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ABSTRACT 
An efficient method to compute the finite field multiplication for 

Elliptic Curve point multiplication at high speed encryption of the message 
is presented. The methods of the operations are based on dynamic lookup 
table and modified Horner rule method. The modified Horner rule method 
is not only to finite field operations but also to Elliptic curve scalar 
multiplication in the encryption and decryption. By comparison with using 
Russian Peasant method and in the new proposed method, one of the 
advantages of utilizing the proposed algorithm is that in the Elliptic Curve 
point addition are reduced by a factor of three in GF (2163). Therefore, 
using the Algorithm 1 running on Intel CPU, computation cost of the 
multiplication method is above 70% faster than using standard 
multiplication by Russian Peasant method. Ultimately, the proposed 
Algorithm 1 for evaluating multiplication can be made regular, simple and 
suitable for software implementations.

  
1. INTRODUCTION 
 
In theory, a finite field is an algebraic structure with established operations for addition, subtraction, 

multiplication, and division by satisfying an Abelian group. These operations have following four properties closure, 
associativity, commutativity, and having an inverse element. Galois Fields GF(2m) have a wide variety of applications 
utilized in the cryptographic standards of ANSI and error correction code (Chen authors, 2016). The industry uses 
Elliptic curve groups over the large finite fields of GF(2m) and GF(p), Koblitz EC groups in GF(2m) (Koblitz, 1987) 
faster than GF(p). The operation modulo is using binary irreducible polynomial in finite field (Scott, 2007; Hasan 
authors, 1992) that is suitable for resource-constrained systems, such as cellphone, networked wireless sensors, and 
smart cards. The most efficient and secure cryptographic system in use today is known as elliptic curve cryptography 
(ECC) and is based on the concept of elliptic curves built over Galois fields (Savas & Ko_c, 2010). NIST recommended 
curves: Koblitz GF(2m), where m is 163, 233, 283, 409, and 571. Elliptic curves are a type of cubic equation of the 
form y2=x3+ax+b, where a and b represent coefficients. When elliptic curves are operation in Galois Field, the points 
on the curve can be form an Abelian group making it operations to addition of two points on the curve, or the point 
doubling. ECC encryption and decryption data in Galois Field that is popular the form y2+xy=x3+ax2+b, where a and 
b represent coefficients. The operation on elliptic curves is scalar multiplication (Ansari & Hasan, 2011) which refers 
to multiplying a Point P by an integer k, resulting in the Point k*P scalar multiplication not only dominates the 
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execution time of ECC algorithms, but it is also essential to the security in systems. In GF(2m), the addition and the 
subtraction are the same XOR instruction in the processor. However, both multiplication and inversion operations 
are complicate in cryptographic systems; they are due to finite field of size m (Kobayashi & Takagi, 2008; Jing 
authors, 2006; Luo authors, 2012; Wang authors, 1983; Mahboob & Ikram, 2005; Brwon, 1971). The multiplication 
and inverse are required while using the Diffie-Hellman key exchange protocol on an elliptic curve (Dong & Li, 2008), 
as specified in ANSI X9.62 is required many multiplications and inverses. Therefore, to develop efficient arithmetic 
operations have high-speed computation that needs for using available technologies. In the past, the multiplication 
algorithm can be used to look-up tables, which have proposed in (Mahboob & Ikram, 2005). The lookup table method 
is pre-compute to reduce the number of operations required during the computation through the pre-computation 
and to reduce the effective computation time for multiplication by suitable width of the registers of the processor to 
achieve higher computation speed. The new algorithm has two properties: First, it utilizes the dynamic lookup table 
by precomputing input data and save memory. Second, it uses modified Horner rule for iteration loop and can 
determine the table entries quickly. The operation of inverse usually utilizes the polynomial modular mathematic 
called Euclidean algorithm (Brwon, 1971; Dong & Li, 2008), in which is hard to be known the worst cases execution 
time. The Fermat's Little Theorem also uses to compute inverse because the worst cases execution time can found. 
The adaptation of Itoh-Tsujii method (Guajardo & Paar, 2002) for standard basis, particularly for Optimal Extension 
Fields has been effective in achieving fast inversion. However, despite recent improvements, inversion is still the 
slowest operation in elliptic curve implementations (Agnew authors, 1993; Choi authors, 2002; Kumar, 2006). Finial, 
this issue is addressed by proposing multiplication methods that the execution time is faster than which measured 
for others multiplication execution time and it can be speed up establish a shared security over an insecure channel, 
Elliptic curve Diffie–Hellman (ECDH) (Diffie & Hellman, 1976). 

 
2. PRELIMINARIES 
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multiplication in the finite field is defined as follows: 
 

 ),(mod)()()( xFxBxAxC ⋅≡  (1) 
 
where the polynomial F(x) is the irreducible polynomial. There is common method utilizing Horner rule for 

computing multiplication, which is rewritten (1) in the following form, where the B(x) polynomial is represented as 
binary vector ),,,( 021 bbbB mm −−= , where )2(GFbi ∈ . 
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The ECC with multiplication is irreducible polynomial 121 +++++= − xxxxf mm  . In (1), the Russian Peasant 

method can be written as a function in C programming as follows: 
 

Russian Peasant method 
GFM(a, b){ 
c = 0;  
cbit=1<<m; 
for  i = 0; i < m;  i=i+1  
    if (b & 1) 
       c ^= a; 
    if (a & cbit) 
       a = (a << 1) ^ f; 
    else 
       a <<= 1; 
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  b >>= 1; 
  } 
return c; 
} 

 
The inverse element of A in finite field GF(2m) is derived by Fermat’s Little Theorem, which is given by  
 

 .222221 21 +++−− −−

== mmm

AAA  (3) 
 
Many multiplications are required in common method of the inverse, which need 2m-3 multiplications for 

calculating inverse element. In others word, it need more computation time for computing inverse but using number 
theory can reducing multiplication that is only m-1 multiplications. The inverse operation also can use the extended 
Euclidean algorithm. 

