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ABSTRACT 
A formulation of the displacement based finite element method as well 

as the incremental analysis procedure which is considered suitable for 
analysis of non-linear dynamic problems is presented. The presented 
framework is used to investigate the influence of joint rotation on the 
failure of steel beam subject to high-speed impact load. The results from 
the non-linear numerical simulation are compared with those obtained 
from an analytical technique.  

Method: The non-linear Full Newton Raphson method was used for 
the simulation and results obtained were verified analytically using the 
energy momentum balance technique. 

Results: The beam suffered an initial vertical downward deflection of 
27.7mm from the impactor load as well as a joint rotation of 20.  

Findings: From the results obtained the beam was considered to have 
failed due to excessive rotation. Similarly, from the comparism made 
between the analytical and non-linear numerical simulation results, it was 
concluded that the full Newton Raphson technique gave accurate results in 
simulating the dynamic problem which was achieved at an affordable cost.

  
1. INTRODUCTION 
 
The analysis of damage in materials and structures subjected to dynamic loadings such as blast, impacts, 

earthquake, fire and so on, is considered crucial. For such dynamic loadings (generally involving plasticity and 
damage), the complete displacement form of finite element analysis is mostly used especially where material non-
linearity is considered. This displacement version of finite element analysis is generally easier to implement 
particularly for complicated non-linear constitutive relations. It also offers the advantage of properly modelling the 
element behaviour (Stein, 1993; De Borst et al, 2012; Aliyu, 2019).  

In this paper, the non-linear finite element method is applied to the material’s non-linear problem involving a 
steel beam subjected to impact loads. The method was used to study the deformation and rotation of the beam to the 
dynamic impact loads. The accuracy of the non-linear finite element simulation results, in assessing deformation was 
compared to those obtained from comparable hand calculations and has proved to be quite satisfactory.  
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2.  FORMULATION OF THE NON-LINEAR FINITE ELEMENT METHOD 
 

 FORMULATION OF THE WEAK FORM OF THE EQUATION OF MOTION 
 
In arriving at the non-linear finite element expression for solving dynamic problems we begin by adopting the 

concept of equilibrium and virtual work in obtaining an expression for the equation of motion where the idea of 
linear momentum balance is assumed. 

First, we consider the balance of momentum between the body V as well as its boundary S with the stress vector 
t and gravity acceleration put together in the vector g resulting in the linear momentum balance expressed as: 

 

�𝒕𝒕𝑑𝑑𝑑𝑑
 

𝑆𝑆
+  �𝜌𝜌𝒈𝒈𝑑𝑑𝑑𝑑

 

𝑉𝑉
=  �𝜌𝜌�̈�𝑼𝑑𝑑𝑑𝑑

 

𝑉𝑉
… … … … … … . . (1) 

 
The above expression momentum balance can be further adjusted to give the expression as shown in eqn. (1.1) 
 

�𝑛𝑛.𝝈𝝈𝑑𝑑𝑑𝑑
 

𝑆𝑆
+  �𝜌𝜌𝒈𝒈𝑑𝑑𝑑𝑑

 

𝑉𝑉
=  �𝜌𝜌�̈�𝑼𝑑𝑑𝑑𝑑

 

𝑉𝑉
… … … … … … . . (1.1) 

 
Now applying the Gauss divergence theorem to the first expression in eqn. (1.1) converts it from a surface 

integral to a volume integral expressed in eqn. (1.2) after rearrangement.  
 

��∇ ∙ 𝝈𝝈 + 𝜌𝜌𝒈𝒈 − 𝜌𝜌�̈�𝑼�
 

𝑉𝑉
𝑑𝑑𝑑𝑑 = 0 … … … … … … . . (1.2) 

 
The integrand in eqn. (1.2) must be equal to zero which gives the local form of the balance of linear momentum 

also called the equilibrium equation or the equation of motion in the strong form which is thus expressed in eqn. 
(1.3) (Laursen, 2003; De Borst et al, 2012): 

 
∇ ∙ 𝝈𝝈 + 𝜌𝜌𝒈𝒈 = 𝜌𝜌�̈�𝑼… … … … … … . . (1.3) 

 
Where:  
𝜌𝜌 – Is the mass density 
�̈�𝑼 −  Is the differentiation of displacement with respect to time 
∇ − Is the matrix format of the gradient vector operator at the deformed configuration 
 
 
 
 
∇ =  LT =                                                                         … … … … … … . . (2). 
 
