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Abstract: 

Reactive power optimization is a major concern in the operation and control of power systems. 

In this paper a new multi-objective differential evolution method is employed to optimize the 

reactive power dispatch problem. It is the mixed–integer non linear optimization problem with 

continuous and discrete control variables such as generator terminal voltages, tap position of 

transformers and reactive power sources. The optimal VAR dispatch problem is developed as a 

nonlinear constrained multi objective optimization problem where the real power loss and fuel 

cost are to be minimized at the same time. A conventional weighted sum method is inflicted to 

provide the decision maker with a example and accomplishable Pareto-optimal set. This method 

underlines non-dominated solutions and at the same time asserts diversity in the non-dominated 

solutions. Thus this technique treats the problem as a true multi-objective optimization problem.  

The performance of the suggested differential evolution approach has been tested on the 

standard test system IEEE 30-bus. 

Keywords: Reactive Power Management; Differential Evolution Algorithm; Power Loss 

Minimization; Voltage Deviation, Pareto-Optimal Solutions. 

Cite This Article: Ram Kishan Mahate, and Himmat Singh. (2019). “MULTI-OBJECTIVE 

OPTIMAL REACTIVE POWER DISPATCH USING DIFFERENTIAL EVOLUTION.” 

International Journal of Engineering Technologies and Management Research, 6(2), 27-38. 

DOI: https://doi.org/10.29121/ijetmr.v6.i2.2019.353.

1. Introduction

Optimal reactive power expedition problem is one of the difficult optimization worries in power 

systems. The origins of the reactive power are the generators, synchronous condensers, capacitors, 

static compensators and tap changing transformers. The problem that has to be figured out in a 

reactive power optimization is to find out the optimal values of generator bus voltage magnitudes, 

transformer tap setting and the output of reactive power origins so as to minimize the transmission 

loss. In recent years, the problem of voltage stability and voltage collapse has become a major 

worry in power system designing and procedure. 

It is a non- linear optimization problem and several mathematical techniques have been followed 

to solve this optimal reactive power dispatch problem. These admit the gradient method [1-2], 

Newton method [3] and linear programming [4]. The gradient and Newton methods suffer from 

the difficulty in dealing inequality constraints. Recently, global optimization techniques such as 
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genetic algorithms have been proposed to solve the reactive power optimization problem [5]. 

Genetic algorithm is a random search technique based on the mechanics of natural selection. But 

in the recent research some insufficiencies are distinguished in the GA performance. This 

abasement in efficiency is apparent in applications with highly hypostasis objective functions i.e. 

where the parameters being optimized are extremely correlated. In addition, the untimely 

convergence of GA degrades its performance and reduces its search capability. In addition to this, 

these algorithms are found to take more time to reach the optimal result. 

 
More recently, a new evolutionary computation technique, called differential evolution (DE) 

algorithm, has been proposed and introduced [6-7]. The algorithm is motivated by biological and 

sociological motivations and can take care of optimality on bumpy, discontinuous and multi modal 

surfaces. The DE has three main advantages: it can find near optimal solution apart from the initial 

parameter values, its convergence is fast and it uses not many number of control parameters. In 

addition, DE is simple in coding, effortless to use and it can handle integer and discrete 

optimization. The performance of the DE algorithm was equated by the different heuristic 

techniques. It is determined from that compression, the DE is considerably better than that of other 

process. Also it is determined that DE is robust; it is able to replicate the same results consistently 

over many trials. In addition, DE algorithm has been used to solve high dimensional function 

optimization [8]. It is found that, it has better functioning on a set of generally used bench mark 

function. Therefore, the DE algorithm seems to be a predicting advance for engineering 

optimization problem [9]. 