 
 ).(mod1)()( ,1)()()()( xFxtxAwherextxAxsxF ≡=+  (4) 

 
Thus, the remainder of division t(x) by mod F(x), where F(x) is irreducible polynomial, that is the multiplicative 

inverse of A(x) mod F(x). The compute the inverse element over finite field GF(2m) and the extended Euclidean 
algorithm also can use for computing multiplicative inverse in finite field. However, Euclidean division operation is 
hard to know the maximum execution time when the number is large. Points P=(x1, y1) and Q=(x2, y2) on the curve, 
assume 21 xx ≠ . Let dxy += λ be the line that intersects P and Q, the value of the λ  slope needs calculating inverse. 
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If P = Q, P + Q = R = 2P = (x3, y3) 
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For example, 1)(),2( 33 ++= xxxpGF . 

.),(),( 0233203
23 αααα ++=+→→ xxxyyyxfE  

Let P and Q be curve point, where ),(),,( 2211 yxQyxP == . 
),( 33 yxR = , the point of R is equal P point addition Q point. 

We know that the slope is 
12
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3. IMPLEMENTATION OF MULTIPLICATION IN LARGE FIELDS GF(2m). 
 
Using a two-term polynomial wl axa +  is designed for finite field multiplication, where )2(, GFaa wl ∈ . Let 

2  mod  mq ≡ , where the value of the remainder q is either 0 or 1. Therefore, the computation of ∑ −
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0
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i
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can be replaced by the following equation: 
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A substitution of Equation (7) into Equation (1) yields, 
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A two-term polynomial BaBxa imim 2212 −−−− +  can be pre-computed in order to generate a table of values. To see 

this, let wlwl aBxaaaL +=),(  be an array as lookup table, where 12 −−= iml  and 22 −−= imw . Therefore, a 

substitution of ),( wl aaL  into Equation (8) yields 
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can be represented by the use of Horner's rule form. It becomes 
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The product of ),( wl aaL  and 2x  is required module F(x) that can be reduce polynomial degree by a module 

lookup table M. The lookup table M is by making the polynomial F(x). An irreducible polynomial F(x) is a trinomial 
xm+xk+1 or a binary pentanomial xm+xk+xk1+xk2+1 (Hankerson authors, 2004). First, the modulo operation with 
lookup table is in term of the irreducible polynomial F(x)=fmxm+fkxk+fk1xk1+fk2xk2+1, where fi is belong to {0, 1}, for 
computing modulo polynomial. Let f= fkxk+fk1xk1+fk2xk2+1 are the value of polynomial. Scheme 1, in step 2 needs table 
M to make L dynamic lookup table. The table M is as shown in Table 1. 

 
Note that, the reduction table method requires that m−k ≥ wb, where wb is the number of terms polynomial in 

polynomial A(x). If m-k is less than wb, the reducing polynomial f to make lookup table cause polynomial B is 
dependent. It can’t use lookup table M for reducing the polynomial degree. The pre-computing reduction table is 
shown in Table 1. 
 

Table 1: Pre-computing reduction M table 
M[ai, aj] reduction f Result 
M[0, 0] (0f << 1)+0f 0 
M[0, 1] (0f <<1 )+1f f 
M[1, 0] (1f <<1 )+0f f << 1 
M[1, 1] (1f <<1 )+1f M[1, 0]+ M[0, 1] 
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The lookup table M can be reduced polynomial degree, the leader coefficient of polynomial in degree m-1 
multiplied by x is become of degree m that meaning needs the table M to reduce the polynomial degree. The 
multiplication by x is represented as binary form shift left one position (i.e., B=1101, B << 1=1010). The terms 

BaBxa ji +  can combinations of two bits for computing dynamic lookup table in Table 2. 
 

Table 2: Two terms dynamic Lookup table 
L[ai, aj] aiBx modF(x)+ajB Result 
L[0, 0] 0Bx+0B 0 
L[0, 1] 0Bx+1B B 
L[1, 0] 1Bx+M[0, bm-1]+0B (B << 1)+M[0, bm-1] 
L[1, 1] 1Bx+ M[0, bm-1]+1B L[1, 0]+L[0, 1] 

 
Where bm-1 is leader of the polynomial ),,( 021 bbbB mm += −−  . Let U= ),( wl aaL  be binary vector 

),,,( 021 uuuU mm −−= , the )(mod),( 2 xFxaaL wl  can be represented as ),(2 21 −−+<< mm uuMU , where 
2<<U  is left-shift operation the binary vector (i.e., )0,0,,,,(2 043 uuuU mm −−=<< ). Consequently, the scheme 

of multiplication for computing the two terms polynomial called Scheme 1, is proposed as follows: 
 
Scheme 1: Multiplication Using Look up Table (LUT) Computation 

1) Compute 2  mod  mq ≡ , where m is the element of bit sizes. 
2) Set the initial message C  to be zero. 
3) To make reduction ),( wl aaM  table as shown in Table 1 
4) Computing ),( wl aaL  table as shown in Table 2. 

5) for i = 0 to 



 −

2
)2(m

-1 do  

6) Read bits 12 −− ima  and 22 −− ima  from the polynomial A(x) 

7) ),( 2212 −−−−+← imim aaLCU  
8) ),()2( 21 −−+<<← mm uuMUC  
9) end for i 

10) ),( 1 qq aaLCU ++←  
11) BaqququMqUC mm 021 ),()( ