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ABSTRACT 
Fractal geometry is a subject that studies non-integer dimensional 

figures. Most of the fractal geometry figures have a nested or recursive 
structure. This paper attempts to apply the nested or recursive structure 
characteristics of fractal geometry to wireless sensor networks. We 
selected two filling curves, Node-Gosper and Moore, as our research 
subjects. Node-Gosper Curve is a curve based on node-replacement with a 
fractal dimension of two. Its first-order graph consists of seven basic line 
segments. When the hierarchy becomes larger, it can be filled with a 
hexagonal-like shape. To allow the mobile anchor node of wireless sensor 
networks to walk along this curve, the number of levels of the Node-Gosper 
Curve can be adjusted according to parameters such as the sensing area 
and transmission range. Many space-filling curves have the common 
shortcoming that they cannot loop on their own, that is, the starting point 
and the end point are not close, which will cause the mobile anchor node to 
use extra paths from the end point back to the starting point. The Moore 
curve has a self-loop, i.e., the starting point and the ending point are almost 
at the same position. This paper applies Moore curve to the path planning 
of the mobile anchor node. We can use this path to traverse the entire 
sensing area and stay in the central point of each square cluster to collect 
the information of the nodes where the events occurred. The self-loop 
characteristic of the Moore curve is expected to reach each sensor to collect 
data faster than other space filling curves, that is, the transmission latency 
of the sensor traversal will be reduced.

  
1. INTRODUCTION 
 
Wireless sensor networks (WSNs) use a large number of sensors to cooperate with each other to sense and 

transmit data. The sensor has the characteristics of small size, low power consumption, short transmission distance 
and low cost. First, a large number of sensors are randomly deployed in the area to be sensed to collect various data 
in the environment. The detection data can be temperature, humidity, luminosity, pressure, carbon dioxide 
concentration, etc.[1]. Then wireless or wired networks (such as infrared, radio waves, fiber optic media, etc.) send 
the collected information back to the administrator or user through wireless data collector [1]. 

The entire universe, including the earth on which we live, is composed of fractal geometries of various non-
integer dimensions. We hope to have a linear object that can be repeatedly bent and recursive, and hope that it can 
fill the entire space. The well-known space-filling curve Node-Gosper Curve is shown in Figure 1. It has been 
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proposed a lot of research and applications regarding Node-Gopser Curve [2],[3]. Node-Gosper Curve can be applied 
to the localization of wireless sensor networks[2]. 

 

 
Figure 1: A level-2 Node-Gosper Curve. 

 
This paper addresses the cluster number of the moving trajectory of the Node-Gosper Curve. Meanwhile, we 

will use the Hilbert Curve as shown in Figure 2, and then improve it to the Moore Curve, a space filling curve as 
shown in Figure 3. In this paper, we use the moving anchor node to collect the data of the entire sensing area of 
WSNs. 

 

 
Figure 2: Level 1 to level 4 Hibert Curves 

 

 
Figure 3: Level 1 to level 4 Moore Curve 

 
2. FRACTAL GEOMETRY 
 
Most creatures and objects in the world are constructed or arranged according to fractal geometry. They appear 

to be multiple identical enlarged versions of themselves, such as trees, blood vessels, bronchi, etc. The above objects 
cannot be derived from the traditional Euclidean dimension. The fractal geometry is the result of Mandelbrot's hard 
work and challenges the traditional concept of Euclidean integer dimensions. It is the result of research on objects 
of non-integer dimensions and inconsistent dimensions [4]. 

 
 THE SELF-SIMILARITY OF FRACTAL GEOMETRY 

 
One of the most important characteristics of fractals is self-similarity, which means that no matter how much 

these fractals are enlarged, they look very similar. A small part of its structure looks like the whole object [5],[6]. 

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr


A Study of Fractal Geometry in Wireless Sensor Networks 
 

International Journal of Engineering Technologies and Management Research                                                                                                         60               

 THE GENERATOR OF FRACTAL GEOMETRY 
 
The principle of the generator is to perform certain operations on the original pattern, such as lengthening, 

deforming, etc., to obtain a level 2 pattern. Then perform the same operation on it again to enter the third level; the 
more times you perform, the higher the level, and the smaller the original graph (first level). Finally, when the 
number of layers is close to infinity, the resulting graph is called a fractal [6]. 

We define the aforementioned "space-filling curve" as a curve that can be continuously drawn from a low-
dimensional space (such as a one-dimensional straight line) and converted into a high-dimensional space (such as 
two-dimensional). This curve will be drawn in a specific way to describe the shape of the plane. If this "space filling 
curve" can completely fill a two-dimensional area, it is called a "plane filling curve" or "Peano curve"[7]. 