 
The traditional approach is to formulate this problem as a single objective optimization problem 

with constraints. In this approach, the objective may consist of a single term or it may consist of 

multiple terms [10].The multi objective VAR dispatch problem was converted to a single objective 

problem by linear compounding of different objectives as a weighted sum [11]. Contrariwise, the 

studies on evolutionary algorithms, over the past few years, have shown that these methods can be 

expeditiously used to wipe out most of the difficulties of classical methods [12-13]. Since they use 

a population of solutions in their search, multiple Pareto-optimal solutions can, in principle, be 

found in one single run. The multi objective evolutionary algorithms have been carried out to 

environmental/economic power bump off problem with telling achiever. 

  

The goal of this paper is to develop the RPD problem as a multi-objective optimization and 

exemplify its solution using Pareto based multi-objective optimization Differential evolution. Two 

different multi-objective problem formulations are provided. 

 
In this paper, Differential Evolution based approach has been proposed for solving the multi-

objective RPM problem. The problem has been developed as a non-linear constrained multi-

objective optimization problem, where the real power loss, bus voltage deviations (VDs) and Fuel 

cost are to be optimized simultaneously. The two objectives are convinced to a single objective 

problem by linear combination of different objectives as a weighted sum. DE algorithm has been 

employed to obtain Pareto-optimal. The strength of the proposed approach to solve multi-objective 

VAR management problem has been established on the standard IEEE-30 bus system [14]. 
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2. Problem Formulation 

 
The optimal VAR management problem is to optimize the steady state performance of a power 

system in terms of one or more objective functions while satisfying several equality and inequality 

constraints. Generally the problem can be formulated as follows. 

 
2.1. Objective Functions 

 
Real power loss (PL) 

This objective is to minimize the real power loss in transmission lines of the power system and is 

expressed as 
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where nl is the number of transmission lines; gk is the conductance of the kth line;  and  

are the voltages at the end buses i and j of the kth  line, respectively. 

 
Fuel Cost Minimization 

The objective of the ELD is to minimize the total system cost by adjusting the power output of 

each of the generators connected to the grid. The total system cost is modeled as the sum of the 

cost function of each generator (1). The generator cost curves are modeled with smooth quadratic 

functions, given by: 
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Where NG is the number of online thermal units, PGi is the active power generation at unit i and 

ai, bi and ci are the cost coefficients of the ith generator 

 
2.2. Problem Constraints 

 

Equality Constraints 

The equality constraints represent typical load flow equations as follows 
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where NB is the number of buses; PG and QG 
are the generator real and reactive power, 

respectively; PD and QD 
are the load real and reactive power, respectively; Gij and Bij are the 

transfer conductance and susceptance between bus i and bus j, respectively. 

 

Inequality Constraints 

The inequality constraints represent the system operating constraints as follows. 

 
Generation Constraints: Generator voltages VG and reactive power outputs QG 

are restricted by 

their lower and upper limits as follows: 

 

.,........,2,1,maxmin NGiVVV GiGiGi =
                                                                                                 (5) 

 

NGiQQQ GiGiGi .......1,maxmin =
                                                                                                   (6) 

 
where NG is the number of generators. 

 
Transformer constraints: Transformer tap T settings are bounded as follows: 

 

               
NTiTTT iii ........1,maxmin =

                                                                                           (7)
 

 where NT is the number of transformers. 

 

Switchable VAR sources constraints: Switchable VAR compensations QC are restricted by their 

limits as follows 

 

NCiQQQ cicici .....1,maxmin =
                                                                                                      (8) 

 
 where NC is the number of switchable VAR sources. 

 

Security constraints: These include the constraints of voltages at load buses VL and transmission 

line loadings SL as follows: 

 

....1,maxmin NLiVVV LiLiLi =
                                                                                                        (9) 

 

nliSS lili .......1,max =
                                                                                                                 (10) 

 
Aggregating the objectives and constraints, the problem can be mathematically formulated as a 

nonlinear constrained multi-objective optimization problem as follows. 

