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Abstract: 

Nowadays, due to the advent of clouding computing, buffer size can be readily extended in a 

couple of minutes for computing servers, where the buffer size should not be considered as given 

when optimizing the system performance. In this context, we explore optimal combinations for 

the buffer size and the length of vacation time in M/G/1/K queues with multiple vacations 

numerically. We consider the cases of deterministic and exponentially distributed vacation and 

service times. In order to do this, we also formulate an optimal problem and define cost factors: 

the customer loss cost, the buffer holding cost, and the server operating cost. We present some 

numerical examples to investigate the impact of the system parameters such as the buffer size, 

the length of the vacation time, and the distribution of the service time, to performance measures 

and the total cost. We also investigate optimal combinations for the buffer size and the vacation 

length for various values of the cost factors. 
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1. Introduction

In this paper, we consider M/G/1/K queues with multiple vacations and explore optimal 

combinations for the buffer size and the length of the vacation time through a numerical study. 

M/G/1/K queues with multiple vacations have been employed in various studies to analyze the 

performance of systems with finite buffer and server vacations in the telecommunication, 

computing network, and manufacturing areas [1-4]. As a result, M/G/1/K queues with multiple 

vacations have been extensively studied [5-12]. However, in many of those studies, only the 

performance measures of the system were derived for a given buffer size and a given distribution 

of the vacation time, and neither optimal buffer size nor optimal length of the vacation time was 

considered [5-10]. In some of those studies, the optimal length of the vacation time was considered 

for a fixed buffer size [11, 12], but both optimal buffer size and optimal length of the vacation time 

were not considered simultaneously. This is partly because the buffer size was not able to be 

adjusted dynamically in a short period of time in many real-world problems. Also, the fact that the 
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performance measures such as the customer loss probability do not have a closed-form expression 

for M/G/1/K queues hindered analytic studies on the optimality of the performance measures. 

 
Nowadays, due to the advent of clouding computing, buffer size can be readily extended in a 

couple of minutes for computing servers, where the buffer size should not be considered as given 

when optimizing the system performance. In this context, we believe that studies on optimal 

combinations for the buffer size and the length of the vacation time in M/G/1/K queues with 

multiple vacations are needed. However, since there are no closed expressions for the performance 

measures of M/G/1/K queues, here we simply tackle the problem in a numerical approach as a 

preliminary to future studies. 

 
This paper is organized as follows: In Section 2, we define the queueing model that are analyzed 

in this paper, and present a couple of performance measures which will be used to formulate an 

optimization problem. In Section 3, we formulate an optimization problem. In Sections 4 and 5, 

we present some numerical examples to investigate the impact of the system parameters such as 

the buffer size, the length of the vacation time, and the distribution of the service time, to 

performance measures and the total cost. In Section 6, we investigate optimal combinations for the 

buffer size and the vacation length for various values of the cost factors. 

 
2. Queueing Model 

 
We consider an M/G/1/K queue with multiple vacations: Customers arrive at the system according 

to a Poisson process with rate 𝜆. The service times 𝑆 of customers are independent and identically 

distributed random variable with an arbitrary general distribution. Define 𝑆(𝑥) as the distribution 

function of 𝑆. Define also 𝜌 as the offered load, i.e., 𝜌 = 𝜆𝐸[𝑆]. There is a single server in the 

system. When customers are present in the system, the server keeps servicing customers until the 

system becomes empty of customers. As soon as the system becomes empty of customers, the 

server leaves for vacation for a vacation time 𝐷, which is a random variable, and the distribution 

function of 𝐷 is denoted by 𝐷(𝑥). If the server finds any customers in the system when it returns 

from its vacation, then it restarts servicing customers. Otherwise, it leaves for another vacation 

until it finds customers at the end of a vacation. At a given time, at most 𝐾 customers can be 

accommodated in the system. If there are already 𝐾 customers in the system when a customer 

arrives, then that customer will be lost immediately. 

 
For the proposed queueing model, various performance measures such as the mean system size, 

the loss probability, and the mean waiting time have been derived in several studies (5; 6; 7; 9; 

10). Here we present several key results from those studies with brief explanation, which will be 

used for our optimization model. 