 
 THE GENERATION METHODS OF FRACTAL GEOMETRIES 

 
There are several common generation methods of fractal geometries, for example, Edge-replacement curves, 

Recursive function systems, Node-replacement curves, Iterated function systems, Branching Fractal Trees, and L-
Systems. The following is a detailed introduction to the Edge-replacement curves, Node-replacement curves, and L-
Systems that we will use in the later section. 

Edge-replacement curves: Replace all edges with smaller first-level graph and repeat recursively. 
Node-replacement curves: Replace all nodes with smaller first-level graph and repeat recursively. Take the 

Hilbert Curves in Figure 4 and Figure 5 as an example. For the first-order Hilbert Curve, the curve divides the plane 
into four squares of equal area, and then connects the center points. The second-order Hilbert Curve is to divide the 
plane into sixteen squares of equal area, then turn the first order appropriately and connect the center points. But 
pay special attention to the second-order Hilbert Curve in Figure 5, if you want to connect the entire graph, you need 
to use additional line segments to connect them (red line segments). This is one of the major characteristics of the 
node-replacement curves. 

 

 
Figure 4: The creation of the first-order Hilbert Curve 

 

 
Figure 5: The creation of the first second-order Hilbert Curve 

 
L-Systems: This system was invented by botanists when describing the growth process of plants. It can use a 

set of simple symbolic recursion rules to describe the production process of complex fractal geometry, as shown in 
the Table 1 [7]. 

Table 1: An example of L-system 
Axiom F 

Constants + − 
Angle 60 

Production rules FF+F--F+F 
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In Table 1, F represents the symbol of the figure, + represents left turn, − represents right turn, 60 represents 
the angle when turning, and rule represents the generation process of the iteration of its fractal geometry. When 
returning to the first-order graph, the F on the right of the rule arrow only needs to be brought into a straight line, 
as shown in Figure 6 for the first-order graph produced by its rule. 

To generate the second-order graph, substitute the F on the right of the rule arrow into the entire first-order 
process. The rule will become  

Rule 1: 
F+F--F+F+F+F--F+F--F+F--F+F+F+F-- F+F 
and the resulting graph is shown in Figure 7. 
 

 
Figure 6: The first order graph generated by Rule 1. 

 

 
Figure 7: The second order graph generated by Rule 1. 

 
3. THE APPLICATION OF FRACTAL GEOMETRY IN WSN 
 
Various fractal geometries have their unique characteristics. Their characteristics can be used in some 

applications of wireless sensor networks after studying and analyzing them. 
 

  NODE-GOSPER CURVE IN LOCALIZATION IN WSN 
 
Reference [3] uses a variant of Gosper Curve, which uses the center points of the regular hexagons as the 

vertexes. The principle is the node-replacement curves introduced in section 2.3, which is named Node-Gosper 
Curve. Let the GPS-equipped mobile anchor node move along this trajectory, and broadcast its current position to its 
neighbor sensors at the center of each hexagonal cluster. Each sensor can estimate the distance between itself and 
the mobile anchor node based on RSSI. When the sensor has more than three estimated distances, it can use the 
Newton approximation method/least square method of reference [9] to determine its own position. 

 
  DATA COLLECTION OF NODE-GOSPER CURVE 

 
Reference [10] uses a mobile anchor node along the Node-Gosper curve to collect data. The mobile anchor node 

broadcasts at the center of each hexagon along a predetermined trajectory. Sensors within its range will receive the 
broadcast. After receiving the broadcast, the sensors will send the data to the mobile anchor node at the central 
point. If the mobile anchor node is used to collect sensor data, the transmission distance of the sensor will be greatly 
reduced. The mobile anchor node will contact each sensor in the entire sensing area with a predetermined trajectory, 
so there will be no sensors that cannot be routed to. 
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4. THE LOCALIZATION OF SENSORS USING NODE-GOSPER CURVE AND THE DATA COLLECTION OF 
SENSORS USING MOORE CURVE 

 
Through the L-Systems of Node-Gosper Curve, we know its walking route in a certain level, but we don’t know 

the cluster number it walks on. Therefore, this paper will study Node-Gosper Curve and write it as L-Systems to 
achieve the addressing of Node-Gosper Curve. We also studied a space-filling curve, Moore Curve. We researched 
and analyzed it, and applied it to data collection in wireless sensor networks according to its characteristics and 
advantages. 

 
 CHARACTERISTICS OF NODE-GOSPER CURVE 

 
Gosper Curve is a curve with fractal dimension of 2, which can fill a hexagonal area. Level-1 Gosper Curve is 

shown in Figure 8. 
 

