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ABSTRACT 
Federated learning can effectively utilize data from various users to coordinately train 
machine learning models while ensuring that data does not leave the user's device. 
However, it also faces the challenge of slow global model convergence and even the 
leakage of model parameters under heterogeneous data. To address this issue, this paper 
proposes a federated weighted average with differential privacy (DP-FedAW) algorithm, 
which studies the security and convergence issues of federated learning for Non-
independent identically distributed (Non-IID) data. Firstly, the DP-FedAW algorithm 
quantifies the degree of Non-IID for different user datasets and further adjusts the 
aggregation weights of each user, effectively alleviating the model convergence problem 
caused by differences in Non-IID data during the training process. Secondly, a federated 
weighted average algorithm for privacy protection is designed to ensure that the model 
parameters meet differential privacy requirements. In theory, this algorithm effectively 
provides privacy and security during the training process while accelerating the 
convergence of the model. Experiments have shown that compared to the federated 
average algorithm, this algorithm can converge faster. In addition, with the increase of 
the privacy budget, the model's accuracy gradually tends to be without noise while 
ensuring model security. This study provides an important reference for ensuring model 
parameter security and improving the algorithm convergence rate of federated learning 
towards the Non-IID data. 
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1. INTRODUCTION 
In recent years, with the explosive development of technologies such as the 

Internet of Things, cloud computing, and artificial intelligence, an unprecedented 
amount of data has been generated Zhang et al. (2018). This massive data contains 
incalculable knowledge and commercial value and has become an essential strategic 
resource that has received close attention from academia, industry, and 
governments worldwide. However, while utilizing this emerging data strategy 
resource, data privacy and security issues have also arisen Ping et al. (2017). Privacy 
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and security have become core factors affecting data analysis and processing Xie et 
al. (2020). To address this problem, governments and organizations have issued a 
series of laws and regulations to protect data privacy and security. For example, the 
European Union's General Data Protection Regulation (GDPR) Tikkinen-Piri et al. 
(2018), enacted in 2018, stipulates that data collection and storage must be carried 
out with the consent of consumers, and China's Data Security Law, implemented in 
2021, regulates data processing activities to protect data security and personal 
information Zhou et al. (2021). Therefore, how to fully tap the value of massive data 
resources while ensuring data security and complying with laws and regulations has 
become one of the significant challenges for current data analysis and processing. 

To cope with the problems mentioned earlier, scholars have actively explored 
new privacy protection mechanisms and technologies to ensure data sharing and 
high-value development and utilization while protecting data privacy and security. 
Thus, Google proposed Federated Learning in 2017 Chen et al. (2020), a distributed 
machine learning method with privacy protection that can train learning models 
collaboratively using data from different users without transmitting data, thus 
efficiently utilizing the maximum value of data from all parties Konen et al. (2016). 
Federated Learning has attracted much attention since it was first proposed Zhang 
et al. (2021). Currently, Federated Learning has been applied in various hot areas, 
such as healthcare Kaissis et al. (2020), 6G Letaief et al. (2021), autonomous driving 
cars Pokhrel and Choi (2020), and traffic flow prediction Liu et al. (2020). 

Although Federated Learning has dramatically improved the privacy and 
security of machine learning models and related processes, there are better 
solutions. The information leakage risk during the exchange of model parameters 
will require the combination of Federated Learning and other privacy protection 
technologies, such as differential privacy Wu et al. (2022), monophonic encryption 
Ma et al. (2022), secure multiparty computation Byrd and Polychroniadou (2020), 
Etc. Among them, differential privacy is a significant privacy and security protection 
technology that can further reduce the risk of any participant sharing and updating 
privacy data based on other data owners while maintaining the excellent 
performance of the learning model Dwork and Roth (2013). The Conference on 
Neural Information Processing Systems, the Artificial Intelligence Promotion 
Association Conference, the International Joint Conference on Artificial Intelligence, 
and other important international conferences on artificial intelligence have held 
discussions on Federated Learning and Differential Privacy Dinur and Nissim 
(2003). Therefore, research on Federated Learning with differential privacy is 
worthy of exploration. Specifically, in practical application scenarios, one of the 
critical characteristics of data processed by Federated Learning is the heterogeneity, 
which means that user data have significant differences in source, data volume, 
types, and acquired features.  

