR 2014; 2(4): 429-433.
[24] Meena K,Gopalan MA, Vidhyalakshmi S,Thiruniraiselvi N.Observations on the Ternary Quadratic Diophantine Equation $\mathrm{x}^{2}+9 \mathrm{y}^{2}=50 z^{2}$.International Journal of Applied Research 2015; 1(2): 51-53.