 

Minimize [PL(x,u), VD(x,u)]                                                                                                      (11) 

Subject to; 

 
g(x,u) = 0                                                                                                                                     (12) 
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h(x,u)  = 0                                                                                                                                    (13) 

 
 where x is the vector of dependent variables consisting of load bus voltages VL, generator reactive 

power outputs QG, and transmission line loadings SL. Hence, x can be expressed as 

 
xT = [VL1…. VNL, QG1….QGNG, Sl1....Slnl]                                                                                      (14) 

 
u is the vector of control variables consisting of generator voltages VG transformer tap settings T, 

and shunt VAR compensations Qc. Hence, u can be expressed as 

 
uT = [VG1…. VGNG, T1….TNT, QC1….QCNC]                                                                                 (15) 

 
Differential Evolution algorithm has been applied for this multi-objective reactive power 

management problem. This RPM problem is a combinatorial optimization problem with multi-

extremism and non-linear property. To overcome the difficulties, the optimization variables, 

namely generator voltages and transformer tap-settings are considered as continuous values in this 

paper.  

 
3. Multi-Objective Optimization 

 
In many practical problems, several optimization criteria need to be satisfied simultaneously [15]. 

Moreover, it is often not advisable to combine them into a single objective. While it may 

sometimes happen that a single solution optimizes all of the criteria, the more likely scenario is 

when one solution is optimal with respect to a single criterion while other solutions are best with 

respect to the other criteria. The increase of the “goodness” of the solution with respect to one 

objective will produce a decrease of its “goodness” with respect to the others. While there are no 

problems in understanding the notion of optimality in single objective problems, multi objective 

optimization requires the concept of Pareto-optimality.  

 

 
Figure 1: Pareto-optimality, non dominated and dominated solutions 

 

A general multi-objective optimization problem consists of a number of objectives to be optimized 

simultaneously and is associated with a number of equality and inequality constraints. It can be 

formulated as follows: 

 

http://www.ijetmr.com/


 

 

[Mahate et. al., Vol.6 (Iss.2): February 2019]                                                                                    ISSN: 2454-1907 

                                                                                                                                   DOI: 10.5281/zenodo.2585477 

Http://www.ijetmr.com©International Journal of Engineering Technologies and Management Research  [32] 
 

Minimize F =[f1., f2]                                                                                                                     (16) 

 

Subject to the constraints (3) – (10)   

 
For a multi-objective optimization problem, any two solutions x1 and x2 can have one of two 

possibilities - one covers or dominates the other or none dominates the other. In a minimization 

problem, without loss of generality, a solution x1 dominates x2 if the following two conditions are 

satisfied 
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If any of the above conditions is violated, the solution x1 does not dominate the solution x2. If x1 

dominates the solution x2, x1 is called the non-dominated solution. The solutions that are non-

dominated within the entire search space are denoted as Pareto-optimal and constitute the Pareto-

optimal set or Pareto-optimal front. The Pareto-optimal front depicts the optimal tradeoffs that 

exist between the competing objectives. There are different approaches to solve multi-objective 

optimization problems like aggregating, population based non-Pareto, and Pareto based 

techniques. In aggregating technique, the different objectives are generally combined into one 

using weighing or goal-based method. 

 
The present paper implements aggregating technique for solving the multi-objective RPM 

problem. The RPM problem has been treated as a single objective optimization problem by linear 

combination of PL and VD objectives as follows:  

 

Minimize          w×PL + (1-w) × fuel cost                                                                                    (19) 

 
Where w is a weighing factor. For example to generate 20 non-dominated solutions, the algorithm 

has been applied 20 times with varying weighing factor w which is a random number rand [0,1], 

a uniformly distributed random number between 0 and 1. 

 
4. Differential Evolution Algorithm 

 
DE algorithm is a population based algorithm that employs crossover, mutation (differential) and 

selection operators [2]. In DE, all solutions have the same probability of being selected as parents. 

DE employs a greedy selection process that is the best new solution and its parent win the 

competition providing significant advantage of converging performance over genetic algorithms. 

Differential evolution algorithm works through a simple cycle of the stages shown in Figure 1. 