On the other hand, the fast development of information technologies causes a 
massive amount of data, usually Non-IID. More and more proposed solutions to 
handle the Non-IID date in FL exist. Various recent works Zhang et al. (2022), Tian 
et al. (2022), Yu et al. (2022), You et al. (2023) have revealed that the biased 
classifier is the main cause leading to poor performance of the global model. 
Therefore, studying Federated Learning with differential privacy for heterogeneous 
data is essential. 
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2. PRELIMINARIES   
2.1. FEDERATED LEARNING  
As an emerging distributed machine learning scenario, Federated Learning 

enables multiple users to jointly train a machine learning model with the help of one 
or more central servers. In the Federated Learning scenario, the training data used 
for model learning is distributed across user devices. A more optimal distributed 
machine learning model is trained through iterative global aggregation and updates. 
During the model learning process, each participating user downloads the model 
parameters from the central server and performs local training based on their local 
datasets. After completion, the updated model parameters are uploaded to the 
central server. Throughout the learning process, end-users do not transfer their raw 
datasets, and the central server can only obtain the model training parameters of 
each user. The basic flow chart of Federated Learning is shown in Figure 1. 
Figure 1 

 
Figure 1 Schematic Diagram of the Federal Learning Process 

 
Suppose that there are K  users participating in the federated learning process, 

each user k has a local data set kD , and the size of the data set is | |kD , where

( ){ }| |( ) ( )

1
, kk k
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=
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, 
( )k
iu  is the data point i of user k, and 

( )k
iv is the label 

corresponding to the data point i of user k. The user communicates with the central 
server to facilitate training the model by minimizing the loss function ( ) w , and the 
optimization problem of federated learning can be written as: 
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Where
d∈w R  is the parameter vector; total 1= K

k k=D D  is the total dataset 
involved in training. 

 
2.2. FEDERATED AVERAGING ALGORITHM 
The federated averaging algorithm (FedAvg) Mcmahan et al. (2017) is currently 

the mainstream federated optimization method, which has achieved empirical 
success in heterogeneous data environments and provides a common starting point 
for solving the above problems. However, convergence problems still need to be 
faster and easier to adjust or even deviate from the optimal solution. 

The main idea of the FedAvg algorithm is to randomly sample a subset of end 
users during the training process. The local users who participate in the training 
independently run a certain number of stochastic gradient descent steps to train the 
local data to obtain the local model, and transmit it to the central server. After 
receiving the model, the server aggregates the local model by means of averaging, 
and then updates the global model, and finally obtains a final model after multiple 
rounds of iterations. This algorithm can effectively reduce the risk of privacy leakage 
caused by the direct aggregation of raw data in traditional machine learning. At the 
same time, the algorithm can be applied to data reconstruction in Non-independent 
and identically distributed data, thereby ensuring data availability. 

Assuming that K  users participate in the federated learning process, each user 

has training data points and model weights 
k
tw obtained from local training in 

iteration t. Among them, the updated model parameters in the FedAvg algorithm are 
summarized as shown in formula (2): 

 

                                                                                                

Where tw  refers to the global model weight update of the federated learning 
process; n  refers to the total number of data points owned by all users. 

 
2.3. DIFFERENTIAL PRIVACY 
2.3.1. THE DEFINITION OF DIFFERENTIAL PRIVACY  
Differential privacy can ensure that the influence of a single sample, on the 

whole, is always below a certain threshold when outputting information so that the 
attacker cannot analyze the situation of a single sample from the output change. 
Furthermore, the sum of privacy parameters in the Gaussian mechanism can 
quantify this degree of influence. The definition of differential privacy is shown in 
formula (3): 

Assuming that the random algorithm M  is for any two adjacent data sets D  
and D'  with a difference of one element, the set of all possible outputs for algorithm 
M  is: 
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Then the algorithm M  is said to be (ε,δ) -differentially privacy. 

where ε is the privacy budget; δ is the slack factor, which refers to the 
probability that privacy protection is not allowed, and the general value needs to be 
less than the reciprocal of the number of data sets; the privacy budget refers to the 
degree of privacy protection required by the user. 

