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ABSTRACT 
The process capability index (PCI), 𝐶𝐶𝐶𝐶 examines the capability of control charts. Bayesian 
techniques to estimate 𝐶𝐶𝐶𝐶 are desirable when prior information about a process 
characteristic is available. In this paper, an estimator of 𝐶𝐶𝐶𝐶 under normality with process 
variance having conjugate prior in Bayesian scenario is proposed. Its performance is 
studied and compared with Bayesian estimator developed by Cheng and Spiring (1989) 
An illustrative example is provided. 

 
Received 20 May 2022 
Accepted 29 June 2022 
Published 19 July 2022 

Corresponding Author 
Sharada V. Bhat, 
bhat_sharada@yahoo.com 
DOI 
10.29121/ijetmr.v9.i7.2022.1193    

Funding: This research received no 
specific grant from any funding agency in 
the public, commercial, or not-for-profit 
sectors. 

Copyright: © 2022 The Author(s). 
This work is licensed under a Creative 
Commons Attribution 4.0 
International License. 

With the license CC-BY, authors retain 
the copyright, allowing anyone to 
download, reuse, re-print, modify, 
distribute, and/or copy their 
contribution. The work must be 
properly attributed to its author. 

 

 

Keywords: Bayesian Estimator, Conjugate Prior, Posterior Distribution, Process 
Capability Index, Process Variance 
 
  
 

1. INTRODUCTION 
Quality is a prudent characteristic in manufacturing industries. 𝐶𝐶𝐶𝐶 plays pivotal 

role in deciding about capability of a process preset to meet the quality 
requirements. It is given by 

 

𝐶𝐶𝑝𝑝 = 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿

= 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
6𝜎𝜎

                                                                               Equation 1 
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where 𝜎𝜎 is process standard deviation (sd), UCL, LCL are upper, lower control 
limits and USL, LSL are upper, lower specification limits of a control chart. 𝐶𝐶𝐶𝐶 is a 
unitless measure and a process is considered as capable if 𝐶𝐶𝑝𝑝 > 𝑘𝑘 where k is a 
positive constant ≥ 1. When 𝜎𝜎 is estimated by sample sd ‘s’, an estimator for 𝐶𝐶𝐶𝐶 is  

 

given by 𝐶̂𝐶𝑝𝑝 = 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
6𝑠𝑠

.                                                                                  Equation 2 

 
Kane (1986) compared various PCIs and Montgomery (1996) carried out a 

detailed discussion on PCIs along with their illustrations. Bayesian procedures for 
PCI use prior information about the process parameters involved. Cheng and Spiring 
(1989) using Bayesian approach propose an estimator 𝐶̂𝐶𝑝𝑝𝑝𝑝 , under normal model 
when process sd has noninformative prior. The posterior distribution of 𝐶̂𝐶𝑝𝑝𝑝𝑝 
derived by them is 

 

𝜋𝜋�𝑦𝑦|𝐶𝐶𝑝𝑝� = �Γ �𝑛𝑛−1
2
��
−1

21−�
𝑛𝑛−1
2 ��(𝑛𝑛 − 1)𝐶𝐶𝑝𝑝2�

𝑛𝑛−1
2  𝑦𝑦−𝑛𝑛  𝑒𝑒− 

(𝑛𝑛−1)𝐶𝐶𝑝𝑝2

2𝑦𝑦2  ,𝑦𝑦 > 0         Equation 3 

 
where 𝐶̂𝐶𝑝𝑝𝑝𝑝 is realized by y. They investigate the performance of their measure 

in terms of minimum value of 𝐶̂𝐶𝑝𝑝𝑝𝑝 required to ensure the probability that process 
achieves the desired specifications along with an illustration. 

Chan et al. (1988) proposed a measure to process capability which accounts 
both target value and process variation simultaneously. They examined sampling 
distribution of the proposed measure with its practical applications to industrial 
data. Spiring (1995) outlined assessment of process capability as a tool of 
management. Shiau et al. (1999) studied Bayesian procedure for process capability 
by assuming noninformative and gamma priors for 𝐶𝐶𝑝𝑝2. Kotz and Johnson (2002) 
reviewed some articles on PCIs studied during 1992 - 2000 from widely 

scattered sources and record their interpretations along with comments. Pearn 
and Wu (2005) studied estimation of 𝐶𝐶𝑝𝑝 by Bayesian approach using multiple 
samples. 