 
Let 𝑞𝑛 denote the probability that the number of customers is 𝑛 just after a service is completed, 

𝑛, 𝑛 = 0, … , 𝐾 − 1. Then, we have the following global balance equations: 
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where 𝑎𝑖  and 𝑣𝑖  are the probabilities that 𝑖  customers arrive during the service time and the 

vacation time, respectively. That is, 

 

𝑎𝑖 = ∫
(𝜆𝑥)𝑖

𝑖!

∞

0

𝑒−𝜆𝑥𝑑𝑆(𝑥) 

And 

 

𝑣𝑖 = ∫
(𝜆𝑥)𝑖

𝑖!

∞

0

𝑒−𝜆𝑥𝑑𝐷(𝑥). 

 
From (1), (2) and the normalization condition 

 

∑ 𝑞𝑛

𝐾−1

𝑛=0

= 1,                                                             (3) 

 
we can numerically calculate 𝑞𝑛, 𝑛 = 0, … , 𝐾 − 1. 

 
Let 𝑝𝑛 denote the probability that there are 𝑛 customers in the system at an arbitrary time. Also, 

let 𝜌𝑒 denote the carried load of the M/G/1/K queue. Since the effective arrival rate is 𝜆(1 − 𝑝𝐾), 

we have 

 
𝜌𝑒 = 𝜆(−𝑝𝐾 + 1)𝐸(𝑆).                                                  (4) 

 
Also, if we let 𝐼 and 𝐵 denote the length of an idle period and the length of a busy period of the 

M/G/1/K queue, then we have 

 

𝜌𝑒 =
𝐸(𝑆)

(𝐸(𝐼) + 𝐸(𝑆))𝑞0 + (−𝑞0 + 1)𝐸(𝑆)
.                                   (5) 

 
Since the expected length of the idle period is expressed as 

 

𝐸(𝐼) =
𝐸(𝐷)

−𝑣0 + 1
, 

 
from (4) and (5) we have 
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𝑝𝐾 = 1 +
𝑣0 − 1

𝜆(𝐸(𝐷)𝑞0 − 𝐸(𝑆)𝑣0 + 𝐸(𝑆))
,                                     (6) 

 
which is the customer loss probability because we assumed a Poisson arrival process. 

From (6) and the following relationship 

 

𝜆(−𝑝𝐾 + 1)𝐸(𝑆) =
𝐸(𝐵)

𝐸(𝐵) + 𝐸(𝐼)
, 

 
we can also derive the expected busy period length 𝐸[𝐵] as 

 

𝐸(𝐵) =
𝜆(𝑝𝐾 − 1)𝐸(𝐷)𝐸(𝑆)

(𝑣0 − 1)(𝜆𝐸(𝑆)𝑝𝐾 − 𝜆𝐸(𝑆) + 1)
.                                   (7) 

 
3. Optimization Problem 

 
In this section, we formulate an optimization problem to find an optimal combination for the buffer 

size and the length of the vacation time in the M/G/1/K queue with multiple vacations. We first 

introduce three cost factors: customer loss cost, buffer holding cost, and server operating cost. The 

customer loss cost represents sales opportunity loss or customer dissatisfaction that incurs when a 

customer who arrives at the system is lost. The buffer holding cost represents a cost for 

accommodating customers who are waiting and being serviced in the system. It might be a rent for 

physical facility or memory space in a clouding computing environment. The server operating cost 

represents a cost incurring when the server is on duty or preparing its job. For example, in many 

telecommunication devices, the server works in two modes: the wakeup or sleep mode. When the 

server is in the wakeup mode, the server is available to service and its power consumption is high 

(thus high in the operating cost). In contrast, when the server is in the sleep mode, it is unavailable 

to service, and its power consumption is low (thus low in the operating cost). However, while it is 

in the sleep mode, it needs to inspect the buffer periodically to check whether any customers are 

present. As the time interval between these inspections is short, then the server’s preparation cost 

will be high. 