 
 
By inserting eqn. (2) in eqn.(1) the equation of motion can be rewritten in matrix form as  
 

LT ∙ 𝝈𝝈 + 𝜌𝜌𝒈𝒈 = 𝜌𝜌�̈�𝑼… … … … … … . . (3) 
 
In adopting the principles of virtual work, equation (3) is further transformed into a weak form as given in eqn. 

(5) after applying the divergent theory to eqn. (4) which was arrived at by multiplying by a virtual displacement 𝛿𝛿𝒖𝒖 
to eqn. (3) and integrating over the domain V (which is the current configuration) (Kim 2018; De Borst et al, 2012).  

 

�𝛿𝛿𝒖𝒖�𝐋𝐋T ∙ 𝝈𝝈 + 𝜌𝜌𝒈𝒈 = 𝜌𝜌�̈�𝑼�
 

𝑉𝑉
𝑑𝑑𝑑𝑑… … … … … … . . (4) 
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��𝜌𝜌𝛿𝛿𝒖𝒖T�̈�𝑼 + (𝑳𝑳𝛿𝛿𝒖𝒖)T 𝝈𝝈 �𝑑𝑑𝑑𝑑 = �𝜌𝜌𝛿𝛿𝒖𝒖T𝒈𝒈
 

𝑉𝑉
𝑑𝑑𝑑𝑑 + �𝛿𝛿𝒖𝒖T  dS

 

𝑆𝑆

 

𝑉𝑉
… … … … … . (5) 

 
It can therefore be seen from equation 5 that the weak form is a balance between the internal virtual work and 

the external virtual work (i.e., the body forces and surface traction) (Kim, 2018). It is important to stress that, in the 
arriving at the expression in equation 5, no guess was made with respect to the material behaviour or size of the 
spatial displacement gradients. Hence, equation 5 can be used for both linear and non-linear behaviours.   

  
 DISCRETIZATION; FINITE ELEMENT FORMULATION 

 
In this section the displacement based finite element formulations are discussed.  This section starts with finding 

the approximate solution to the above weak form of equation of motion. For this method, the element nodal 
displacements 𝑎𝑎𝑘𝑘  having components (𝑎𝑎𝑥𝑥 ,𝑎𝑎𝑦𝑦,𝑎𝑎𝑧𝑧) is regarded as the unknown in the assumed continuous 
displacement field (u) given in eqn. (6) for each finite element used in the spatial finite element discretization.  

 

𝐮𝐮 = � h𝐤𝐤(ξ, η, ζ) 𝒂𝒂𝑘𝑘

n

k=1

… … … … … … … . (6) 

Where: 
h𝐤𝐤 − is the shape or interpolation polynomial function expressed in natural dimensionless coordinates (ξ, η, ζ). 
In order to evaluate the displacement field, for points within the elements which are not key points (i.e., not 

nodal points) eqn. (7) is adopted. 
 

𝐮𝐮 =  𝐇𝐇𝒂𝒂𝑒𝑒 … … … … … … … . . (𝟕𝟕) 
 
The element strain, given in terms of the derivative of the displacement field (u) is obtained from eqn. (7.1) 

(Laursen, 2003; De Borst et al, 2012; Hartmann, 2005) 
 
                                                                          𝝐𝝐 = Lu … … … … … … … . . (7.1)  
 
It should be noted that the measure of strain tensor to be used in equation 7.1 has not been specified as the 

equation is expected to be used in both linear and non-linear regime as mentioned above in the formulation of the 
weak form of the equation of motion. 

 

  … … … … … … … . . (8) 
      

… … … … … … … . . (8.1) 
 

Where: 
𝐇𝐇 −  gives the matrix of shape function for the 3d element 
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𝒂𝒂𝑒𝑒 − is the matrix vector of the displacement degree of freedom at the nodal points of each element in the finite 
element mesh. 

