
ISSN: 2454-1907 International Journal of Engineering Technologies and Management Research
 June 2020, Vol 7(06), 141 – 151
 DOI: https://doi.org/10.29121/ijetmr.v7.i6.2020.712

© 2020 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited. 141

EFFICIENT OPERATIONS IN LARGE FINITE FIELDS FOR ELLIPTIC
CURVE CRYPTOGRAPHIC

Yan-Haw Chen 1, Chien-Hsing Huang *2

*1, 2 Department of Department of Information Engineering I-Shou University, Kaohsiung, Taiwan
84008, Republic of China

DOI: https://doi.org/10.29121/ijetmr.v7.i6.2020.712

Article Citation: Yan-Haw Chen,
and Chien-Hsing Huang. (2020).
EFFICIENT OPERATIONS IN LARGE
FINITE FIELDS FOR ELLIPTIC
CURVE CRYPTOGRAPHIC.
International Journal of Engineering
Technologies and Management
Research, 7(6), 141-151.
https://doi.org/10.29121/ijetmr.v7
.i6.2020.712

Published Date: 27 June 2020

Keywords:
Elliptic Curve
Encryption
Finte Field
Horner Rule
Dynamic Lookup Table
Multiplication

ABSTRACT
An efficient method to compute the finite field multiplication for

Elliptic Curve point multiplication at high speed encryption of the message
is presented. The methods of the operations are based on dynamic lookup
table and modified Horner rule method. The modified Horner rule method
is not only to finite field operations but also to Elliptic curve scalar
multiplication in the encryption and decryption. By comparison with using
Russian Peasant method and in the new proposed method, one of the
advantages of utilizing the proposed algorithm is that in the Elliptic Curve
point addition are reduced by a factor of three in GF (2163). Therefore,
using the Algorithm 1 running on Intel CPU, computation cost of the
multiplication method is above 70% faster than using standard
multiplication by Russian Peasant method. Ultimately, the proposed
Algorithm 1 for evaluating multiplication can be made regular, simple and
suitable for software implementations.

1. INTRODUCTION

In theory, a finite field is an algebraic structure with established operations for addition, subtraction,

multiplication, and division by satisfying an Abelian group. These operations have following four properties closure,
associativity, commutativity, and having an inverse element. Galois Fields GF(2m) have a wide variety of applications
utilized in the cryptographic standards of ANSI and error correction code (Chen authors, 2016). The industry uses
Elliptic curve groups over the large finite fields of GF(2m) and GF(p), Koblitz EC groups in GF(2m) (Koblitz, 1987)
faster than GF(p). The operation modulo is using binary irreducible polynomial in finite field (Scott, 2007; Hasan
authors, 1992) that is suitable for resource-constrained systems, such as cellphone, networked wireless sensors, and
smart cards. The most efficient and secure cryptographic system in use today is known as elliptic curve cryptography
(ECC) and is based on the concept of elliptic curves built over Galois fields (Savas & Ko_c, 2010). NIST recommended
curves: Koblitz GF(2m), where m is 163, 233, 283, 409, and 571. Elliptic curves are a type of cubic equation of the
form y2=x3+ax+b, where a and b represent coefficients. When elliptic curves are operation in Galois Field, the points
on the curve can be form an Abelian group making it operations to addition of two points on the curve, or the point
doubling. ECC encryption and decryption data in Galois Field that is popular the form y2+xy=x3+ax2+b, where a and
b represent coefficients. The operation on elliptic curves is scalar multiplication (Ansari & Hasan, 2011) which refers
to multiplying a Point P by an integer k, resulting in the Point k*P scalar multiplication not only dominates the

https://creativecommons.org/licenses/by/4.0/
mailto:raylan@isu.edu.tw
https://crossmark.crossref.org/dialog/?doi=10.29121/ijetmr.v7.i6.2020.712&domain=pdf&date_stamp=2020-07-01