The various stages of DE are as follows; 
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Initialization 

At the beginning of DE algorithm implementation, i.e. at t = 0, the problem independent variables 

are initialized somewhere in their feasible numerical range. Therefore, if the ith variable has its 

lower and upper bounds as 𝑥𝑖
𝑙 and 𝑥𝑖

𝑢, respectively, then  

the jth component of the ith population member may be initialized as: 
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where rand (0, 1) is a uniformly distributed random number between 0 and 1. 

 
Mutation 

In each generation, a donor vector vi(t) is created in order to change the population member vector 

xi(t). Generally, the method of creating this donor vector is different in various DE schemes. 

However, in this paper, DE/rand/1 mutation strategy is implemented. In this mutation strategy, 

creation of the donor vector vi(t) for the ith member xi, three parameter vectors xr1, xr2 and xr3, are 

selected randomly from the current population and not coinciding with the current member xi. 

 
Next, a scalar number F scales the difference between any two of the three vectors and this scaled 

difference is added to the third one. Thus, the donor vector vi(t) is obtained. The jth component of 

each vector can be expressed as: 

                            

)()(()()1( ,3,2,1, txtxFtxtv jrjrjrji −+=+                                                                                      (21)  

 
Crossover 

To increase the diversity of the population, crossover operator is carried out in which the donor 

vector exchanges its components with those of the current member xi(t). Two types of crossover 

schemes can be used by DE algorithm. These are exponential crossover and binomial crossover. 

Although the exponential crossover was presented in the original work of Storn and Price [3], the 

binomial variant is much more used in recent applications [7]. On the other hand, for the same 

value of CR, the exponential variant needs a larger value for the scaling parameter F in order to 

avoid premature convergence [1]. In this paper, binomial crossover scheme is used which is 

performed on all the D variables and can be expressed as: 

Initialization of Chromosomes 

Figure 2: DE Process 

cycle 

Mutation Differential Operator 

Selection 

Crossover 
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Selection 

To keep the population size constant over subsequent generations, the selection process is applied 

to find out which one of the child and the parent will survive in the next generation, i.e. at time t = 

t + 1. DE actually adopts the survival of the fittest principle in its selection process. The selection 

process can be expressed as, 

 

( ) ( )
( ) ( )








=+

→

)()()(

)()()(
)1(

tUftXfiftX

tXftUfiftU
tX

iii

iii
i

                                                                                                  (23) 

 

Where f(.) is the function to be minimized. So, if the child )(tU i

→

yields a better value of the fitness 

function, it replaces its parent in the next generation; otherwise, the parent  )(tX i

→

is retained in the 

population. Thus, the population either gets better in terms of the fitness function or remains fixed 

but never degenerates. Hence, the population either gets better in terms of the fitness function or 

remains constant but never deteriorates. 

 
5. Flow Chart and Steps Followed in DE Algorithm 

 
Computational Steps of DE Algorithm 

DE is utilized to find the best control variable setting starting from randomly generated initial 
population. At the end of each generation, the best individuals, based on the fitness value, are 

stored [8]. The detail of the proposed DE algorithm is as follows: 

 

1) Generate an initial population randomly within the    control variable bounds. 

2) For each individual in the population, run load flow    program such as NR method, to find 

the operating points. 

3) Evaluate the fitness of the individuals. 

4) Perform mutation and crossover operation  

5) Select the individuals for the next generation  

6) Store the best individual of the current generation. 

7) Repeat steps ii–v, till the termination criterion is met. 

8) Select the control variable setting corresponding to the overall best individual. 

         

If the solution is acceptable, output the best individual and its objective value. Otherwise, take the 

settings corresponding to the next best individual and repeat the Step viii. 