 

2.3.2. GAUSSIAN MECHANISM  
The realization process of differential privacy introduces randomness into the 

data by adding noise. Due to the impact of randomness, when we query data, it will 
prevent privacy leakage to a large extent and ensure that the accuracy of the query 
will not be too low. Therefore, we add Gaussian noise to the parameters produced 
by training in a federated learning environment to achieve differential privacy 
protection. 

Definition of Gaussian mechanism: For the differential privacy function M 
defined above, if it satisfies the definition of formula (4): 

 

( ) ( ) ( )2 2N ,0,σ SD D fM f= +
                                (4) 

 

Where ( )f D  is the output of the data set D  in the real situation; fS  represents 
the global sensitivity of the function f , and its possible output is the maximum 
distance obtained from the two norms of the adjacent database on the same 

function. The relevant definitions of fS
、 ε  and δ  satisfy the following conditions: 

 

 

Then the function is said to be (ε,δ) -differentially privacy. From this it can be 
observed that the noise level is directly proportional to the global sensitivity and 
inversely proportional to the privacy budget. That is, the greater the global 
sensitivity, the greater the injected noise, and the better the privacy protection 
effect. 

 

3. ALGORITHM FOR NON-IID DATA  
3.1. THE EFFECTS OF THE NON-IID DATA 
In the federated learning scenario, due to the Non-IID characteristics of the local 

data sets of each user participating in the training, there may be large differences 
between the local and global models. Even the gradient of some local models is 
opposite to that of the global model, so there is drift in the local model. In other 
words, the updated local model is biased towards the optimal local value and away 
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from the optimal global value state Karimireddy et al. (2019), Li et al. (2022). 
Suppose these local models are uploaded to the PS for aggregation. In that case, the 
accuracy of the global model will be affected, and a large amount of network 
bandwidth will be occupied, which will affect the communication efficiency of model 
transmission. 
Figure 2 

 
Figure 2 The FedAvg Problem in IID and Non-IID Data 

 
Figure 2 shows the FedAvg problem in IID and Non-IID scenarios. Under the IID 

setting, the optimal global value is close to the optimal local value, and that is, the 
averaged global model tends to the optimal global value. In the Non-IID setting, 
because the optimal global value is far from the optimal local value, the averaged 
global model is also far from the optimal global state. Therefore, it is particularly 
important to study how to design an effective FL algorithm in Non-IID settings. 

 
3.2. MEAREMENTS OF THE DIFFERENCE OF TWO NON-IID 

DATA     
Based on impact of Non-IID data, we propose to use cosine similarity to 

measure the degree of Non-independent and identical distribution between 
different user data sets. This method mainly addresses the problem of poor 
federated learning performance caused by common user data Non-independent and 
identical distribution. Cosine similarity is to measure the difference between two 
vectors by measuring the cosine value of the angle between the inner product space 
of two vectors. The value range of cosine is that when the cosine value tends to 1, it 
means that the angle between the two vectors is closer to 0, and the direction of the 
vectors is getting closer at this time, which means that the two vectors are very 
similar. Let P and Q be the sample vectors of two users, and the calculation formula 
of cosine similarity is: 
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Where the numerator represents the vector inner product of P and Q; the 
denominator represents the product of the moduli of vectors P and Q. 

In the iteration t, the label probability distribution G of the local data set and 
the standard balanced data label probability distribution S  are respectively 
obtained, and then the similarity degree is obtained by cosine similarity calculation 
according to the two types of distributions: 

 

( , ).g G St=W                                       (8) 
 

3.3. FEDERATED WEIGHTED AVERAGE ALGORITHM WITH 
DIFFERENTIAL PRIVACY   

In order to avoid the leakage of user data caused by the leakage of model 
parameter information, we propose a federated weighted average algorithm with 
differential privacy (DP-FedAW). This algorithm adds noise to the model parameter 
information during model iteration, thereby perturbing the data, and the attacker 
also Almost no useful information can be obtained from it. Algorithm 1 shows the 
DP-FedAW proposed in this paper. 