While eqn. (9) maps the element displacement vector (𝒂𝒂𝑒𝑒 ) to the global displacement vector (𝒂𝒂𝑒𝑒) using the 
incidence matrix (𝒁𝒁𝑒𝑒 ) (De Borst et al, 2012; Hartmann, 2005) 

 
𝒂𝒂𝑒𝑒 =  𝒁𝒁𝑒𝑒𝐚𝐚 … … … … … … … . . (𝟗𝟗) 

 
Substituting eqns. (7) and (9) into the weak form of equation (5) gives equation of motion for the entire finite 

element mesh expressed as shown in eqn. (10): 
 

�� 𝜌𝜌(𝐇𝐇𝒁𝒁𝑒𝑒𝛿𝛿𝒂𝒂)T𝐇𝐇𝒁𝒁𝑒𝑒�̈�𝒂𝑑𝑑𝑑𝑑 + � �(𝑳𝑳𝐇𝐇𝒁𝒁𝑒𝑒𝛿𝛿𝒂𝒂)T
 

𝑉𝑉𝑒𝑒

𝑛𝑛𝑒𝑒

𝑒𝑒=1

𝝈𝝈𝑑𝑑𝑑𝑑
 

𝑉𝑉𝑒𝑒

𝑛𝑛𝑒𝑒

𝑒𝑒=1

= � �𝜌𝜌(𝐇𝐇𝒁𝒁𝑒𝑒𝛿𝛿𝒂𝒂)T
 

𝑉𝑉𝑒𝑒

𝑛𝑛𝑒𝑒

𝑒𝑒=1

𝒈𝒈𝑑𝑑𝑑𝑑 + � �(𝐇𝐇𝒁𝒁𝑒𝑒𝛿𝛿𝒂𝒂)T
 

𝑠𝑠𝑒𝑒

𝑛𝑛𝑒𝑒

𝑒𝑒=1

𝒕𝒕𝑑𝑑𝑑𝑑  … … … … … . (10) 

 
Solution of equation (10) for every virtual displacement (𝛿𝛿𝒂𝒂) leads to a semi-discrete balance of momentum as 

expressed in eqn. (11) since the discretisation here pertains only to the spatial domain and not to the time domain 
(De Borst et al, 2012). 

 
𝑴𝑴�̈�𝒂 = 𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒 − 𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒 … … … … … . (11) 

Where: 
𝑴𝑴− Is the mass matrix 
 

𝑴𝑴 = �𝒁𝒁𝑒𝑒𝑇𝑇 � 𝜌𝜌𝐇𝐇T𝐇𝐇 𝑑𝑑𝑑𝑑𝒁𝒁𝑒𝑒 
 

𝑉𝑉𝑒𝑒
… … … … … . (12)

𝑛𝑛𝑒𝑒

𝑒𝑒=1

 

 
𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒 − Is the external force vector 
 
 

𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒 = �𝒁𝒁𝑒𝑒𝑇𝑇 � 𝜌𝜌𝐇𝐇T𝐠𝐠 𝑑𝑑𝑑𝑑 + �𝒁𝒁𝑒𝑒𝑇𝑇 � 𝐇𝐇T𝐭𝐭 𝑑𝑑𝑑𝑑 
 

𝑆𝑆𝑒𝑒
… … … … … . (13)

𝑛𝑛𝑒𝑒

𝑒𝑒=1

 
 

𝑉𝑉𝑒𝑒

𝑛𝑛𝑒𝑒

𝑒𝑒=1

 

 
𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒 − Is the internal force vector 
 
 

𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒 = �𝒁𝒁𝑒𝑒𝑇𝑇 � BT𝛔𝛔 𝑑𝑑𝑑𝑑 
 

𝑆𝑆𝑒𝑒
… … … … … . (15)

𝑛𝑛𝑒𝑒

𝑒𝑒=1

 

 
𝑩𝑩 − Is the matrix that relates the strains within the finite elements to the nodal displacements expressed as the 

derivative of the shape function as given in eqn. (16) (The above definition for 𝑩𝑩 holds for a linear expression, for a 
non-linear expression, it relates the variations of strains within the finite elements to the variations of the nodal 
displacement) (De Borst et al, 2012; Hartmann, 2005).  

 
𝑩𝑩 = 𝑳𝑳𝑳𝑳… … … … … . (16) 

 
The shape function ℎ has been expressed in dimensionless isoparametric natural coordinates in order to 

facilitate the numerical integration of the integrals where complex non-linear structural geometries as well as 
material non-linearities are involved (Stein, 1993; De Borst et al, 2012; Seshu, 2012). 
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 Isoparametric finite elements have been used for this formulation as the same shape function [ℎ𝑘𝑘(𝜉𝜉, 𝜂𝜂, 𝜁𝜁)] given 
in eqn. (17) has been used for both the geometrical and displacement interpolations. 