 
6. Results and Discussion 

 
The proposed approach has been tested on the standard IEEE 30-bus system [21] in order to 

investigate its effectiveness. The system has six generators at buses 1, 2, 5, 8, 11, and 13 and four 

transformers with off-nominal tap ratio in lines 6–9, 6–10, 4–12, and 27–28. The lower voltage 
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magnitude limits at all buses are 0.95 pu and the upper limits are 1.1 pu for generator buses and 

1.05 pu for the remaining buses. The lower and upper limits of the transformer tapings are 0.9 and 

1.1 pu, respectively. Subsequently, the problem was handled as a multi-objective optimization 

problem where both power loss PL and Fuel cost were optimized simultaneously by converting it 

into a single objective optimization problem by linear combination of PL and Fuel cost objectives 

using (19).  The DE algorithm was applied 41 times with varying weighing factor w generated 

randomly in the range of 0 to 1. The non-dominated solutions were selected by removing the 

inferior solutions from the total set of solution. Thus the Pareto-optimal set obtained has 12 non-

dominated solutions and is shown in Fig. 3.  Out of them, two non-dominated solutions that 

represent the best PL and best Fuel cost are given in Table 1. In this paper, the following values of 

DE key parameters are selected for the simultaneous optimization of the real power loss (PL) and 

Fuel cost. 

 
F = 0.2, CR = 0.8, NP = 15, GEN = 1000 

 

 
Figure 3: Single line diagram of IEEE-30 bus system 

 
Case1: Minimization of system power losses. 

 
In this first case we run the algorithm for the minimization of power loss as a main objective 

function. The real power setting of the generator is taken from [12]. Table 1 shows the best result 

of Ploss function minimization. 

 
Table1: Best result and control variable settings of Ploss 

S. No. Control Variables Initial Value Value After DE 

1 V1 1.10000 1.1000 

2 V2 1.09437 1.0979 

3 V5 1.07457 1.0786 

4 V8 1.07610 1.0800 

5 V11 1.10000 1.1000 

6 V13 1.10000 1.0969 
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7 T11 1.06718 1.1000 

8 T12 0.9000 0.9500 

9 T15 1.04797 1.0924 

10 T36 0.98354 1.000 

Ploss (MW)  5.84230 4.5653 

Fuel Cost   613.0778 

 

 

Figure 5: Graph between Fcost and No. of Iteration 
 

Case 2: Minimization of system Fuel cost. 

 
In this second case we run the algorithm for the minimization of fuel cost as a main objective 

function. The real power setting of the generator is taken from [12]. Table 2 shows the best result 

of fuel cost function minimization. 

 
Table 2: Best result and control variable settings of Fuel cost 

S. No. Control Variables Initial Value Value After DE 

1 V1 1.10000 1.0770 

2 V2 1.09437 1.0800 

3 V5 1.07457 1.0492 

4 V8 1.07610 1.0067 

5 V11 1.10000 0.9796 

6 V13 1.10000 0.9800 

7 T11 1.06718 0.9700 

8 T12 0.9000 0.9500 

9 T15 1.04797 1.0600 

10 T36 0.98354 1.1000 

Ploss (MW)  5.8423 6.2182 

Fuel Cost   612.584 
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Table 3: Control variables for PL and Fuel cost Minimization 

S. 

No. 

Control 

Variable 

Setting 

Best PL Best Fuel cost 

1 V1 1.1000 1.1000 

2 V2 1.0894 1.0922 

3 V5 1.0705 1.0701 

4 V8 1.0700 1.0700 

5 V11 1.1000 1.1000 

6 V13 1.1000 1.1000 

7 T11 0.9702 0.9698 

8 T12 0.9500 0.9500 

9 T15 1.0021 1.0010 

10 T36 0.9533 0.9500 

Power Loss 

(MW) 

4.9380 4.9352 

Fuel Cost 612.8096 612.47 
 

 

 

Figure 5: Pareto optimal graph between Ploss Fuel cost 
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7. Conclusion 

 
In this paper differential evolution algorithm has been proposed and successfully applied to solve 

the optimal power flow problem. In this paper for solving the optimal power flow problem we can 

consider two objective functions these are Ploss and fuel cost these two objectives considered as 

single as well as multi objective to shows the effectiveness of the proposed algorithm. The 

proposed approach has been tested on standard IEEE-30 bus system; the same can be implemented 

for large size power systems as well. 
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