In this paper, we establish an estimator of 𝐶𝐶𝑝𝑝 in Bayesian paradigm under 
normality when process variance has conjugate prior. In section 2, we propose 𝐶̂𝐶𝑝𝑝𝑝𝑝  
and derive its posterior distribution. We study about its performance in section 3, 
illustrate its performance in section 4 and record our conclusions in section 5. The 
computed values supporting performance of 𝐶̂𝐶𝑝𝑝𝑝𝑝  are given in tables provided in 
appendix. 

 
2. PROPOSED BAYESIAN ESTIMATOR OF 𝑪𝑪𝒑𝒑 

In this section, we propose a Bayesian estimator 𝐶̂𝐶𝑝𝑝𝑝𝑝  for 𝐶𝐶𝑝𝑝 when process 
variance has a conjugate prior distribution. That is, 𝐶̂𝐶𝑝𝑝𝑝𝑝  is given by Equation 2 with 
an assumption that, 𝜎𝜎2 has a conjugate prior. 

Suppose, X1, X2 … Xn is a random sample of size n from 𝑁𝑁(𝜇𝜇,𝜎𝜎2), then the 
density function of Xi is given by 
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𝑓𝑓𝑋𝑋𝑖𝑖(𝑥𝑥|𝜇𝜇,𝜎𝜎2) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
1
2�
𝑥𝑥−𝜇𝜇
𝜎𝜎 �

2

    −∞ < 𝑥𝑥, 𝜇𝜇 < ∞  ,𝜎𝜎 > 0                  Equation 4 

 
The likelihood function of the sample 𝑿𝑿 = (X1, X2  … Xn)  is given by 
 

𝐿𝐿(𝑿𝑿, 𝜇𝜇,𝜎𝜎2) = � 1
𝜎𝜎√2𝜋𝜋

�
𝑛𝑛
𝑒𝑒−

1
2∑ �

𝑥𝑥𝑖𝑖−𝜇𝜇
𝜎𝜎 �

2𝑛𝑛
𝑖𝑖=1                                                        Equation 5 

 

Also, 𝑧𝑧 = (𝑛𝑛−1)𝑠𝑠2

𝜎𝜎2
∼ 𝜒𝜒2(𝑛𝑛−1)  where  𝑠𝑠2 = 1

𝑛𝑛−1
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1   

 
We assume that  𝜋𝜋(𝜎𝜎2) ∼ 𝐼𝐼𝐼𝐼(𝜂𝜂, 𝛿𝛿), 𝜂𝜂 > 0, 𝛿𝛿 > 0 where 𝜂𝜂 is shape parameter 

and 𝛿𝛿 is scale parameter. IG stands for inverse gamma which is a conjugate prior. 
 

𝜋𝜋(𝜎𝜎2) = 𝛿𝛿𝜂𝜂

Γ𝜂𝜂
𝑒𝑒− 𝛿𝛿

𝜎𝜎2 � 1
𝜎𝜎2
�
𝜂𝜂+1

,𝜎𝜎2 > 0                                                            Equation 6 

 
Using Equation 1 and Equation 2, z can be written as  
 

𝑧𝑧 =
(𝑛𝑛−1)𝐶𝐶𝑝𝑝2

𝐶̂𝐶𝑝𝑝𝑝𝑝
2                                                                                                       Equation 7 

 
Thus, realizing 𝐶̂𝐶𝑝𝑝𝑝𝑝  by y, we have the posterior distribution of 𝑦𝑦2|𝑿𝑿 given by 
 