 
Figure 8: Level-1 Gosper Curve 

 

 
Figure 9: G-type and R-type of level-1 Node-Gopser Curve 

     
Taking the center point of the regular hexagon cell as the vertex, we can use the node introduced in 2.3 to replace 

the curve and name it as Node-Gosper Curve. Node-Gosper curves can be divided into two types: G-type and R-type, 
as shown in Figure 9. The L-Systems rules of Node-Gosper Curve are shown in Table 2 [4]. 

 
Table 2: The L-Systems rules of Node-Gosper Curve 

G  G rr ↑l R rr ↑l Rr ↑ ll Gr ↑ll G rr ↑l G r↑ll R|                                 
     ↑ rr ↑ r ↑ ll ↑ l ↑ l ↑ 

 
R  G rr ↑l Rr ↑ ll R rr ↑l R rr↑l G r↑ ll Gr ↑ llR|                                 

     ↑ r ↑ r ↑ rr ↑ l ↑ ll ↑ 
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In the rules, r means turning to the right by 60°, l means turning to the left by 60°, and ↑ means moving straight 
to the next area. According to this rule, the line segment of Gosper Curve of any level of G-type or R-type can be 
obtained. Figure 10 shows the level-2 G type. 

 
Figure 10: Level-2 G-type Node-Gosper Curve 

 
  ADDRESSING OF NODE-GOSPER CURVE 

 
The numbering method of the Node-Gosper Curve is described in Reference [11], and we use the level-1 Node-

Gosper Curve in Figure 11 to illustrate. 
 

 
Figure 11: Cluster number of Level-1 Node-Gosper Curve 

 
First, determine the number of digits, because the number of levels in Figure 11 is one, so the number of digits 

is also one. The next step is to determine the number of blocks. Since the Node-Gosper Curve of the nth level is 
composed of seven (n-1) Node-Gosper Curves, Figure 11 is composed of 7 Node-Gosper Curves of the zeroth order 
blocks. Therefore, seven one-digit numbers are used to address the level one Node-Gosper Curve in Figure 11. The 
number starts from 0 in the center, 1 at the top, and then numbered counterclockwise in sequence. The result of the 
numbering is shown in Figure 11. 

Then take the level-2 Node-Gosper Curve in Figure 12 to illustrate. First, determine the number of digits, 
because the number of levels in Figure 12 is two, so the number of digits is also two. Next, determine the number of 
blocks. Since the Node-Gosper Curve of the n-th level is composed of seven level-(n-1) Node-Gosper Curves, Figure 
12 is composed of 7 Node-Gosper Curves of the first level blocks. Therefore, 49 two-digit numbers are used to 
address the level-2 Node-Gosper Curve in Figure 12. The number starts from the center (0,0), the first digit 
represents the cluster number of the second level, and the second digit represents the cluster number level-1. The 
result numbering is shown in Figure 12. 
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Figure 12: Numbering of level-2 Node-Gosper Curve 

 
Then, as mentioned before, the Node-Gosper Curve is divided into G-type and R-type, and after substituting into 

L-System, a path of either G-type or R-type can be generated. We define the following rules. 
 
Definition Rules: 
1) Let n be the number of levels. Number of digits = n. The number of blocks = 7n. Symbol G2=G-type second-

order path. Symbol R2=R-type second-order path. 
2) The G-type rule of the path after the second order is G, R, R, G, G, G, R (as shown on the left in Figure 13). 
        The R-type rule for the path after the second order is G, R, R, R, G, G, R (as shown on the right in Figure 13). 
3) The first G of G-type is the first block, the second R is the second block, ..., the seventh R is the seventh block.  
         The first G of the R type is the first block, the second R is the second block, ..., the seventh R is the seventh    

block. 
4) Define operation y (x1, x2, x3, x4, x5, x6, x7) = (yx1, yx2, yx3, yx4, yx5, yx6, yx7). For example, 5(5,4,0,6,1,2,3) = 

(55,54,50,56,51,52,53) 
       The number of digits increases from right to left. For example, 3 in number 53 is the first digit and 5 is the 

second digit. 
5) Use a base-7 number system to subtract (add) the last n−1 digit. The rules are as follows: 

Type G: The third block of R requires −2, the fourth block of G requires −2, and the seventh piece of R 
requires +2. 

Type R: The fourth block of R needs −2, the fifth block of G needs +2, and the sixth block of G needs −2. 
 
For example: (65,64,60,66,61,62,63) − 2= (63,62,65,64,66,60,61). 
 

 
Figure 13: Level-2 G-type and R-Type of Node-Gosper Curve 
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Therefore, the L-Systems rules for Node-Gosper Curve addressing are as follows. 
 