In order to protect the user's data information, the algorithm designs a 
differential privacy mechanism based on Gaussian noise. According to the 
requirements of privacy protection, noise parameters and privacy budget in 
differential privacy will be determined. Users can accurately calculate the privacy 
loss generated during each iteration training process through the combination 
theorem. When performing local updates, each user calculates the local gradient 
based on the global gradient sent by the central server and the local dataset, and 
adds Gaussian noise to perturb the gradient parameters that need to be uploaded. 
Finally, the server aggregates the model parameters and updates them, and 
broadcasts to the next The end user who participates in the training round. The 
process of adding noise is shown in equation (9): 

 

 
Where the noise k

tZ  follows a Gaussian distribution with an expectation of 0 
and a variance of 2

,σ d
t k I . 
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Algorithm 1 
Algorithm 1 DP-FedAW 

Input: K is the number of users; B is the local batch size； E is the local training frequency of the model；  
is the model learning rate； S  is the probability distribution of balanced data labels 

 

 
The aggregation method in the traditional federal average algorithm only 

depends on the amount of data held by each participating user to determine the 
weight coefficient. But when the user data is not independent and identically 
distributed, the model generated by this algorithm will cause certain errors. 
Therefore, we consider weighting according to the results of cosine similarity when 
aggregating models, which not only alleviates the difficulty of data training for Non-
IID data, but also improves the efficiency of model training. Its core is to replace 

kn n  in formula (2) with 
1

/ Kk k
t tk=åg g , and the model weight update parameters will 

also change with the number of iterations: 
 

                                                                                                                                  
 

4. ANALYSIS 
In order to protect the data privacy of end users, federated learning algorithms 

generally have two strategies Li et al. (2019), namely 1) partial end user 
participation and 2) multiple local stochastic gradient descent method updates, so 
it can effectively improve the communication of distributed stochastic gradient 
descent efficiency. Therefore, we continued this strategy. Specifically, by selecting 
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some end users to participate in the training, according to the federated average 

algorithm, only some users  are randomly activated to perform local 
updates and add Gaussian noise for disturbance, and then upload the latest 
parameters to the central server . If tS refers to the sampling process without 
replacement, then according to the Privacy Amplification Theorem Bassily et al. 
(2014), the differential privacy mechanism provides stronger privacy guarantees 
when performing model updates on random samples of the dataset obtained after 
sampling than on the full datasets. 

 
The above results show that, especially when the data of each user is 

unbalanced, according to the effect of sampling, part of the end users participating 
in the training can reduce the number of communication rounds required to achieve 
a fixed accuracy rate. 

Theorem 2 Assuming sampling probability is E kγ= /b n , if (ε,δ) -DP is to be 
achieved in model training, the required noise level can be reduced

2 2
,σ 4 2 ln(1.25 / (δ / ) / ε .t k fγ γ= S  

Proof: Because we assume that there is an equation E kγ= /b n  for the sampling 
probability, and E refers to the number of updates performed locally by the end user 
in each communication round. Because 

 

  
 

Then combined with the conclusion of Theorem 1, we can obtain that at least 
(2 ε, δ)γ γ -DP is satisfied, and this result is substituted to obtain the noise level. 

 

, 2

2

2

σ 2ln(1.25 / (δ / )
(ε / 2 )

4 2
ln(1.25 / (δ / ).

ε

S

S

f
t k

f

γ
γ

γ
= γ

=

                                                                                                       (12) 
 

5. EXPERIMENTS 
5.1. PARTITION DATASET 
This experiment uses the MNIST dataset, which mainly includes 70,000 

handwritten digital grayscale image data, of which 60,000 images are used for 
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training the model, and 10,000 images are used for testing the model. The size of all 
images is 28*28, and each image corresponds to a number label from 0-9. 