Efficient Operations in Large Finite Fields for Elliptic Curve Cryptographic

International Journal of Engineering Technologies and Management Research 142

execution time of ECC algorithms, but it is also essential to the security in systems. In GF(2m), the addition and the
subtraction are the same XOR instruction in the processor. However, both multiplication and inversion operations
are complicate in cryptographic systems; they are due to finite field of size m (Kobayashi & Takagi, 2008; Jing
authors, 2006; Luo authors, 2012; Wang authors, 1983; Mahboob & Ikram, 2005; Brwon, 1971). The multiplication
and inverse are required while using the Diffie-Hellman key exchange protocol on an elliptic curve (Dong & Li, 2008),
as specified in ANSI X9.62 is required many multiplications and inverses. Therefore, to develop efficient arithmetic
operations have high-speed computation that needs for using available technologies. In the past, the multiplication
algorithm can be used to look-up tables, which have proposed in (Mahboob & Ikram, 2005). The lookup table method
is pre-compute to reduce the number of operations required during the computation through the pre-computation
and to reduce the effective computation time for multiplication by suitable width of the registers of the processor to
achieve higher computation speed. The new algorithm has two properties: First, it utilizes the dynamic lookup table
by precomputing input data and save memory. Second, it uses modified Horner rule for iteration loop and can
determine the table entries quickly. The operation of inverse usually utilizes the polynomial modular mathematic
called Euclidean algorithm (Brwon, 1971; Dong & Li, 2008), in which is hard to be known the worst cases execution
time. The Fermat's Little Theorem also uses to compute inverse because the worst cases execution time can found.
The adaptation of Itoh-Tsujii method (Guajardo & Paar, 2002) for standard basis, particularly for Optimal Extension
Fields has been effective in achieving fast inversion. However, despite recent improvements, inversion is still the
slowest operation in elliptic curve implementations (Agnew authors, 1993; Choi authors, 2002; Kumar, 2006). Finial,
this issue is addressed by proposing multiplication methods that the execution time is faster than which measured
for others multiplication execution time and it can be speed up establish a shared security over an insecure channel,
Elliptic curve Diffie–Hellman (ECDH) (Diffie & Hellman, 1976).

2. PRELIMINARIES

Let im

i i xaxA ∑ −

=
=

1

0
)(and ∑ −

=
=

1

0
)(m

i
i

i xbxB be polynomial over the finite field GF(2m), where ai, bi ∈ {0, 1}. The

multiplication in the finite field is defined as follows:

),(mod)()()(xFxBxAxC ⋅≡ (1)

where the polynomial F(x) is the irreducible polynomial. There is common method utilizing Horner rule for

computing multiplication, which is rewritten (1) in the following form, where the B(x) polynomial is represented as
binary vector),,,(021 bbbB mm −−= , where)2(GFbi ∈ .

F(x).Ba

B)xaB)xaB)x((axC mm

mod
()(

0

121

+
+++≡ −− 

 (2)

The ECC with multiplication is irreducible polynomial 121 +++++= − xxxxf mm  . In (1), the Russian Peasant

method can be written as a function in C programming as follows:

Russian Peasant method
GFM(a, b){
c = 0;
cbit=1<<m;
for i = 0; i < m; i=i+1
 if (b & 1)
 c ^= a;
 if (a & cbit)
 a = (a << 1) ^ f;
 else
 a <<= 1;

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

Yan-Haw Chen, and Chien-Hsing Huang

International Journal of Engineering Technologies and Management Research 143

 b >>= 1;
 }
return c;
}

The inverse element of A in finite field GF(2m) is derived by Fermat’s Little Theorem, which is given by

 .222221 21 +++−− −−

== mmm

AAA (3)

Many multiplications are required in common method of the inverse, which need 2m-3 multiplications for

calculating inverse element. In others word, it need more computation time for computing inverse but using number
theory can reducing multiplication that is only m-1 multiplications. The inverse operation also can use the extended
Euclidean algorithm.