 

𝒙𝒙 = �ℎ𝑘𝑘(𝜉𝜉, 𝜂𝜂, 𝜁𝜁)𝒙𝒙𝑘𝑘 … … … … … . (17)
𝑛𝑛

𝑘𝑘=1

 

 
Where: equation 17 is a linear relationship in isoparametic coordinates 
ℎ𝑘𝑘 − are the shape functions 
𝑛𝑛 − gives all the finite element nodal points 
𝒙𝒙𝑘𝑘 − are the nodal point displacements 
 

2.2.1. LINEARIZATION  
 
Nonlinear problems almost always result in nonlinear equations which have to be solved by first linearizing the 

nonlinear equations and then solving the linearized equations (i.e., getting the roots of the equation) iteratively using 
appropriate techniques (such as: Newton Rahpson technique, Arc length or path following method as well as the line 
search method) until the solution to the problem is obtained. On the other hand, the linearized equations can be 
solved directly using some other solution technique, which does not require iterative solution method.  The focus 
here is on iterative solution technique using the Newton Rahpson method where correct linearization of the 
nonlinear equation is key to getting an accurate solution by ensuring quadratic convergence. 

 
 INCREMENTAL ANALYSIS 

 
For the non-linear analysis, the application of external load 𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒  as in eqn. (11) is done incrementally, that is, in 

load steps as opposed to the sudden application of the full external load in one single load step (Stein, 1993). This is 
because the set of algebraic equations which evolves as a result of finding the solution to the finite elements is non-
linear. Similarly, the application of load incrementally enables the proper convergence of the solution (De Borst et al 
2012; Kim, 2018). This is the preferred approach especially for rate dependent materials where the stress depends 
upon the history of deformation (or straining) (Laursen, 2003; Ayoub & Filippou 1998; Kim, 2018). For such 
materials, accurate modelling of behaviour under loading can only be achieved if the history of straining is carefully 
followed. Hence, justifying the need for incremental load application which allows for small strain increments to be 
achieved, enabling the straining path to be carefully followed (Laursen, 2003). Hence, for this incremental load 
process, equation (11) becomes reduced to: 

 
𝟎𝟎 = 𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒 − 𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒 … … … … … . (18) 

 
Where the inertial term is omitted. 
For loading to be applied sequentially, the time parameter is used to order the sequence of loading (that is the 

load steps or increments) (Laursen, 2003). In line with this preceding statement, the unknown stress vector 𝝈𝝈  is 
additively decomposed as expressed in eqn. (19) 

 
 

𝝈𝝈𝑒𝑒 + ∆𝑒𝑒 = 𝝈𝝈𝑒𝑒 + ∆𝝈𝝈… … … … … . (19)  
Where: 
𝝈𝝈𝑒𝑒 −Is when the stress component is known at the time t 
∆𝝈𝝈 − Is the unknown component of the stress increment 
Using eqn. (19) in eqn. (18) above with eqn. (15) gives the expression in eqn. (20) 
 

𝟎𝟎 = 𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒
𝑒𝑒+∆𝐭𝐭 −�𝒁𝒁𝑒𝑒𝑇𝑇 � BT𝛔𝛔t 𝑑𝑑𝑑𝑑 

 

𝑉𝑉𝑒𝑒

𝑛𝑛𝑒𝑒

𝑒𝑒=1

−�𝒁𝒁𝑒𝑒𝑇𝑇 � BT∆𝛔𝛔 𝑑𝑑𝑑𝑑 
 

𝑉𝑉𝑒𝑒
… … … … … . (20)

𝑛𝑛𝑒𝑒

𝑒𝑒=1
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Where, the second term in the right side of eqn. (20) above represents the internal virtual work done. Since the 

volume of the element (𝑑𝑑𝑒𝑒) where the integral in eqn. (20) applies is not known at the time 𝑡𝑡 + ∆𝐭𝐭, it can be solved 
by mapping it back to reference configuration (i.e., the Lagrangian configuration). 