 
Let 𝐶𝑙 denote the cost that incurs whenever a customer is lost, 𝐶𝑏 the cost that incurs for buffer 

space for a single customer per unit time, 𝐶ℎ the cost that incurs per unit time when the server is 

on duty, and 𝐶𝑣 the cost that incurs for every inspection at the end of a server vacation because of 

the server’s buffer inspection activity. We also let 𝐶 denote the expected total cost that incurs per 

unit time. Then, the expected total cost 𝐶 per unit time is expressed as 

 

𝐶 = 𝐶𝑏𝐾 +
𝐶ℎ𝐸(𝐵)

𝐸(𝐵) + 𝐸(𝐼)
+ 𝐶𝑙𝜆𝑝𝐾 +

𝐶𝑣

(𝐸(𝐵) + 𝐸(𝐼))(−𝑣0 + 1)
            (8) 

 
because the rate of customer loss is 

 
𝜆 𝑝𝐾 , 
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the faction of time when the server is on duty is 

 
𝐸(𝐵)

𝐸(𝐵) + 𝐸(𝐼)
, 

 
and the vacation rate is 

 
1

(𝐸(𝐵) + 𝐸(𝐼))(−𝑣0 + 1)
, 

 
which is calculated as the expected number of vacations that the server takes during one cycle 

(composed of one idle period and the following busy period), which is 1/(1 − 𝑣0), divided by the 

expected length of the one cycle, which is 𝐸(𝐼) + 𝐸(𝐵). 

 
Suppose that the vacation time is deterministic and is set to a positive value 𝑇 . Then, the 

optimization problem to find an optimal combination for the buffer size and the length of the 

vacation time of the M/G/1/K queue with multiple vacations can be formulated as 

 
min
𝐾,𝑇

𝐶(𝐾, 𝑇). 

 
Also, if the vacation time is assume to be exponentially distributed with rate 𝜇𝐷 , then the 

optimization problem to find an optimal combination for the buffer size and the length of the 

vacation time of the M/G/1/K queue can be formulated as 

 
min
𝐾,𝜇𝐷

𝐶(𝐾, 𝜇𝐷).  

 
For other distributions, the optimization problems can be formulated, but we only deal with the 

above two cases for the sake of simplicity. Note that the terms 𝑝𝐾 , 𝑣0 , 𝐸(𝐼) and 𝐸(𝐵) in (8) 

changes according to the decision variables of the optimization problems, so we see the behaviors 

of these terms as well as that of the total cost numerically, changing the decision variables, in the 

next section. 

 
4. Numerical Study - The Case of Deterministic Vacation Times 

 
In this section, we explore optimal combinations for the maximum buffer size 𝐾 and the length 𝑇 

of the vacation time when the vacation time is deterministic. Throughout our numerical study, we 

set the cost factors 𝐶𝑙 , 𝐶𝑣 , 𝐶𝑏, 𝐶ℎ to be 20, 1, 1, 1. 

 
We first consider the case when the service time is also deterministic and the offered load (traffic) 

is light (i.e., 𝜌 = 0.25). Figure 1 shows various performance measures and the total cost when the 

arrival rate is set to 1 and the service rate is set to 4 (i.e., 𝐸(𝑆) = 0.25). In 1, we can see the changes 

of the loss probability, the time fraction with the server being on duty, the vacation rate, and the 

total cost as a function of the buffer size, which changes from 1 to 10 for each value of the vacation 

time 𝑇, which changes from 0.25 to 2 times the mean interarrival time and is distinguished with a 

different gradation. 
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The left top panel of Figure 1 displays the loss probability as a function of the buffer size 𝐾 for 

each 𝑇 value. It clearly shows that the loss probability drops as the buffer size increases for all the 

𝑇 values. Also, the impact of the length of the vacation time 𝑇 on the loss probability becomes 

prominent when the buffer size is relatively small, while it becomes insignificant when the buffer 

size is large enough for the loss probability to drop to near zero. 

 

 
Figure 1: performance measures and cost for a light traffic when the vacation and service times 

are deterministic 

 
The right top panel of Figure 1 displays the average time fraction with the server being on duty as 

a function of the buffer size 𝐾 for each 𝑇 value. It clearly shows that the time fraction with the 

server being on duty rises as the buffer size increases for all the 𝑇 values. This is because, when 

the buffer size becomes large, the customer loss probability drops so that the total effective offered 

load rises and the server has more jobs to do. Like the loss probability, the impact of the length of 

the vacation time 𝑇 on the time fraction with the server being on duty becomes prominent when 

the buffer size is relatively small, while it becomes insignificant when the buffer size is large 

enough for the loss probability to drop to near zero. 

 
The left bottom panel of Figure 1 displays the server vacation rate as a function of the buffer size 

𝐾 for each 𝑇 value. It shows that the vacation rate first slowly drops as the buffer size increases 

for all the 𝑇 values, but the slope then becomes flat. Thus, the impact of the buffer size 𝐾 on the 

vacation rate is not as significant as on the loss probability or the time fraction with the server 
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being on duty. When the buffer size is small, the busy period becomes relatively short so the server 

tends to go on a vacation more often, but this effect is a secondary factor of the vacation rate under 

the light traffic. Unlike the loss probability or time fraction with the server being on duty, the 

impact of the length of the vacation time 𝑇 on the vacation rate is prominent and a primary factor 

when the traffic is light. 

 
Finally, the right bottom panel of Figure 1 displays the total cost as a function of the buffer size 𝐾 

for each 𝑇 value. It shows that, for the given cost factors, the total cost tends to first drop and then 

rise as the buffer size increases for all the 𝑇 values. The main reason why the total cost drops when 

the buffer size is small is that the customer loss cost rapidly decreases in this interval. When the 

buffer size is large, the customer loss cost slowly decreases so the increment of the buffer holding 

cost exceeds it, thus the total cost increases. Also, when the buffer size is small, the total costs for 

large 𝑇 values are higher than those for small 𝑇 values. In contrast, when the buffer size is large, 

the total costs for large 𝑇 values are lower than those for small 𝑇 values. This is because, when the 

buffer size is small, the customer loss cost dominates and a long vacation time has a significant 

negative impact on the total cost, but, when the buffer size is large, the loss probability drops to 

near zero so the vacation rate dominates, thus a long vacation time has a positive impact on the 

total cost. Overall, in this case, the optimal 𝐾 and 𝑇 are 3 and 0.75, respectively, and the minimum 

total cost is 4.8.  

 

 
Figure 2: performance measures and cost for a heavy traffic when the vacation and service times 

are deterministic 
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We now consider the case when the service time is deterministic and the offered load is heavy (i.e., 

𝜌 = 1). Figure 2 shows various performance measures and the total cost when the arrival rate is 

set to 1 and the service rate is set to 1 (i.e., 𝐸(𝑆) = 1). We can see the same trend of the 

performance measures and total cost as in the case of the light traffic (compare with 1). The main 

difference is that the impact of the buffer size appears more prominent but the impact of the 

vacation length less prominent under the heavy traffic, compared to the light traffic case. This is 

because the customer loss cost dominates more when the traffic becomes heavier. In the heavy 

traffic case, the optimal 𝐾 and 𝑇 are 4 and 0.5, respectively, and the minimum total cost is 7.93. 

 

 
Figure 3: performance measures and cost for deterministic vacation and exponential service 

times 

 
We now consider the case when the service time is exponentially distributed. The left panel of 

Figure 3 shows the total cost when the offered load is light (i.e., 𝜌 = 0.25). In fact, the arrival rate 

is set to 1 and the service rate is set to 4. The right panel of Figure 3 shows the total cost when the 

offered load is heavy (i.e., 𝜌 = 1). In fact, the arrival rate is set to 1 and the service rate is set to 1. 

The cost curves in the cases of the exponential service times show quite the same pattern as in the 

cases of the deterministic service times. In the light traffic case, the optimal 𝐾 and 𝑇 are 3 and 

0.75, respectively, and the minimum total cost is 5.02. In the heavy traffic case, the optimal 𝐾 and 

𝑇 are 4 and 0.75, respectively, and the minimum total cost is 9.4. Note that, compared to the cases 

of the deterministic service times, the minimum total costs rise due to the randomness of the service 

time. 