).(mod1)()(,1)()()()(xFxtxAwherextxAxsxF ≡=+ (4)

Thus, the remainder of division t(x) by mod F(x), where F(x) is irreducible polynomial, that is the multiplicative

inverse of A(x) mod F(x). The compute the inverse element over finite field GF(2m) and the extended Euclidean
algorithm also can use for computing multiplicative inverse in finite field. However, Euclidean division operation is
hard to know the maximum execution time when the number is large. Points P=(x1, y1) and Q=(x2, y2) on the curve,
assume 21 xx ≠ . Let dxy += λ be the line that intersects P and Q, the value of the λ slope needs calculating inverse.

baxxxyyyxf ++=+= 232),(

)2(),,(),(2
mGFyxfbaE m →

If ≠Q, P + Q = R = (x3, y3)

33113

1
2

3

12

12

)(xxxyy
axx

xx
yy

+++=
+++=

+
+

=

λ
λλ

λ

(5)

If P = Q, P + Q = R = 2P = (x3, y3)

33113

2
3

1

1
1

)(xxxyy
ax

x
yx

+++=
++=

+=

λ
λλ

λ

(6)

For example, 1)(),2(33 ++= xxxpGF .

.),(),(0233203
23 αααα ++=+→→ xxxyyyxfE

Let P and Q be curve point, where),(),,(2211 yxQyxP == .
),(33 yxR = , the point of R is equal P point addition Q point.

We know that the slope is
12

12

xx
yy

+
+

=λ . The function of line is xy λ= .

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

Efficient Operations in Large Finite Fields for Elliptic Curve Cryptographic

International Journal of Engineering Technologies and Management Research 144

3. IMPLEMENTATION OF MULTIPLICATION IN LARGE FIELDS GF(2m).

Using a two-term polynomial wl axa + is designed for finite field multiplication, where)2(, GFaa wl ∈ . Let

2 mod mq ≡ , where the value of the remainder q is either 0 or 1. Therefore, the computation of ∑ −

=
=

1

0
)(m

i
i

i xaxA

can be replaced by the following equation:

 

01

12/)2(

0

)22(
2212)()(aqxaxaxaxaxA q

qq

m

i

im
imim ⋅+








+++= +

−−

=

−−
−−−−∑ , (7)

A substitution of Equation (7) into Equation (1) yields,

 

).(mod

)()(01

12/)2(

0

)22(
2212

xF

aqBxBaBxaxBaBxaxC q
qq

m

i

im
imim 










⋅+








+++≡ +

−−

=

−−
−−−−∑ (8)

A two-term polynomial BaBxa imim 2212 −−−− + can be pre-computed in order to generate a table of values. To see

this, let wlwl aBxaaaL +=),(be an array as lookup table, where 12 −−= iml and 22 −−= imw . Therefore, a

substitution of),(wl aaL into Equation (8) yields
 









⋅+








+≡ ⋅

+

−−

=
∑ BaqxaaLxaaLxC q

qq

m

i

w
wl 01

12/)2(

0
),(),()(

)(mod xF . Note that denotes the largest integer less than or equal to x. This implies that  ∑ −−

=

12/)2(

0
),(m

i
w

wl xaaL

can be represented by the use of Horner's rule form. It becomes

 

    .)),()),(

)),(),((((),(

2
2)12/)2((21)12/)2((2

2
65

2
43

2
21

12/)2(

0

xaaLxaaL

xaaLxaaLxaaL

mmmmmm

mmmm

m

i

w
wl

−−−−−−−−−−

−−−−

−−

=

++

++=∑



 (9)

The product of),(wl aaL and 2x is required module F(x) that can be reduce polynomial degree by a module

lookup table M. The lookup table M is by making the polynomial F(x). An irreducible polynomial F(x) is a trinomial
xm+xk+1 or a binary pentanomial xm+xk+xk1+xk2+1 (Hankerson authors, 2004). First, the modulo operation with
lookup table is in term of the irreducible polynomial F(x)=fmxm+fkxk+fk1xk1+fk2xk2+1, where fi is belong to {0, 1}, for
computing modulo polynomial. Let f= fkxk+fk1xk1+fk2xk2+1 are the value of polynomial. Scheme 1, in step 2 needs table
M to make L dynamic lookup table. The table M is as shown in Table 1.