G1   5,4,0,6,1,2,3                                                         
R1   5,4,3,2,0,6,1 

                                                         
Gn   5(Gn-1), 4(Rn-1), 0(Rn-1)-2, 6(Gn-1)-2, 1(Gn-1),                      

       2(Gn-1), 3(Rn-1) +2 
Rn   5(Gn-1), 4(Rn-1), 3(Rn-1), 2(Rn-1)-2, 0(Gn-1) +2,                       

       6(Gn-1)-2, 1(Rn-1) 
 
Because the Node-Gosper Curve of the nth level is composed of seven (n-1) levels of Node-Gosper Curve, the +2 

or -2 is changed for its n-1 digits (the number of the previous level)). The reason for this change is that as the number 
of levels of the Node-Gosper Curve increases, its G or R type will rotate accordingly. When rotating, only the part 
with the center number 0 will not rotate. Therefore, the zero-free hexadecimal system is adopted. The rotation 
situation is shown in Figure 14. 

 

 
Figure 14: Schematic description of L-Systems of Node-Gosper Curve 

 
For example, if you want to know the addressing of the level-2 G-type and R-type Node-Gosper Curve path, you 

can get the following addressing path after substituting it into L-Systems, as shown in Table 3. The graph is shown 
in Figure 15. 

 
Table 3: Addressing path of level-2 G-type and R-type of Node-Gosper Curve 

G2  (55,54,50,56,51,52,53), (45,44,43,42,40,46,41),       
      (03,02,01,06,00,04,05), (63,62,60,64,65,66,61),       
      (15,14,10,16,11,12,13), (25,24,20,26,21,22,23),   

      (31,36,35,34,30,32,33) 
R2  (55,54,50,56,51,52,53), (45,44,43,42,40,46,41),      

      (35,34,33,32,30,36,31), (23,22,21,26,20,24,25),      
      (01,06,00,02,03,04,05), (63,62,60,64,65,66,61),    

      (15,14,13,12,10,16,11) 
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Figure 15: Addressing path of G-type and R-type of Node-Gosper Curve 

 
 DATA COLLECTION OF WSN USING MOORE CURVE 

 
Many space-filling curves are introduced in reference [2]. In most of the space-filling curves, it is found that they 

have a common point, that is, the start point and the end point are far away. If the anchor node is moved according 
to the pre-defined space filling curve, when collecting sensor data repeatedly in the entire sensing area, it will 
consume extra power to go back to the starting point again after reaching the end point. 

    However, there is a very special filling curve called Moore curve. Its starting point and ending point are very 
close (the higher order is almost connected together), so it can collect sensing data along this route repeatedly 
without taking additional paths, as shown in Figure 16. The Moore curve is a deformation of the Hilbert curve in 
Figure 17, so it is also called the recursive Hilbert curve. 

 

 
                   

Figure 16: Level 1 to level 6 Moore curves 
 

 
Figure 17: Level 1 to level 6 Hibert curves 

 
The L-Systems of Moore curve is shown in Table 4 [4]. 
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Table 3: L-Systems of Moore curves 
Alphabet L, R 
Constants F, +, − 

Axiom LFL+F+LFL 
 

Production rules 
L → −RF+LFL+FR− 
R → +LF−RFR−FL+ 

 
5. SIMULATIONS 
 
Because the mobile anchor node can repeatedly collect sensor data along the Moore curve without redundant 

paths. Therefore, we estimate that among many space-filling curves, the Moore curve will have good performance in 
terms of delay in collecting data. Under the same sensing area, we divide it into several square clusters. Let the 
moving anchor node moves along the three space filling curves of SCAN, Hilbert curve and Moore curve, as shown in 
Figure 18. The mobile anchor node moves along a predetermined trajectory and broadcasts at each cluster center 
point. The sensors within the sensing range of the mobile anchor receive the broadcast message and send the data 
to the mobile anchor node at the central point. The mobile anchor node repeatedly walks in the sensing area and 
collects sensor data. We study the delay performance of several space filling curves when applied to data collection. 

 

 
Figure 18: Three space filling curves of SCAN, Hilbert curve, and Moore curve 

 
 SIMULATION ENVIRONMENT 

 
Parameters  Values 

Sensing area  226.2742m × 226.2742m = 51187.7955m2 
The radius of the circumscribed circle of the small 

square cluster 
10m 

Side length of small square cluster 14.1421m 
The number of mobile sinks 1 

Communication range of mobile sink 5.5m 
Number of sensors  500 

Communication range of each sensor 5.5m 
Number of clusters 256 

Moving speed of mobile sink 
 

Accelerate from standstill to 5m/s (taking into account 
acceleration) 

The residence time of the mobile sink in each cluster 
center 

1 sec 
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 SIMULATION RESULTS 
 
The moving speed description of the mobile anchor node is shown in Figure 19, where the distance from point 

A to point C is the distance from the center of right cluster to the center of the left cluster, and its length is 14.1421 
meters. The distances from Point A to Point B and Point B to Point Care half of the distance from point A to point C, 
which is 7.0710 meters. 