 
5. Numerical Study - The Case of Exponential Vacation Times 

 

In this section, we explore optimal combinations for the maximum buffer size 𝐾 and the length 𝑇 

of the vacation time when the vacation time is exponentially distributed. We also use the same cost 

factors 𝐶𝑙 , 𝐶𝑣 , 𝐶𝑏, 𝐶ℎ as in the case of deterministic vacation times. In order to make a comparison 

with the cases of deterministic vacation times, we also let 𝑇 denote the mean vacation time, which 

means that the service rate 𝜇𝐷 = 1/𝑇 and the density function of the vacation time is expressed as 

 
1

T
𝑒−𝑡/𝑇. 
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Figure 4: performance measures and cost for a light traffic when the vacation time is 

exponentially distributed and the service time is deterministic 

 
We first consider the case when the service time is also deterministic and the offered load is light 

(i.e., 𝜌 = 0.25). Figure 4 shows various performance measures and the total cost when the arrival 

rate is set to 1 and the service rate is set to 4 (i.e., 𝐸(𝑆) = 0.25). In 4, we can see the changes of 

the loss probability, the time fraction with the server being on duty, the vacation rate, and the total 

cost as a function of the buffer size, which changes from 1 to 10 for each length of the mean 

vacation times 𝑇, which changes from 0.25 to 2 times the mean interarrival time and is presented 

with a different gradation. As you can see in Figure 4, the performance measures and the cost 

curves reveal similar patterns to the case of deterministic vacation times (compare with Figure 1). 

However, due to the randomness of the vacation time, the loss probability and thus the total cost 

tend to be significantly larger when the mean vacation time is large and the buffer size is small 

than those in the corresponding case of deterministic vacation times. Overall, in this case, the 

optimal 𝐾 and 𝑇 are 3 and 0.5, respectively, and the minimum total cost is 5.78. 

 
When the service time is deterministic and the offered load is heavy (i.e., 𝜌 = 1), we can see the 

same trend of the performance measures and total cost as shown in Figure 2 of the case of 

deterministic vacation times with the heavy traffic so we omit graphs for this case. Like the light 

traffic case, due to the randomness of the vacation time, the loss probability and thus the total cost 

tend to be larger when the mean vacation time is large and the buffer size is small than those in the 
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corresponding case of deterministic vacation times. Overall, in the heavy traffic case, the optimal 

𝐾 and 𝑇 are 4 and 0.5, respectively, and the minimum total cost is 8.13. 

 

 
Figure 5: performance measures and cost for exponential vacation and service times 

 
We now consider the case when the service time is exponentially distributed. The left panel of 

Figure 5 shows the total cost when the offered load is light (i.e., 𝜌 = 0.25). The right panel of 

Figure 5 shows the total cost when and the offered load is heavy (i.e., 𝜌 = 1). The cost curves 

show quite the same pattern as in the cases of deterministic service times. In the light traffic case, 

the optimal 𝐾 and 𝑇 are 3 and 0.5, respectively, and the minimum total cost is 5.99. In the heavy 

traffic case, the optimal 𝐾 and 𝑇 are 4 and 0.5, respectively, and the minimum total cost is 9.66. 

Compared to the cases of deterministic service times, the minimum total costs rise due to the 

randomness of the service time (compare to Figure 4). Also, compared to the cases of deterministic 

vacation times, the minimum total costs rise due to the randomness of the vacation time (compare 

to Figure 3). 

 
6. Numerical Study - Optimal Buffer Size and Vacation Length 

 

In Sections 4 and 5, we explored the behavior of the performance measures and the total cost as a 

function of the buffer size 𝐾  and the vacation length 𝑇  for deterministic and exponentially 

distributed vacation and service times. In this section, we explore the changes of optimal 

combinations for the buffer size 𝐾 and the vacation length 𝑇 for various values of the cost factors 

when the traffic is moderate (i.e., 𝜌 = 0.5) 

 

 
Figure 6: Optimal combinations and the optimal cost for various customer loss costs 𝐶𝑙 
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We first see the impact of the customer loss cost 𝐶𝑙 on the optimal combination of 𝐾 and 𝑇, and 

the optimal cost. We employ the grid search method to find an optimal combination, where 𝐾 

changes from 1 to 10 by 1, and 𝑇 changes from 0.1 to $2 times the mean interarrival time by 0.1 

the mean interarrival time. The left panel of Figure 6 shows the optimal combination 𝐾 and 𝑇 for 

various 𝐶𝑙, which is displayed in the labels in the plot, when the other cost factor remain the same. 