Note that, the reduction table method requires that m−k ≥ wb, where wb is the number of terms polynomial in

polynomial A(x). If m-k is less than wb, the reducing polynomial f to make lookup table cause polynomial B is
dependent. It can’t use lookup table M for reducing the polynomial degree. The pre-computing reduction table is
shown in Table 1.

Table 1: Pre-computing reduction M table
M[ai, aj] reduction f Result
M[0, 0] (0f << 1)+0f 0
M[0, 1] (0f <<1)+1f f
M[1, 0] (1f <<1)+0f f << 1
M[1, 1] (1f <<1)+1f M[1, 0]+ M[0, 1]

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

Yan-Haw Chen, and Chien-Hsing Huang

International Journal of Engineering Technologies and Management Research 145

The lookup table M can be reduced polynomial degree, the leader coefficient of polynomial in degree m-1
multiplied by x is become of degree m that meaning needs the table M to reduce the polynomial degree. The
multiplication by x is represented as binary form shift left one position (i.e., B=1101, B << 1=1010). The terms

BaBxa ji + can combinations of two bits for computing dynamic lookup table in Table 2.

Table 2: Two terms dynamic Lookup table
L[ai, aj] aiBx modF(x)+ajB Result
L[0, 0] 0Bx+0B 0
L[0, 1] 0Bx+1B B
L[1, 0] 1Bx+M[0, bm-1]+0B (B << 1)+M[0, bm-1]
L[1, 1] 1Bx+ M[0, bm-1]+1B L[1, 0]+L[0, 1]

Where bm-1 is leader of the polynomial),,(021 bbbB mm += −−  . Let U=),(wl aaL be binary vector

),,,(021 uuuU mm −−= , the)(mod),(2 xFxaaL wl can be represented as),(2 21 −−+<< mm uuMU , where
2<<U is left-shift operation the binary vector (i.e.,)0,0,,,,(2 043 uuuU mm −−=<<). Consequently, the scheme

of multiplication for computing the two terms polynomial called Scheme 1, is proposed as follows:

Scheme 1: Multiplication Using Look up Table (LUT) Computation

1) Compute 2 mod mq ≡ , where m is the element of bit sizes.
2) Set the initial message C to be zero.
3) To make reduction),(wl aaM table as shown in Table 1
4) Computing),(wl aaL table as shown in Table 2.

5) for i = 0 to 



 −

2
)2(m

-1 do

6) Read bits 12 −− ima and 22 −− ima from the polynomial A(x)

7)),(2212 −−−−+← imim aaLCU
8)),()2(21 −−+<<← mm uuMUC
9) end for i

10)),(1 qq aaLCU ++←
11) BaqququMqUC mm 021),()(⋅++<<← −−

Scheme 1, the lookup table require the memory of the size m⋅22 bits. For example, the GF(2163) requires 4 LUTs.

Those tables can be dynamic pre-calculated and can then be stored in memory. The simplest approach is to use a
pair of),(wl aa , where la and wa are bit value, for evaluating multiplication in LUTs derived from Scheme 1, which
requires only 80 iterations for evaluating a multiplication.

If a three-term polynomial xwl axaxa ++2 is designed for computing multiplication, 3 mod kq ≡ , It can be

divided into 



 −

3
)3(m unites into A(x). In equation (1) can be replaced by following a three-term polynomial for

multiplication. It is called Scheme 2 as follows:

Scheme 2: Multiplication LUT Computation

1) Compute 3 mod mq ≡ , where m is the element of bit sizes.
2) Set the initial the value of C to be zero.
3) To make reduction),,(xwl aaaM table as shown in Table 3

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

Efficient Operations in Large Finite Fields for Elliptic Curve Cryptographic

International Journal of Engineering Technologies and Management Research 146

4) Computing),,(xwl aaaL table as shown in Table 4.