 

𝛿𝛿𝑊𝑊𝑖𝑖𝑛𝑛𝑒𝑒 = �𝛿𝛿𝝐𝝐𝑇𝑇𝝈𝝈𝑑𝑑𝑑𝑑
 

𝑉𝑉

… … … … … . (20.1) 

 
Equation (20) above can equally be written as in eqn. (21) since we are concerned here with linearizing the 

source of geometric non-linearity (i.e., the nodal displacements) and removing the dependence on it. Equation (21.1) 
is the unbalanced force at the nodes: 

 

�𝒁𝒁𝑒𝑒𝑇𝑇 �BT∆𝛔𝛔 𝑑𝑑𝑑𝑑 
 

𝑉𝑉

𝑛𝑛𝑒𝑒

𝑒𝑒=1

= 𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒
𝑒𝑒+∆𝐭𝐭 − 𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒

𝑒𝑒 … … … … … . (21) 

 

�𝒁𝒁𝑒𝑒𝑇𝑇 �BT∆𝛔𝛔 𝑑𝑑𝑑𝑑 … … … … … . (21.1)
 

𝑉𝑉

𝑛𝑛𝑒𝑒

𝑒𝑒=1

 

 
Where: 
𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒

𝑒𝑒 − is the internal force vector evaluated at the time t where 𝛔𝛔 = 𝛔𝛔t (Wang & Hsu, 2001; De Brost et al.2012) 
Because of the non-linear nature of equation (21) its solution necessitates the need for an iterative approach. 

To achieve this, the non-linear equation must first be linearised and then solved iteratively. The most frequently 
used iterative method is the Newton-Raphson method which entails working out the residual as well as the tangent 
stiffness matrix for each iteration from the weak form (Wang & Hsu, 2001; Ayoub & Filippou 1998; Hartmann, 2005; 
Tsavadaris, & Mello, 2012; Barth, & Wu, 2006; Kim 2018). As mentioned before, the solution of non-linear equations, 
entails iterative linearization of the governing equations.  For example, linearizing the dependence of the stress 
increment to the displacement increment expressed as shown in eqn. (23) remembering of course that no guess has 
been made with respect to the material behaviour (i.e., the stress and strain measure) as mentioned earlier on page 
4 (Laursen, 2003; De Brost et al.2012). The increase in stress is expressed as in eqn. (22) which is then linearized as 
expressed in eqn. (23) 

 
∆𝛔𝛔 = ∆𝛔𝛔(∆𝛜𝛜(∆𝐮𝐮)) … … … … … . (22) 

 

δ𝛔𝛔 = �
δ𝛔𝛔
δ𝛜𝛜
�
t

δ𝛜𝛜… … … … … . (23) 
 
With  

𝐃𝐃 =  �
δ𝛔𝛔
δ𝛜𝛜
�
t

          … … … … … . (24) 
Where: 
𝐃𝐃 − Is referred to as the material tangential stiffness matrix 
 Equation (23) can therefore be rewritten as: 
 

δ𝛔𝛔 = 𝐃𝐃δ𝛜𝛜              … … … … … . (25) 
 
(Laursen, 2003; De Brost et al.2012; Kim, 2018).  
With the quasi-static loading, eqn. (18) written as: 
 

𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒 = 𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒                … … … … … . (26) 
 

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr


O.H. Aliyu, and A.A Salihu 
 

International Journal of Engineering Technologies and Management Research                                                                                                          85       

This can be further expressed as in eqn. (27) 
 

�𝛿𝛿𝒖𝒖𝑇𝑇𝒈𝒈𝑑𝑑𝑑𝑑
 

𝑉𝑉

+ �𝛿𝛿𝒖𝒖𝑇𝑇𝒕𝒕𝑑𝑑𝑑𝑑
 

𝑆𝑆

= �𝛿𝛿𝝐𝝐𝑇𝑇𝝈𝝈𝑑𝑑𝑑𝑑
 

𝑉𝑉

… … … … … . (27) 

Where: 
𝛿𝛿𝝐𝝐 = 𝑳𝑳𝛿𝛿𝒖𝒖… … … … … . (27.1) 

 
𝝐𝝐 −  is the work conjugate strain measure 
Remembering of course that no assumptions have been made here, with respect to the nature of the stress or 

strain measures.  
Considering equations (7), (9), (16) and (25), in the above non-linear expression of eqn. (21) leads to the 

linearized equation for finite load increment which is given in eqn. (28) 
 