The right panel of Figure 6 shows the optimal cost as a function of 𝐶𝑙. As seen in Figure 6, as the 

customer loss cost 𝐶𝑙 increases, the optimal 𝐾 tends to increases and the optimal 𝑇 decreases for 

the same 𝐾 but jumps to a higher value when the optimal 𝐾 changes to one step higher values. The 

optimal cost first increases rapidly, but then slowly moves. 

 

 
Figure 7: Optimal combinations and the optimal cost for various buffer holding costs 𝐶𝑏 

 

 
Figure 8: Optimal combinations and the optimal cost for various server up costs 𝐶ℎ 
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Figure 9: Optimal combinations and the optimal cost for various server vacation costs 𝐶𝑣 

 
Figures 7, 8, and 9 shows optimal combinations of 𝐾 and 𝑇 and the corresponding optimal cost for 

various buffer holding cost 𝐶𝑏, server up cost 𝐶ℎ, and server vacation cost 𝐶𝑣, respectively. The 

optimal 𝐾  and 𝑇 tend to linearly decreases first as the buffer holding cost 𝐶𝑏  but the moving 

becomes slow (see Figure 7). When the server up cost is not high, the optimal 𝐾 does not change 

and only the optimal 𝑇 increases as the server up cost rises, while, when the server up cost becomes 

too high, the optimal 𝐾 drops toward 1, resulting in blocking most customers (see Figure 8). As 

the server vacation cost 𝐶𝑣 rises, the optimal 𝐾 tends not to change, but the optimal 𝑇 increases 

rapidly because the vacation rate is mainly determined by the vacation length 𝑇 (see Figure 9). For 

all the three cases, the optimal cost increases as the cost factor rises. 

 

7. Conclusion 

 
In this paper, we explored optimal combinations for the buffer size and the length of vacation time 

in M/G/1/K queues with multiple vacations numerically. We considered the cases of deterministic 

and exponentially distributed vacation and service times. In order to do this, we also formulated 

the optimal problem and defined the cost factors: the customer loss cost, the buffer holding cost, 

and the server operating cost. 

 
Regardless of the distributions of the service and vacation times, the customer loss probability 

drops as the buffer size increases, and so does it as the length of the vacation time decreases. Also, 

when the traffic is heavy, the impact of the buffer size dominates. The fraction of the time fraction 

with the server being on duty acts in the opposite way. It rises as the buffer size increases, and so 

does it as the length of the vacation time decreases. The vacation rate rises as the length of the 

vacation time decreases. In addition, when the traffic is light, the impact of the buffer size tends to 

be less significant. The total cost represents the combined effect of the customer loss probability, 

the fraction of the time fraction with the server being on duty, the vacation rate and the buffer size. 

It tends to first drop and then rise as the buffer size increases. When the buffer size is relatively 

small, the total cost with a shorter vacation time is lower than that with a longer vacation time. In 

contrast, when the buffer size is relatively large, the total cost with a shorter vacation time is higher 

than that with a longer vacation time. This is because the customer loss probability drops to near 

zero when the buffer becomes large enough so the efficiency of the server operating becomes more 

significant factor. Even though we only considered the deterministic and exponentially distributed 
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cases, the optimal total cost tends to increase as the randomness of the service time and the vacation 

time increases. 

 
As mentioned earlier, there are no closed expressions for the performance measure of M/G/1/K 

queues, studies on the optimal combination of the buffer size and length of the vacation time in 

M/G/1/K queues with multiple vacations are needed in order to understand the detailed behavior 

of the performance of those queues. Also, due to the advent of clouding computing, the size of 

buffer can be readily extended in a couple of minutes for computing servers. In this context, we 

believe that the numerical study of optimal combinations for the buffer size and the length of the 

vacation time can help system engineers understand the system behaviors when optimizing the 

system performance. 
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