In order to construct a Non-IID data set, we do some processing on the training 
set of the MNIST data set. Assuming that the total number of users participating in 
the training is users 100= , 60,000 images are evenly distributed to each user so that 
each user has 600 images. The proportion of users with Non-IID data is  
When it is 0, the corresponding users are in a normal equilibrium state, that is, the 
data set labels are evenly distributed. When it is 1, the corresponding user data sets 
are in a Non-IID state, that is, the data set label distribution There is a long-tail 
distribution. The specific processing method is shown in Figure 3 below: 
Figure 3 

 
Figure 3 Non-IID Data Division 

 
Through the construction method of IID data and Non-IID data, 60,000 images 

are divided to construct 200 data blocks with a size of 300 so that each user can 
obtain 2 data blocks. This construction method conforms to the IID data Case. Sort 
60,000 images according to the image tags, and divide and construct 200 data blocks 
with a size of 300 according to the tags so that each user can get 2 data blocks. This 
construction method conforms to the situation of Non-IID data. Among them, after 
the data block is divided, it is allocated to the user using the random library in 
Numpy, and the same random seed is used for the same data set division results so 
that the results of each division are consistent and convenient for experiment 
development and analysis. 

 
5.2. EXPERIMENTAL SETUP 
In terms of the model, a deep neural network is used to update the user's local 

model in federated learning, and Pytorch is selected as the framework. Stochastic 
gradient descent (SGD) is used as the optimization algorithm. The number of local 
training iterations is set to 10, the local batch size is set to 10, and the learning rate 
is set to 0.01. In federated learning, for experimental comparison and performance 
considerations, the number of communications between the central server and each 
end user is set to 10, the total number of end users is 100, and the ratio of 
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participating in federated learning is set to 0.1. There are 10 end users in one 
communication Participate in training. In the comparison experiment, in order to 
investigate the performance difference between the DP-FedAvg algorithm Geyer et 
al. (2017) and the DP-FedAW algorithm, the size is set to 0.8. The framework for 
achieving differential privacy adopts the Opacus framework, which can be used to 
train PyTorch models with differential privacy, adding noise to the gradient in the 
iteration of the deep learning model instead of modifying the data directly and 
achieving differential privacy without accessing user data. 

 
5.3. TWO ALGORITHMS FOR TWO SCENES  
Figure 4 shows the model effects of the two algorithms in two types of scenarios 

with adding noise, that is, the comparison of training loss and classification accuracy 
between the DP-FedAvg algorithm and DP-FedAW in different situations. 
Figure 4 

 
 

Figure 4 Scene Comparison Between DP-FedAvg and DP-FedAW Algorithms 

 
The above test results show that in the 10 communications between the central 

server and each user, the two algorithms have achieved different training effects in 
the two types of data sets. Specifically: in the case of standard balanced data, the DP-
FedAvg algorithm and DP-FedAW algorithms are well iterated, and as the number 
of communications increases, the model training loss can gradually decrease. In the 
case of Non-IID data, the iterative effects of the FedAvg algorithm and the DP-FedAW 
algorithm are not excellent. By comparing the standard balanced data, it can be seen 
that there is a phenomeNon of over-fitting. 

 
5.4. TWO ALGORITHMS FOR TWO DIFFERENT NON-IID 

DISTRIBUTIONS   
In order to judge the impact of the degree of data Non-IID on the two 

algorithms, it shows that the DP-FedAW algorithm has better robustness for Non-
IID data, so keep the other parameters unchanged, and set the data Non-IID 
parameter varies from 10% to 100%. 
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Figure 5  

 
Figure 5 Comparison of training loss between two algorithms under different Non-IID states 

In the 10 communication times between the central server and each end user, 
as shown in Figure 5, the training loss of the DP-FedAvg algorithm and the DP-
FedAW algorithm changes with the number of communication times. It can be seen 
that the DP-FedAW algorithm can be compared with the DP-FedAvg algorithm. Good 
convergence, but equally prone to getting stuck in local optima. 
Table 1 