𝜋𝜋(𝑦𝑦2|𝑿𝑿) =
�𝑛𝑛−12 𝐶𝐶𝑝𝑝2+𝛿𝛿�

𝑛𝑛−1
2 +𝜂𝜂

Γ�𝑛𝑛−12 +𝜂𝜂�
𝑒𝑒− 1

𝑦𝑦2
�𝑛𝑛−12 𝐶𝐶𝑝𝑝2+𝛿𝛿� � 1

𝑦𝑦2
�
𝑛𝑛−1
2 +𝜂𝜂+1

                         Equation 8  

 
Using appropriate transformation, 𝜋𝜋(𝑦𝑦|𝑿𝑿) is given by 
 

𝜋𝜋(𝑦𝑦|𝑿𝑿) =
2�𝑛𝑛−12 𝐶𝐶𝑝𝑝2+𝛿𝛿�

𝑛𝑛−1
2 +𝜂𝜂

Γ�𝑛𝑛−12 +𝜂𝜂�
𝑒𝑒− 1

𝑦𝑦2
�𝑛𝑛−12 𝐶𝐶𝑝𝑝2+𝛿𝛿� � 1

𝑦𝑦2
�
𝑛𝑛−1
2 +𝜂𝜂+12  𝑦𝑦 > 0             Equation 9 

 
When 𝜂𝜂 = 𝛿𝛿 =0, Equation 9 reduces to Equation 3 indicating that the posterior 

distribution of 𝐶̂𝐶𝑝𝑝𝑝𝑝 due to Cheng and Spiring (1989) is a particular case of posterior 
distribution of 𝐶̂𝐶𝑝𝑝𝑝𝑝  given in Equation 9. From Bhat and Gokhale (2014) Bhat and 
Gokhale (2016) and Gokhale (2017) we observe that, 

 
𝜋𝜋(𝑦𝑦2|𝑿𝑿) = 𝜋𝜋(𝜎𝜎2|𝑿𝑿)  
 
 And 
 
𝜋𝜋(𝑦𝑦|𝑿𝑿) = 𝜋𝜋(𝜎𝜎|𝑿𝑿)                                                                                        Equation 10 
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where in 𝐶𝐶𝑝𝑝2 in left hand side is replaced by 𝑠𝑠2 in right hand side. 

 

3. PERFORMANCE OF 𝑪̂𝑪𝒑𝒑 𝒑𝒑  
In this section, we evaluate the performance of 𝐶̂𝐶𝑝𝑝𝑝𝑝  by obtaining minimum value 

of 𝐶̂𝐶𝑝𝑝𝑝𝑝  needed to assure 𝑃𝑃�(𝐶𝐶𝑝𝑝 > 𝑘𝑘)|𝑿𝑿�. That is, 

𝜏𝜏 = minimum 𝐶̂𝐶𝑝𝑝𝑝𝑝|𝑝𝑝𝑐𝑐 . 

                                                                                Here, 𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑐𝑐 = 𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
                                                      
                                                     = 𝑃𝑃�(𝐶𝐶𝑝𝑝 > 𝑘𝑘)|𝑿𝑿�  

 

                                                                          = 𝑃𝑃 ��𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
6𝜎𝜎

> 𝑘𝑘� |𝑿𝑿�  

 

= 𝑃𝑃 ��𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
6𝑘𝑘

> 𝜎𝜎� |𝑿𝑿�                                                                             Equation 11 

 
 which is equivalent to finding 
 

𝑝𝑝𝑐𝑐 = ∫ 𝜋𝜋(𝑦𝑦|𝑿𝑿)𝑑𝑑𝑑𝑑
𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿

6𝑘𝑘
0 = ∫ 𝜋𝜋(𝜎𝜎|𝑿𝑿)𝑑𝑑𝑑𝑑

𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
6𝑘𝑘

0    
 

  = ∫
2�𝑛𝑛−12 𝑠𝑠2+𝛿𝛿�

𝑛𝑛−1
2 +𝜂𝜂

Γ�𝑛𝑛−12 +𝜂𝜂�
𝑒𝑒− 1

𝜎𝜎2
�𝑛𝑛−12 𝑠𝑠2+𝛿𝛿� � 1

𝜎𝜎2
�
𝑛𝑛−1
2 +𝜂𝜂+12𝑎𝑎

0 𝑑𝑑𝜎𝜎                          Equation 12 

 

Where 𝑎𝑎 = 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
6𝑘𝑘

. 