�𝒁𝒁𝑒𝑒𝑇𝑇 �𝐁𝐁T𝐃𝐃𝐁𝐁𝒁𝒁𝑒𝑒∆𝐚𝐚 𝑑𝑑𝑑𝑑 
 

𝑉𝑉

𝑛𝑛𝑒𝑒

𝑒𝑒=1

= 𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒
𝑒𝑒+∆𝐭𝐭 − 𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒

𝑒𝑒 … … … … … . (28) 

 
With the loading steps, ranging from time 𝑡𝑡 to time 𝑡𝑡 + ∆𝐭𝐭 .  The material tangential stiffness matrix K is equally 

expressed as in eqn. (28.1). Since the increase in nodal displacement does not rely on the spatial coordinates, it can 
also be placed outside of the integration. 

 

𝐊𝐊 = �𝒁𝒁𝑒𝑒𝑇𝑇 ��𝐁𝐁T𝐃𝐃𝐁𝐁 𝑑𝑑𝑑𝑑 
 

𝑉𝑉
�

𝑛𝑛𝑒𝑒

𝑒𝑒=1

𝒁𝒁𝑒𝑒 … … … … … . (28.1) 

 
Hence equation (28) can be rewritten as: 
 

𝐊𝐊∆𝐚𝐚 = 𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒
𝑒𝑒+∆𝐭𝐭 − 𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒

𝑒𝑒     … … … … … . (29)       
 
or  with the external force vector additively decomposed and expressed as in eqn. (29.1) 
 

             𝐊𝐊∆𝐚𝐚 = ∆𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒 + 𝒇𝒇𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒 − 𝒇𝒇𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒  … … … … … . (29.1)  
 
These linearizations of the load steps as given in eqn. (29) as well as the linearization of the governing stress-

strain equation given in (25) tend to move the solution away from the actual equilibrium solution (especially when 
the initial estimate of the assumed displacement is too far from the actual solution). This divergence can be reduced 
by incorporating equilibrium iterations inside each loading step. With this incremental-iterative solution technique, 
the initial displacement estimates are derived as follows: 

 
∆𝐚𝐚𝟏𝟏 = 𝑲𝑲0

−1 𝒓𝒓0   … … … … … . (30)       
Where: 

 𝒓𝒓0   =  𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒
𝑒𝑒+∆𝐭𝐭 − 𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒,0 … … … … … . (31) 

 
The subscript 0 signifies the beginning steps while subscript 1 refers to the first iteration. Hence, the beginning 

internal force is expressed as: 
 

𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒,0 = �𝒁𝒁𝑒𝑒𝑇𝑇  �𝒁𝒁𝑒𝑒𝑇𝑇 � 𝑤𝑤𝑖𝑖(det 𝑱𝑱𝑖𝑖)BT𝛔𝛔𝑖𝑖,0  
.

𝑆𝑆𝑒𝑒
… … … … … . (32)

𝑛𝑛𝑖𝑖

𝑖𝑖=1

𝑛𝑛𝑒𝑒

𝑒𝑒=1
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Where: 
det 𝑱𝑱𝑖𝑖 − is the determinant of the Jacobian used in the transformation between the natural isoparametric 

coordinates (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) and the corresponding Cartesian coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) (see figure 1)? 
 

 
Figure 1: shows the concept of transformation between isoparametric and Cartesian coordinates adapted 

from Stein 1993. 
 
The stress 𝛔𝛔 after the beginning steps (that is the stress in the first iteration) is then derived from eqn. (33) 
 

𝛔𝛔1 = 𝛔𝛔0 + ∆𝛔𝛔1 … … … … … . (33)     
 
As initially mentioned, there is usually a divergence of the actual true solution from the equilibrium solution 

which is why the original force vector 𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒,1 evaluated using the stress 𝛔𝛔1from the first iteration (as given in equation 
33) is not in equilibrium with the external loads 𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒

𝑒𝑒+∆𝐭𝐭  suggesting the need for a correction to the displacement 
increment. The correction of the displacement increment is obtained using the following expression: 

 
d𝐚𝐚𝟐𝟐 = 𝑲𝑲1

−1 𝒓𝒓1 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝒓𝒓1 =  𝒇𝒇𝑒𝑒𝑥𝑥𝑒𝑒
𝑒𝑒+∆𝐭𝐭 − 𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒,1 … … … … … . (34)   