Table 1 Comparison of Accuracy of Two Algorithms Under Different Equilibrium Conditions 

unb Acc on DP-FedAvg Acc on DP-FedAW 

10% 96.6 96.8 

20% 96.4 96.9 

30% 96.3 96.8 

40% 96.3 96.9 

50% 95.7 96.1 

60% 95.4 96.0 

70% 93.9 96.2 

80% 90.7 94.4 

90% 90.6 94.4 

100% 82.7 82.9 

 
Comparing the model accuracy of the two algorithms under different degrees 

of Non-IID data and adjusting the parameter, the test results are shown in Table 1. 
At the same time, the model accuracy rate of the DP-FedAW algorithm is higher than 
that of the federated average algorithm under the setting of Non-IID of 10 sets of 
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data. The experimental results of the two algorithms have the biggest difference of 
3.85% when the disequilibrium state is 90%. 

 
5.5. THE EFFECTS OF DP ON THE ACCURACY OF MODEL  
To demonstrate the impact of privacy budget in differential privacy parameters 

on model accuracy when adding noise during training, we compared the DP-FedAW 
algorithm proposed in this paper with the FedAW algorithm without privacy on the 
MNIST dataset. Set the privacy budget to values ranging from 0.1 to 10.0, totaling 5 
values. 
Figure 6 

 
Figure 6 Privacy Budget Impact 

As shown in Figure 6, with the increase of privacy budget, the accuracy of the 
model increases, gradually tending towards a situation without noise. The results 
show that the higher the privacy protection required by users, the smaller the 
privacy budget parameters need to be set, but this can also lead to a decrease in 
model performance. Therefore, it is necessary to find a suitable privacy budget 
parameter that can ensure the performance of the model while ensuring user 
privacy and security. 

In order to analyze the effectiveness of federated learning algorithms with 
differential privacy constraints, Table 2 shows the comparison of classification 
accuracy between two classic federated learning algorithms with differential 
privacy and the DP-FedAW algorithm proposed in this paper in different data 
scenarios. We hope that the DP-FedAW algorithm can achieve higher accuracy in 
Non IID data scenarios compared to other algorithms.  
Table 2 

Table 2 Comparison of Accuracy of Different Algorithms in Different Scenarios 

 Users Acc on DP-FedAvg Geyer et al. (2017) Acc on DP-FL Huang et al. (2020) Acc on DP-FedAW 

IID data 100 96.41% 94.20% 96.48% 

Non-IID data 100 90.03% 93.90% 94.02% 
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From Table 2, we can see that the accuracy of the DP-FedAW algorithm is higher 
than that of DP-FedAvg and DP-FL in both IID and Non IID data scenarios. 
Meanwhile, the accuracy of the DP-FedAW algorithm in Non IID data scenarios is 
almost the same as that of the DP-FL algorithm in IID data scenarios. This verifies 
the effectiveness of the DP-FedAW algorithm for heterogeneous data scenarios. 

 
6. CONCLUSION  

In practical scenarios, data heterogeneity often leads to the slow convergence 
of the global model of federated learning and even the challenge of leaking model 
parameters. To solve this problem, we propose a federated weighted average 
algorithm with differential privacy, which quantifies the Non-IID data sets of 
different users by calculating the cosine similarity between each user's local data set 
and the IID data set. On this basis, the aggregation weight of each user is adjusted, 
which effectively alleviates the model convergence problem caused by the 
difference of Non-IID data in the training process. Then, a privacy-preserving 
federated weighted average algorithm is designed to ensure that the model 
parameters satisfy differential privacy. In the privacy protection stage of the local 
model, noise that satisfies the Gaussian distribution is added. The differential 
privacy technology is used to provide local privacy protection to obtain a more 
secure aggregation model that can guarantee good utility. Through theoretical 
analysis, we prove that the algorithm effectively guarantees the privacy and security 
of learning and training while simultaneously speeding up the convergence of the 
model. Experiments on public datasets show that the algorithm can converge faster 
than the federated averaging algorithm. In addition, with the increase of the privacy 
budget, the accuracy of the model gradually tends to the situation without adding 
noise under the condition of ensuring the model's safety. 
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