 

By taking 𝑡𝑡 =  1
𝜎𝜎2
�𝑛𝑛−1

2
𝑠𝑠2 + 𝛿𝛿�, 𝑏𝑏 = �𝑛𝑛−1 

2
� 𝑘𝑘2

𝐶̂𝐶𝑝𝑝𝑝𝑝
2 + 𝛿𝛿

𝑎𝑎2
  and  𝜉𝜉 = �𝑛𝑛−1

2
� + 𝜂𝜂 and  

 
proceeding on the lines of Chan et al. (1988), we express (12) as 
 

𝑝𝑝𝑐𝑐 = ∫ 1
Γ𝜉𝜉
𝑡𝑡𝜉𝜉−1 𝑒𝑒− 𝑡𝑡𝑑𝑑𝑑𝑑∞

𝑏𝑏                                                                                Equation 13 

 
By using, Wilson-Hilferty (1931) transformation, (13) can be written as 
 

𝑝𝑝𝑐𝑐 ≅ 1 −Φ�
�2𝑛𝑛𝑏𝑏�

1/3
−�1− 1

9𝜉𝜉�
1

3𝜉𝜉
1
2

�                                                                    Equation 14 
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Where Φ(∙) is cumulative distribution function of standard normal variate. 
On simplifying Equation 14 we get 
 

𝑏𝑏 = 𝑛𝑛
2
�Φ

−1(1−𝑝𝑝𝑐𝑐)

3𝜉𝜉
1
2

+ �1 − 1
9𝜉𝜉
��

3

                                                                Equation 15 

 
Therefore,  

         (𝑛𝑛 − 1) 𝑘𝑘2

𝐶̂𝐶𝑝𝑝𝑝𝑝
2 = 𝑛𝑛 �Φ

−1(1−𝑝𝑝𝑐𝑐)

3𝜉𝜉
1
2

+ �1 − 1
9𝜉𝜉
��

3

− 2𝛿𝛿
𝑎𝑎2

   

 

⇒ 𝐶̂𝐶𝑝𝑝𝑝𝑝 = 𝑘𝑘 � 𝑛𝑛−1

𝑛𝑛�Φ
−1(1−𝑝𝑝𝑐𝑐)
3𝜉𝜉1/2 +�1− 1

9𝜉𝜉��
3
−  2𝛿𝛿

𝑎𝑎2

�

1/2

          

 

= 𝑘𝑘 � 𝑛𝑛−1

𝑛𝑛�Φ
−1(1−𝑝𝑝𝑐𝑐)
3𝜉𝜉1/2 +�1− 1

9𝜉𝜉��
3
−  72𝑘𝑘

2𝛿𝛿
𝑤𝑤2

�

1/2

                                                        Equation 16 

 
Where 𝑤𝑤 = 𝑈𝑈𝑈𝑈𝑈𝑈 −  𝐿𝐿𝐿𝐿𝐿𝐿. 
In order to evaluate 𝜏𝜏, one need to specify 𝑤𝑤, n, 𝑝𝑝𝑝𝑝, k, 𝜂𝜂 and 𝛿𝛿. To compute 

minimum 𝐶𝐶𝐶𝐶𝐶𝐶𝐶 obtained in Equation 16, the denominator has to be greater than zero. 
 

That is, 𝑛𝑛 �Φ
−1(1−𝑝𝑝𝑐𝑐)

3𝜉𝜉
1
2

+ �1 − 1
9𝜉𝜉
��

3

−   72𝑘𝑘
2𝛿𝛿

𝑤𝑤2 > 0  

  

⇒ 𝑤𝑤 >

⎩
⎪
⎨

⎪
⎧

72𝑘𝑘2𝛿𝛿

𝑛𝑛�Φ
−1(1−𝑝𝑝𝑐𝑐)

3𝜉𝜉
1
2

+�1− 1
9𝜉𝜉��

3

⎭
⎪
⎬

⎪
⎫
1/2

                                                            Equation 17 

 

By taking 𝛾𝛾 =

⎩
⎪
⎨

⎪
⎧

72𝑘𝑘2𝛿𝛿

𝑛𝑛�Φ
−1(1−𝑝𝑝𝑐𝑐)

3𝜉𝜉
1
2

+�1− 1
9𝜉𝜉��

3

⎭
⎪
⎬

⎪
⎫
1/2

   in Table 1, we furnish w as ⌈𝛾𝛾⌉ least  

 
upper integer greater than 𝛾𝛾. In Table 2, we calculate 𝜏𝜏 for higher values of w 

given in Table 1 n= 5, 15, 25, 50, 75, 100, 𝑝𝑝𝑝𝑝 = 0.90, 0.95, 0.99, k=1, 1.33,1.66, 𝜂𝜂 = 0, 
5, 10 and 𝛿𝛿 = 0, 5, 10. Using Table 2 we plot 𝜏𝜏 in Figure 1 Figure 2 and Figure 3 
respectively for 𝜂𝜂 = 𝛿𝛿, 𝜂𝜂 < 𝛿𝛿 and 𝜂𝜂 > 𝛿𝛿. 
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Figure 1 