5) for i = 0 to 



 −

3
)3(m -1 do

6) Read elements 13 −− ima , 23 −− ima and 33 −− ima

7)),(332313 −−−−−− ++← ikimim aaaLCU
8)),,()3(321 −−−+<<← mmm uuuMUC
9) end for i

10)),,(312 ++++← qqq aaaLCU

11)
)(mod)()sgn(),,0(

1

0
21 xFBxaquuMqUC

q

j

j
jmm ∑

−

=
−− ⋅++<<←

Where 



=
>

=
0. if 0
0, if 1

)sgn(
q
q

q

Table 3: Pre-computing reduction M table
M[ai, aj] reduction f Result
M[0, 0, 0] (0f<<1)+0f 0
M[0, 0, 1] (0f<<1)+1f f
M[0, 1, 0] (1f<<1)+0f f<<1
M[0, 1, 1] (1f<<1)+1f M[0, 1, 0]+M[0, 0, 1]
M[1, 0, 0] (1f<<2)+(0f<<1)+0f f<<2
M[1, 0, 1] (1f<<2)+(0f<<1)+1f M[1, 0, 0]+M[0, 0, 1]
M[1, 1, 0] (1f<<2)+(1f<<1)+0f M[1, 0, 0]+M[0, 1, 0]
M[1, 1, 1] (1f<<2)+(1f<<1)+1f M[1, 0, 0]+M[0, 1, 1]

Table 4: Three term dynamic lookup table

L[al, aw, ax] alBx2 modF(x)+awBx modF(x)+axB
L[0, 0, 0] 0
L[0, 0, 1] B
L[0, 1, 0] (B<<1)+M[0,0, am-1]
L[0, 1, 1] L[0, 1, 0]+L[0, 0, 1]
L[1, 0, 0] (B<<2)+M[0, am-1, am-2]
L[1, 0, 1] L[1, 0, 0]+L[0,0,1]
L[1, 1, 0] L[1, 0, 0]+L[0,1,0]
L[1, 1, 1] L[1, 0, 0]+L[0,1,1]

Scheme 2, the lookup table require the memory of the size m⋅32 bits. For example, the GF (2163) requires 8 data

in lookup table. Those tables can be dynamic pre-calculated data to store in memory. The simplest approach is to
use three for),,(xwl aaa , where la , wa , and xa are bit value, for precomputing data in Table 3 and in Table 4.
Scheme 2 used Table 3 and Table 4 operation, which requires only 53 iterations for evaluating a multiplication,
however, they would be increased time to make dynamic lookup table. Characteristic two in this is case due to work
described in (Gaudry authors, 2000) m to be prime. According to Scheme 1 (i.e., using Table 1 and Table 2) and
Scheme 2 (i.e., using Table 3 and Table 4), If the value of m is odd number, the multiplications can be designed as
Algorithm 1.

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

Yan-Haw Chen, and Chien-Hsing Huang

International Journal of Engineering Technologies and Management Research 147

So, Algorithm 1 can use reducing polynomial f(x) in Table 5 and wd-term polynomial A(x) in Table 6. These
precomputing the table of the size is 2wd, where wd is the number of terms polynomial (i.e.,

0
2

2
1

1 axaxa wd
wd

wd
wd +++ −

−
−

− ). The flowchart is as shown in Figure 1.

Table 5: Pre-computing wd2 reduction table

M[021 ,,, aaa wdwd −−] reduction f Result

M[0,…,0, 0, 0] 0++(0f<<1)+0f 0
M[0,…,0, 0, 1] 0++ (0f<<1)+1f f
M[0,…,0, 1, 0] 0++ (1f<<1)+0f f<<1
M[0,…,0, 1, 1] 0++ (1f<<1)+1f M[0,…,0, 1, 0]+M[0,…,0, 0, 1]
M[0,…,1, 0, 0] 0++ (1f<<2)+ (0f<<1)+0f f<<2
M[0,…,1, 0, 1] 0++ (1f<<2)+ (0f<<1)+1f M[0,…,1, 0, 0]+M[0,…,0, 0, 1]
M[0,…,1, 1, 0] 0++ (1f<<2)+ (1f<<1)+0f M[0,…,1, 0, 0]+M[0,…,0, 1, 0]
  
M[1,…,0, 0, 0] (1f<<wd-1)++0f f<<wd-1
  
M[1,…,1, 0, 1] (1f<<wd-1)++(0f<<1)+1f M[1,…,0, 0, 0]+M[0,…,1, 0, 1]
M[1,…,1, 1, 0] (1f<<wd-1)++(1f<<1)+0f M[1,…,0, 0, 0]+M[0,...,1, 1, 0]
M[1,…,1, 1, 1] (1f<<wd-1)++(1f<<1)+1f M[1,…,0, 0, 0]+M[0,…,1, 1, 1]

Table 6: wd2 -term polynomial for dynamic lookup table

L[0121
,,,, kkkk aaaa

wd


−])(mod1
1

xFBxa wd
kwd

−
− + +)(mod

1
xFBxak + Bak0

L[0,…,0, 0, 0] 0
L[0,…,0, 0, 1] B
L[0,…,0, 1, 0] (B<<1)+M[0,…,0, 0, bm-1]
L[0,…,0, 1, 1] L[0,…,0, 1, 0]+L[0,…,0, 0, 1]
L[0,…,1, 0, 0] (B<<2)+M[0, am-1, am-2]
L[0,…,1, 0, 1] L[0,…,1, 0, 0]+L[0,…,0, 0, 1]
L[0,…,1, 1, 0] L[0,…,1, 0, 0]+L[0,…,0, 1, 0]
 
L[1,…,0, 0, 0] (B<<wd-1)+M[0, bm-1, bm-2,…, bm-wd]
 
L[1,…,1, 0, 1] L[1,…,0, 0, 0]+L[0,…,1, 0, 1]
L[1,…,1, 1, 0] L[1,…,0, 0, 0]+L[0,…,1, 1, 0]
L[1,…,1, 1, 1] L[1,…,0, 0, 0]+L[0,…,1, 1, 1]

Algorithm 1: Multiplication dynamic Lookup table computation

GFM (A, B):

1) Compute wdmq mod ≡
2) Set the initial the value of C to be zero
3) To make reduction),,,(

110 −wdkkk aaaM  table as shown in Table 5

4) To make dynamic lookup table),,,(
110 −wdkkk aaaL  as shown in Table 6

5) for i = 0 to 



 −

wd
wdm)(-1 do

6) Read elements 13 −− ima , 23 −− ima ,…, and wdima −−3

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

Efficient Operations in Large Finite Fields for Elliptic Curve Cryptographic

International Journal of Engineering Technologies and Management Research 148

7)),(32313 wdikimim aaaLCU −−−−−− +++← 
8)),,,()(21 wdmmm uuuMwdUC −−−+<<← 
9) end for i

10)),,,(21 qwtqwtq aaaLCU −+−++←

11)
)(mod)(),,,,0,..,0(

1

0
21 xFBxauuuMqUC

q

j

j
jqmmm ∑

−

=
−−− ++<<← 

12) Return C

Figure 1: the flowchart is large size multiplication operation in GF(2m)

4. RESULTS AND DISCUSSIONS

Regarding the efficiency of the proposed algorithm for encryption and decryption evaluation for EEC, a software

simulation is performed on an Intel® Core™ i5 at 3.07 GHz Windows 7 PC using C++ program. The element in
)2(mGF is implemented using an unsigned character data type. For any two elements in the finite field, the

multiplication is described in (Genser et al. 2009), and the addition operation is implemented directly by using the
bitwise C++ XOR. The multiplications size of m evaluating time of the 163, 233, 283, 409, and 571 listed in Table 7.
The computational time of these methods over 100,000 times of message computations is listed in Table 8.

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

Yan-Haw Chen, and Chien-Hsing Huang

International Journal of Engineering Technologies and Management Research 149

Table 7: The multiplication of the making table time with different finite filed
m wd-term polynomial, time (ns)

1 2 3 4 5 6 7
163 0 1.5 1.6 1.5 6.3 10.9 20.3
233 0 1.5 1.6 3.1 6.2 12.5 23.4
283 0 1.5 1.6 4.7 7.8 15.6 31.2
409 0 1.5 3.1 4.7 10.9 20.3 39.0
571 0 1.6 3.1 6.2 12.5 25.0 49.9

Table 8: The multiplication of the looping time with different finite filed

m wd-term polynomial, time (ns)
1 2 3 4 5 6 7

163 71.7 34.4 23.3 20.6 13.9 11 10.9
233 143.5 72 48.3 35.9 29.7 24.9 21.8
283 201.0 8.3 65.4 48.3 40.6 32.7 24.9
409 449.2 232.5 148.3 113.9 89.0 74.8 62.4
571 703.5 348.1 235.2 174.8 138.8 115 101.4

Table 9: The computing time of the multiplication with different finite field

m Russian Peasant method Diversity look table method
wd-term polynomial, time (ns)

1 2 3 4 5 6 7
163 69.5 71.7 35.9 24.9 22.1 20.2 21.9 31.2
233 139.2 143.5 73.5 49.9 39.0 35.9 37.4 45.2
283 194.9 201.0 99.80 67.0 53.0 48.4 48.3 56.1
409 435.7 449.2 234.0 151.4 118.6 99.9 95.1 101.4
571 682.4 703.5 349.7 235.5 181.0 151.3 140.0 151.3

Table 10: The memory usage

m Russian Peasant method
needs memory size (bytes)

Diversity look table method
wd-term polynomial needs memory size (bytes)
1 2 3 4 5 6 7

163 0 0 163 326 652 1304 2608 5216

233 0 0 223 446 892 1784 3568 7136

283 0 0 283 566 1132 2264 4528 9056

409 0 0 409 818 1636 3272 6544 13088

571 0 0 571 1142 2284 4568 9136 18272

Algorithm 1, the multiplication compute with m=163 and wd=5 that can be approximately 70% faster than

Russian Peasant method. For some field, the computations for the multiplication had been executed over 100,000
data for testing. The large field m = 163 and wd=2 the proposed is used to compute multiplication, which requires
4+83=87 Left Shift (i.e., <<) operand and 1+83*2=164 XOR (i.e., ^) operand. The inverse computing process is
required the number of multiplications and square are the number of m. The multiplication can be applying
Algorithm 1 to evaluate scalar multiplication in Elliptic Curve. Algorithm 1 reducing time performance is better than
Russian Peasant method that shown in Figure 2.

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

Efficient Operations in Large Finite Fields for Elliptic Curve Cryptographic

International Journal of Engineering Technologies and Management Research 150

Figure 2: The multiplication of m bits operation in finite field

5. CONCLUSIONS AND RECOMMENDATIONS

In this paper, dynamic lookup table method using encryption and decryption in the ECC is presented. In Figure

2, Algorithm 1 is actually faster than Russian Peasant method, where wd > 1 in all instances m bits. The proposed
multiplication method also can perform quickly inverse operation. If memory consumption in embedded systems is
an acceptable range, the proposed method can be readily adaptable for speeding up and memory used the point
multiplication in ECC. Thus, Algorithm 1 can use in different the value of wd to divide the polynomial A(x) for
encryption and decryption that can save a lot of the memory in Table 10 when the value of wd is small. It is evident
that Algorithm 1 is really suitable for software applications in embedded system.

SOURCES OF FUNDING

None.

CONFLICT OF INTEREST

None.

ACKNOWLEDGMENT

None.

REFERENCES

[1] Y. H. Chen, C. F. Huang, J. Chang, Decoding of binary quadratic residue codes with hash table, IET
Communications, Vol. 10, No. 1, 2016, 122-130.

[2] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, Issue 48, 1987, 203-209.
[3] M. Scott, Optimal irreducible polynomials for GF(2m) arithmetic. Cryptology ePrint Archive, Report

2007/192.