 
∆𝐚𝐚𝟐𝟐 = ∆𝐚𝐚𝟏𝟏 + d𝐚𝐚𝟐𝟐  … … … … … . (35)   

 
𝑲𝑲1 − Is the updated tangential stiffness matrix 
𝒓𝒓1 −  Is the residual force 
Following the pattern of equations (34) and (35) higher iterations can be worked out after the convergence of 

solution is attained for each lo 
ad step until when the residual vanishes. The equations (36) below summarise this correction process 

 

                                      
 
Where the last three steps in eqn. 36 are usually performed for each integration point.  
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𝒇𝒇𝑖𝑖𝑛𝑛𝑒𝑒,   𝑗𝑗+1 = �𝒁𝒁𝑒𝑒𝑇𝑇  �𝑤𝑤𝑖𝑖(det 𝑱𝑱𝑖𝑖)𝐁𝐁𝑖𝑖,𝑗𝑗+1
T𝛔𝛔𝑖𝑖,𝑗𝑗+1   … … … … … . (36.1)

𝑛𝑛𝑖𝑖

𝑖𝑖=1

𝑛𝑛𝑒𝑒

𝑒𝑒=1

 

 

 
 
Figure 2: a). Purely incremental solution procedure 
 

 
b). Incremental-iterative solution procedure 

 
The above figure shows the improvement in numerical results from the pure incremental solution technique to 

incremental-iterative solution technique where equilibrium iterations has been applied to each loading step. Fig. 2.1 
shows a detailed graphical description of how the displacement corrections are added for a single load step while 
table 1 gives the algorithm of the incremental-iterative procedure. 
 

 
 
 
 
 

 
Figure 2.1: graphical illustration of displacement correction for a single load step adapted from 

TU Delft Non-linear slide notes. 
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Table 1: Computational flow in a non-linear finite element code adapted from De Brost et al.2012 

 
 

3. NUMERICAL EXAMPLE OF A STEEL BEAM SUBJECTED TO LOW-SPEED IMPACT LOAD 
 

A numerical simulation of a 30m long steel beam (UB 533𝑥𝑥210𝑥𝑥92 with a thickness of 10.1𝑚𝑚𝑚𝑚) subject to high-
speed impact based on the non-linear theoretical framework discussed above was carried out to investigate the 
deformation and rotation capacity of the steel beam under the impact. 

For this finite element (F.E) simulation, the full Newton-Raphson method was used. The material parameters 
are as follows:  

 
For steel: 

• Young’s Modulus of elasticity;   210737 𝑁𝑁 𝑚𝑚𝑚𝑚2�  
• Poisson ratio                           0.3 
• Yield stress                           200.2𝐸𝐸6   
• Density                                         8E-9 

For rigid impactor: 
• Young’s Modulus of elasticity;     35𝐸𝐸3𝑁𝑁 𝑚𝑚𝑚𝑚2�  
• Poisson ratio                            0.2 
• Density                                           2.5𝐸𝐸 − 07   

 
The displacement history time graph represents the true characteristic nature of dynamic behaviour for a high 

frequency (33𝐻𝐻𝑍𝑍) loading where the unloading cycle appears to be less than I/10000th of a second. This unloading 
time suggests that the impact load is quite severe as the release of instantaneous energy can be assumed from the 
sharp rise in deformation of the beam of almost 250𝑚𝑚𝑚𝑚. This deformation encompasses the initial vertical 
downward displacement, the rebound of the beam in the opposite direction (see fig. 4.2) as well as subsequent 
twisting of the beam. 
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Figure 3: Time history graph 

 
 

 
Figure 4:  Deformation after initial drop 

 
Figure 4.1: Deformation after initial drop 
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Figure 4.2: Rebound displacement 

 
4. NUMERICAL SIMULATION 
  
After the initial displacement as shown in fig.4 and fig. 4.1 above and the rebound displacement of the beam as 

shown in fig. 4.2, the beam continued to vibrate. The amplitude of the vibration reduced to zero in less than a second 
as can be seen from fig. 3. This suggests that the structure is overdamped as the displacement had decayed rather 
exponentially. The vibration of the structure after impact is as shown in figs. 5 to 7. From the frequency (33𝐻𝐻𝑍𝑍) and 
speed of loading as shown in fig. 3, it shows that the beam is able to respond in a rather ductile manner to the impact 
loading of a 2𝑘𝑘𝑘𝑘 rigid impactor dropped from a height of 25𝑚𝑚. However, from the deformed shape of the beam 
element after the impact load, it is considered to have failed as its structural integrity is lost due to excessive twisting 
of the beam.  