                                                                           
Figure 1 𝜏𝜏 for 𝜂𝜂 = 𝛿𝛿 and various values of 𝑛𝑛,𝑝𝑝𝑐𝑐 , 𝑘𝑘 
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Figure 2 

                                                                             
Figure 2 𝜏𝜏 for with 𝜂𝜂 < 𝛿𝛿 and various values of 𝑛𝑛, 𝑝𝑝𝑐𝑐 ,𝑘𝑘 
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Figure 3 

                                                                           
Figure 3 𝜏𝜏 for 𝜂𝜂 > 𝛿𝛿 and various values of 𝑛𝑛, 𝑝𝑝𝑐𝑐 , 𝑘𝑘 

 
From Table 1 we observe that, 𝑤𝑤 increases as 𝑝𝑝𝑝𝑝, 𝑘𝑘 increase and decreases as 𝑛𝑛 

increases. For fixed 𝜂𝜂, 𝑤𝑤 increases as 𝛿𝛿 increases, for fixed 𝛿𝛿, it decreases as 𝜂𝜂 
increases and for 𝜂𝜂 = 𝛿𝛿, it increases for increasing values of 𝜂𝜂 and 𝛿𝛿. From Figure 1 
and Table 2 we observe that, for 𝜂𝜂 = 𝛿𝛿, 𝜏𝜏 is higher for higher values of 𝑝𝑝𝑐𝑐. It is 
increasing for increasing value of k when n is small and remains nearly same when 
n is large. Also, 𝜏𝜏 is smaller for higher values of 𝜂𝜂 and 𝛿𝛿. Figure 2 and Figure 3 depict 
that 𝜏𝜏 decreases respectively as 𝛿𝛿 increases for 𝜂𝜂 < 𝛿𝛿 and as 𝜂𝜂 increases for 𝜂𝜂 > 𝛿𝛿. 
Also, from all the three figures it is observed that, 𝜏𝜏 increases as k increases along 
with increase in 𝑝𝑝𝑐𝑐. Table 2 shows that, for fixed values of 𝜂𝜂 = 0, there is no 
considerable change in values of 𝜏𝜏 for various values of n, k and 𝑝𝑝𝑝𝑝 for increasing 𝛿𝛿. 
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4. ILLUSTRATION 
In this section, we consider example given in Kane (1986) and discussed in 

Cheng and Spiring (1989) 
Example 1 

Example 1 For n=300, s=4.3, 𝑪𝑪�𝒑𝒑𝒑𝒑 = 𝟏𝟏.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 and 𝒑𝒑𝒏𝒏 = 𝑷𝑷�(𝑪𝑪𝒑𝒑 > 𝟏𝟏)| 𝑪𝑪�𝒑𝒑𝒑𝒑� = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗. Then for 
𝒑𝒑𝒄𝒄 = 𝒑𝒑𝒏𝒏, using (16), for different values of 𝜼𝜼,𝜹𝜹 and n,  𝑪𝑪�𝒑𝒑𝒑𝒑 is given by 

𝑪𝑪𝑪𝒑𝒑𝒑𝒑 
𝜼𝜼 𝜹𝜹 n=300 n=50 𝜼𝜼 𝜹𝜹 n=300 n=50 
0 5 1.174 1.5479 10 0 1.167 1.4214 
0 10 1.1746 1.5565 5 5 1.1707 1.4782 
5 0 1.1701 1.4709 10 10 1.1682 1.4347 

 
Example 2 

Example 2 For n=79, s=7.8, 𝑪𝑪�𝒑𝒑𝒑𝒑 = 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖 and 𝒑𝒑𝒏𝒏 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. For 𝒑𝒑𝒄𝒄 = 𝒑𝒑𝒏𝒏,   𝑪𝑪�𝒑𝒑𝒑𝒑 is given by 

𝑪𝑪𝑪𝒑𝒑𝒑𝒑 
𝜼𝜼 𝜹𝜹 n=79 n=5 𝜼𝜼 𝜹𝜹 n=79 n=5 
0 5 0.8453 0.5091 10 0 0.8584 0.6783 
0 10 0.8462 0.5129 5 5 0.8528 0.6386 
5 0 0.8519 0.6314 10 10 0.8602 0.6966 