 

 
Figure 19: the description of moving speed 

 
At the beginning, the mobile anchor node stays at point A for 1 second to collect the sensing data of this cluster, 

then it starts at a speed of 0m/s, and accelerate in the middle. When it reaches point B, the speed will reach exactly 
5m/s. The mobile anchor node is at Point B continues to advance at a speed of 5m/s and decelerates all the way. 
When it reaches point C, the speed drops to 0m/s. At this time, it stays for 1 second to collect the sensing data of this 
cluster. 

The mobile anchor node will repeatedly walk in the entire sensing area in this way and collect sensing data. 
Next, we will calculate how much time it takes to move the anchor node from point A to point C. Using the following 
formula provided in Reference [13] will help us to perform the calculatation. First, let V2 be the final velocity, a be 
the acceleration, t be the time, and x be the moving distance. Assuming the original velocity is 0: 

 

 �𝑉𝑉2
2 = 2𝑎𝑎𝑎𝑎                                (1)

𝑉𝑉2 = 𝑎𝑎𝑎𝑎                                    (2) 

 
If the initial velocity is V1 ≠ 0, then 

�𝑉𝑉2
2 = 𝑉𝑉12 + 2𝑎𝑎𝑎𝑎                        (3)
𝑉𝑉2 = 𝑉𝑉1 + 𝑎𝑎𝑎𝑎                            (4)  

 
Calculating based on our simulation parameters, it takes a total of 5.6568 seconds from point A to point B.  
 
One round means that the mobile anchor node starts from the starting point and returns to the starting point 

again after traversing the entire sensing area. However, because SCAN and Hilbert curve require additional paths to 
go back to the starting point, we choose the shortest straight path to let it go back to the starting point, as shown in 
the green straight line in Figure 20. 

 

 
Figure 20: The returning paths (green lines) of SCAN and Hilbert curve 
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Therefore, we calculate the total path length of the three space filling curves for one round, and the results are 
shown in Table 5. The total path length of the Moore curve is the shortest. 

 
Table 5: The total path length of three space filling curves for one round 

 SCAN Hilbert curve Moore curve 
Path length for one round 3818.367m 3825.43805m 3620.3776m 

 
In the simulation, we create 500 sensors generating events randomly. If the mobile anchor node walks for a 

round, there will be 10 sensors generating events, then the event frequency is 10. We simulated a total of five 
different event frequencies, each of which is a different network topology. When the three space filling curves are 
simulated under the same frequency of events, they all walk under the same network topology for a total of 500 
rounds. We measured how long the sensor was delayed from generating an event until it sent the data to the mobile 
anchor node. The results are shown in Table 6 and Figure 21. 

 
Table 6: the delay simulation results of the three space-filling curves 
              Space-filling curves 

Event frequencies 
Scan Hilbert Moore 

10 870.517sec 866.557sec 839.487sec 
30 865.430sec 868.286sec 853.044sec 
60 874.463sec 866.815sec 849.483sec 

100 868.732sec 868.609sec 853.266sec 
150 874.722sec 868.417sec 850.188sec 

 

 
Figure 21: Delay simulation of the three space filling curves 

It was previously calculated that the total path length of the Moore curve was the shortest. The simulation 
results are in line with expectations, and the delay of the Moore curve is the lowest. 

 
6. CONCLUSION 
 
In this thesis, we analyzed the Node-Gosper Curve, proposed the addressing rules of its path, and applied it to 

the path planning of the mobile anchor node. It helped the localization of sensors and operation of data collection. In 
addition, we apply Moore curve to path planning of the mobile anchor nodes in WSN and to regularly collect data of 
the target node in the sensor network. Due to the self-loop characteristics of the Moore curve, through our simulation 
experiment, it proves that the Moore curve can reach each sensor to collect data faster than other space filling curves. 
This reduces the transmission delay of the sensor. In the future, we will change the simulation parameters, such as 
the speed of the mobile anchor node in the sensing network, the position of point B in Figure 19, the number of 
sensors, the size of the sensing area, and the radius of the cluster circumcircle. We will further analyze its impact on 
the collection of sensing data by mobile anchor nodes in the Moore curve. 
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