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

Yan-Haw Chen, and Chien-Hsing Huang

International Journal of Engineering Technologies and Management Research 151

[4] A. Hasan, M. Z. Wang, and V. K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a
Class of Finite Fields GF(2m), IEEE Trans. Comput., Vol. 41, No. 8, 1992, 962-971.

[5] E. Savas and C. Ko_c, Finite Field Arithmetic for Cryptography, IEEE Journals, Circuits and Systems Magazine,
Vol. 10, No 2, 2010, 40-56.

[6] B. Ansari and M. Hasan, High-Performance Architecture of Elliptic Curve Scalar Multiplication, IEEE
Transactions on Computers, Vol. 57, No 11, 2011, 1443-1453.

[7] Kobayashi and N. Takagi, A Combined Circuit for Multiplication and Inversion in GF(2m), IEEE Transactions
on Circuits and Systems, Vol 55, No 11,2008, 1144-1148.

[8] Jing, J. Chen, Z. Chen and Y. Chen, Low Complexity Architecture for Multiplicative Inversion in GF(2m), IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS 2006), 2006, 1492-1495.

[9] Luo, J., Bowers, K. D., Oprea, A., and Xu, L. Efficient software implementations of large finite fields GF (2n) for
secure storage applications. ACM Transactions on Storage (TOS), Vol 8, No1, 2012, 2

[10] C. C. Wang, T. K. Truong, H. M. Shao and L. J. Deutsch, VLSI Architectures for computing Multiplications and
Inverses in GF(2m), TDA Progress Report 42-75, 1983, 52-63.

[11] Mahboob and N. Ikram, Lookup table-based multiplication technique for GF(2m) with cryptographic
significance, IEE Proc.-Commun, Vol. 152, No. 6, 2005, pp. 965-974.

[12] W. S. Brwon, On Euclid’s Algorithm and the computation of polynomial greatest common divisors, Journal of
the Association for Computing Machinery, Vol. 18, 1971, 478-504.

[13] F. Dong and Y. Li, A Novel Shortest Addition Chains Algorithm Based on Euclid Algorithm, 4th International
Conference on Wireless Communications, Networking and Mobile Computing, 2008, pp. 1-4.

[14] J. Guajardo and C. Paar, Itoh-Tsujii Inversion in Standard Basis and Its Application in Cryptography and Codes,
Designs, Codes and Cryptography, Vol 25, No 2, 2002, 1573-7586.

[15] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, An Implementation of Elliptic Curve Cryptosystems over F2155,
IEEE J. Selected Areas in Comm., Vol. 11, 1993, 804-813.

[16] Y. Choi, H. W. Kim, and M. S. Kim, Implementation of elliptic curve cryptographic coprocessor over GF (2163)
for ECC protocols, in Proceedings of the 2002 International Technical Conference on Circuits/Systesm,
Computers, and Communications, 2002, 674-677.

[17] S. Kumar Elliptic Curve Cryptography for constrained devices, Bochum Research Bibliography, 2006.
[18] W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Trans. Inf. Theory, vol 22, 1976 664-654.
[19] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curves Cryptogra-phy. Springer, 2004.
[20] P. Gaudry, F. Hess and N.P., Smart. Constructive and destructive facets of Weil descent on elliptic curves.

Preprint, 2000.

https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr

	EFFICIENT OPERATIONS IN LARGE FINITE FIELDS FOR ELLIPTIC CURVE CRYPTOGRAPHIC
	Yan-Haw Chen 1, Chien-Hsing Huang *2/
	*1, 2 Department of Department of Information Engineering I-Shou University, Kaohsiung, Taiwan 84008, Republic of China
	DOI: https://doi.org/10.29121/ijetmr.v7.i6.2020.712

	1. INTRODUCTION
	2. PRELIMINARIES
	3. IMPLEMENTATION OF MULTIPLICATION IN LARGE FIELDS GF(2m).
	4. RESULTS AND DISCUSSIONS
	5. CONCLUSIONS AND RECOMMENDATIONS
	SOURCES OF FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGMENT
	REFERENCES