 
In Example 1, it is seen that for different values of 𝜂𝜂, 𝛿𝛿 and n=300, 𝐶̂𝐶𝑝𝑝𝑝𝑝  is lesser 

than 𝐶̂𝐶𝑝𝑝𝑝𝑝, whereas for n=50, 𝐶̂𝐶𝑝𝑝𝑝𝑝  is near to 𝐶̂𝐶𝑝𝑝𝑝𝑝 when 𝜂𝜂 = 0 and is lesser than 𝐶̂𝐶𝑝𝑝𝑝𝑝 for 
other values of  𝜂𝜂 and 𝛿𝛿. In Example 2,  𝐶̂𝐶𝑝𝑝𝑝𝑝 is near to 𝐶̂𝐶𝑝𝑝𝑝𝑝 for n=79 when 𝛿𝛿 = 0, 
whereas for n=5,  𝐶̂𝐶𝑝𝑝𝑝𝑝 is lesser than 𝐶̂𝐶𝑝𝑝𝑝𝑝 for various values of 𝜂𝜂 and 𝛿𝛿. It is also 
observed that, sample sd is smaller in Example 1 when compared to sample sd in 
Example 2 

 
5. CONCLUSIONS 

In this section, we furnish our conclusions based on our observations. 
• Under Bayesian approach, the proposed estimator 𝐶̂𝐶𝑝𝑝𝑝𝑝   includes 𝐶̂𝐶𝑝𝑝𝑝𝑝 due 

to Cheng and Spiring (1989) as its particular case in the sense that, the 
posterior distribution of 𝐶̂𝐶𝑝𝑝𝑝𝑝  reduces to that of 𝐶̂𝐶𝑝𝑝𝑝𝑝 when hyper 
parameters 𝜂𝜂 and 𝛿𝛿 are zero. 

• For all the values of 𝜂𝜂 and 𝛿𝛿 under consideration, 𝜏𝜏 the minimum value 
of 𝐶̂𝐶𝑝𝑝𝑝𝑝  needed to assure 𝑝𝑝𝑐𝑐, the probability that process is capable given 
the sample, increases along with increasing values of k and 𝑝𝑝𝑝𝑝 for 
smaller values of n. 

• For 𝜂𝜂 = 𝛿𝛿, 𝜏𝜏 is decreasing as 𝜂𝜂 and 𝛿𝛿 are increasing. 
• For 𝜂𝜂 < 𝛿𝛿, 𝜏𝜏 decreases as 𝛿𝛿 increases and for 𝜂𝜂 > 𝛿𝛿, it decreases as 𝜂𝜂 

increases. 
• 𝐶̂𝐶𝑝𝑝𝑝𝑝 < 𝐶̂𝐶𝑝𝑝𝑝𝑝 when sample sd is small, n is large and also when sample sd 

is large, n is small.  
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6. APPENDIX 
Table 1 

 
Table 2 

Table 2 𝝉𝝉 for various values of  𝜼𝜼,𝜹𝜹,𝒌𝒌,𝒑𝒑𝒄𝒄 and n 

𝜼𝜼,𝜹𝜹  n k=1 k=1.33 k=1.66   
pc=0.9

0 
pc=0.9

5 
pc=0.9

9 
pc=0.9

0 
pc=0.9

5 
pc=0.9

9 
pc=0.9

0 
pc=0.9

5 
pc=0.9

9 
0,0 5 1.7372 2.1531 3.5876 2.3105 2.8636 4.7715 2.8838 3.5741 5.9555  

15 1.2947 1.4108 1.6818 1.722 1.8764 2.2368 2.1493 2.342 2.7918  
25 1.2128 1.29 1.4589 1.613 1.7157 1.9404 2.0132 2.1414 2.4218  
50 1.142 1.1897 1.2886 1.5188 1.5822 1.7139 1.8957 1.9748 2.1391  
75 1.1133 1.1502 1.2251 1.4807 1.5298 1.6294 1.8481 1.9093 2.0337  

100 1.0969 1.1279 1.19 1.4589 1.5001 1.5827 1.8209 1.8723 1.9754 
0,5 5 1.7382 2.1549 3.596 2.3127 2.8678 4.7912 2.8881 3.5823 5.9938  