Similarly, from the initial drop as shown in fig. 2.1, the beam rotated by 20 and for the rebound displacement 
the rotation was 3.250 which is clearly over the maximum limit to avoid any secondary hazard. Furthermore, the 
rotation at first mode was 4.1680 which is clearly above the maximum rotation value of 40 for steel structures to 
prevent collapse. Implying that the beam has failed. 

 

 
Figure 4.3: Mode shape 1 rotation 
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Figure 6:  Mode shape 2 

 

 
Figure 7:  Mode shape 3 

 
 ANALYTICAL COMPARISM 

 
From the above numerical simulations, the 2𝑘𝑘𝑘𝑘 rigid impactor was only in contact with the beam for a short 

period of time followed by a rebound of the beam due to action of elastic interface restoring force (Aliyu 2019). This 
according to Stronge (2018) can be classified as an elastic impact. Also form the Newtons experimental law of impact, 
the coefficient of restitution for an elastic impact is assumed to be 1 (Stronge, 2018). Hence, the kinetic energy for 
the above elastic impact with a coefficient of restitution 1, according to Mughal and Smith cited in Aliyu (2019), is 
evaluated using the following expression 

 

𝐾𝐾𝐸𝐸′ =  
2𝑀𝑀𝑚𝑚

2𝑀𝑀𝑒𝑒𝑑𝑑𝑠𝑠2

(𝑀𝑀𝑚𝑚 + 𝑀𝑀𝑒𝑒)2 … … … … … . (37) 

 
While the maximum vertical downward displacement (𝑋𝑋𝑚𝑚) as well as the available strain energy (𝜇𝜇) was 

evaluated using the following expressions 
 

𝑋𝑋𝑚𝑚 =
𝐾𝐾𝐸𝐸′

𝐾𝐾(𝑋𝑋𝑒𝑒 − 𝑋𝑋0) +
𝑋𝑋𝑒𝑒 − 𝑋𝑋0

2
… … … … … . (38) 
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𝜇𝜇 =
𝐾𝐾𝐸𝐸′

𝑅𝑅𝑚𝑚(𝑋𝑋𝑒𝑒 − 𝑋𝑋0) +
𝑋𝑋0

2𝑋𝑋𝑒𝑒
+

1
2

… … … … … . (38) 

The maximum allowable vertical downward displacement was equally evaluated using the following expression 
 

𝜇𝜇 =
𝑋𝑋𝑚𝑚
𝑋𝑋𝑒𝑒

… … … … … . (38) 

 
From the above expressions, the maximum vertical downward deflection as well as the allowable maximum 

vertical downward deflection were both found to be 28𝑚𝑚𝑚𝑚. This closely matched the initial vertical downward 
displacement from the Abaqus simulations which was found to be 27.7𝑚𝑚𝑚𝑚 (see fig. 4) 

 
5. CONCLUSION 
  
In a pursuit to analyse non-linear dynamic problems the framework for the displacement based finite element 

method was introduced where material and geometric non-linearity had been considered. Similarly, the incremental 
analysis procedure for non-linear problems have been discussed. The accuracy of the results of deformation 
obtained from this non-linear finite element analysis was compared to those obtained from the analytical technique 
using the energy momentum balance technique as presented by Mughal and Smith cited in Aliyu (2019) which gave 
a maximum vertical downward deflection of 28.0𝑚𝑚𝑚𝑚  after initial impact. This was found to agree with the Abaqus 
vertical downward deflection of 27.7𝑚𝑚𝑚𝑚 after initial impact. Although, the deflection appeared to be within the 
acceptable limits, the beam was considered to have failed as the rotation limits for safe design had been exceeded. It 
has turned out that this displacement-based method of non-linear finite element analysis as well as the energy 
momentum balance technique presented in (Aliyu, 2019) are viable for use practically as it is able to predict with 
98.9% accuracy the behaviour of structures subject to impact load (which is a non-linear dynamic problems) at a 
very reasonable cost. 
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