15 1.2949 1.411 1.682 1.7223 1.8767 2.2373 2.1498 2.3426 2.7929  
25 1.2129 1.2901 1.459 1.6131 1.7158 1.9406 2.0135 2.1417 2.4223  
50 1.142 1.1897 1.2887 1.5189 1.5823 1.7139 1.8958 1.9749 2.1393 

Table 1 𝒘𝒘 = ⌈𝜸𝜸⌉ for various values of n, 𝒑𝒑𝑪𝑪, k, 𝜼𝜼 and 𝜹𝜹 

𝜼𝜼,𝜹𝜹  k n 5 15 25 50 75 100 𝜼𝜼,𝜹𝜹 k n 5 15 25 50 75 100   
pc 

        
pc 

      

0,5 1 0.9 17 7 5 4 3 3 0,10 1 0.9 24 10 7 5 4 3   
0.95 21 8 5 4 3 3 

  
0.95 29 13 8 5 4 4   

0.99 35 9 6 4 3 3 
  

0.99 49 13 8 5 4 4  
1.33 0.9 22 9 7 5 4 3 

 
1.33 0.9 31 13 9 6 5 4   

0.95 28 10 7 5 4 3 
  

0.95 39 14 10 7 5 5   
0.99 46 12 8 5 4 4 

  
0.99 65 17 11 7 6 5  

1.66 0.9 28 11 8 6 5 4 
 

1.66 0.9 39 16 12 8 6 5   
0.95 34 12 9 6 5 4 

  
0.95 48 17 12 8 6 6   

0.99 57 15 10 6 5 4 
  

0.99 80 21 14 9 7 6 
5,5 1 0.9 12 7 5 4 3 3 5, 10 1 0.9 17 9 7 5 4 3   

0.95 18 8 5 4 3 3 
  

0.95 25 10 8 5 4 4   
0.99 27 9 6 4 3 3 

  
0.99 38 12 8 5 4 4  

1.33 0.9 16 9 7 5 4 3 
 

1.33 0.9 23 12 9 6 5 4   
0.95 24 10 7 5 4 3 

  
0.95 34 15 10 7 5 5   

0.99 35 12 8 5 4 4 
  

0.99 50 16 11 7 6 5  
1.66 0.9 20 11 8 6 5 4 

 
1.66 0.9 29 15 11 8 6 5   

0.95 30 12 9 6 5 4 
  

0.95 42 17 12 8 6 6   
0.99 44 14 10 6 5 4 

  
0.99 62 20 14 9 7 6 

10,5 1 0.9 12 6 5 4 3 3 10,10 1 0.9 16 9 7 5 4 4   
0.95 17 7 5 4 3 3 

  
0.95 23 10 7 5 4 4   

0.99 23 9 6 4 3 3 
  

0.99 32 12 8 5 4 4  
1.33 0.9 15 8 6 5 4 3 

 
1.33 0.9 21 12 9 6 5 4   

0.95 22 10 7 5 4 3 
  

0.95 31 14 10 7 5 5   
0.99 30 11 8 5 4 4 

  
0.99 42 16 11 7 6 5  

1.66 0.9 19 10 8 6 5 4 
 

1.66 0.9 26 14 11 8 6 5   
0.95 27 12 9 6 5 4 

  
0.95 38 17 12 8 6 6   

0.99 38 14 10 6 5 4 
  

0.99 53 20 13 9 7 6 
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75 1.1134 1.1502 1.2251 1.4808 1.5298 1.6294 1.8482 1.9094 2.0337  

100 1.0969 1.1279 1.19 1.4589 1.5001 1.5827 1.821 1.8723 1.9754 
0,10 5 1.7382 2.1549 3.5961 2.3128 2.8679 4.7916 2.8882 3.5825 5.9946  

15 1.2949 1.411 1.682 1.7223 1.8768 2.2374 2.1498 2.3427 2.7929  
25 1.2129 1.2901 1.459 1.6132 1.7158 1.9406 2.0135 2.1417 2.4223  
50 1.142 1.1897 1.2887 1.5189 1.5823 1.7139 1.8958 1.975 2.1393  
75 1.1134 1.1502 1.2251 1.4808 1.5298 1.6294 1.8482 1.9094 2.0337  

100 1.0969 1.1279 1.19 1.4589 1.5001 1.5827 1.821 1.8723 1.9754 
5,0 5 1.2617 1.8611 2.7631 1.678 2.4753 3.6749 2.0944 3.0895 4.5868  

15 1.2072 1.3868 1.6384 1.6056 1.8445 2.1791 2.0039 2.3022 2.7197  
25 1.1718 1.2809 1.4436 1.5585 1.7035 1.92 1.9452 2.1262 2.3964  
50 1.1275 1.187 1.2844 1.4996 1.5787 1.7082 1.8717 1.9704 2.1321  
75 1.1055 1.1488 1.223 1.4704 1.528 1.6266 1.8352 1.9071 2.0302  

100 1.0919 1.127 1.1887 1.4522 1.4989 1.581 1.8126 1.8709 1.9732 
5,5 5 1.2805 1.9233 2.9799 1.7049 2.5641 3.9862 2.1237 3.1859 4.9218  

15 1.2118 1.3939 1.65 1.6122 1.8545 2.1957 2.0112 2.3131 2.7379  
25 1.1743 1.2841 1.4482 1.562 1.7081 1.9266 1.949 2.1313 2.4036  
50 1.1286 1.1882 1.286 1.5011 1.5805 1.7105 1.8733 1.9723 2.1345  
75 1.1062 1.1496 1.2239 1.4713 1.529 1.6279 1.8362 1.9083 2.0316  

100 1.0924 1.1276 1.1893 1.4529 1.4997 1.5818 1.8133 1.8717 1.9742 
5,10 5 1.2801 1.922 2.9751 1.7001 2.548 3.9265 2.1296 3.2062 4.9975  

15 1.2117 1.3938 1.6498 1.611 1.8528 2.1928 2.0126 2.3153 2.7415  
25 1.1742 1.284 1.4481 1.5614 1.7073 1.9254 1.9498 2.1323 2.405  
50 1.1286 1.1882 1.2859 1.5009 1.5801 1.7101 1.8737 1.9727 2.135  
75 1.1062 1.1496 1.2239 1.4712 1.5289 1.6277 1.8364 1.9085 2.0319  

100 1.0924 1.1275 1.1893 1.4528 1.4996 1.5817 1.8135 1.8719 1.9744 
10,0 5 1.1598 1.6933 2.3537 1.5425 2.2521 3.1304 1.9252 2.8109 3.9071  

15 1.1649 1.366 1.6012 1.5494 1.8168 2.1296 1.9338 2.2676 2.658  
25 1.1467 1.2724 1.4295 1.5251 1.6923 1.9013 1.9035 2.1122 2.373  
50 1.1165 1.1844 1.2803 1.4849 1.5752 1.7028 1.8534 1.9661 2.1253  
75 1.0991 1.1475 1.221 1.4618 1.5262 1.6239 1.8245 1.9049 2.0268  

100 1.0875 1.1262 1.1874 1.4464 1.4978 1.5793 1.8053 1.8695 1.9711 
10,5 5 1.1961 1.8128 2.7109 1.6002 2.4441 3.7191 1.9943 3.0402 4.6058  

15 1.1751 1.3825 1.6279 1.5654 1.8429 2.1719 1.9531 2.2989 2.7087  
25 1.1523 1.2801 1.4405 1.534 1.7045 1.9186 1.9142 2.1268 2.3938  
50 1.119 1.1874 1.2841 1.4889 1.58 1.7088 1.8582 1.9718 2.1325  
75 1.1007 1.1493 1.2232 1.4643 1.5291 1.6273 1.8275 1.9083 2.031  

100 1.0887 1.1275 1.1889 1.4483 1.4999 1.5817 1.8075 1.8719 1.974 
10,10 5 1.2009 1.8295 2.768 1.5969 2.4323 3.678 1.9974 3.0509 4.6435  

15 1.1764 1.3846 1.6314 1.5645 1.8414 2.1695 1.9539 2.3002 2.7109  
25 1.153 1.2811 1.4419 1.5335 1.7038 1.9176 1.9146 2.1274 2.3946  
50 1.1193 1.1878 1.2846 1.4887 1.5797 1.7085 1.8584 1.972 2.1328  
75 1.1009 1.1496 1.2234 1.4641 1.5289 1.6272 1.8276 1.9085 2.0311  

100 1.0888 1.1276 1.1891 1.4482 1.4998 1.5815 1.8076 1.872 1.9741 
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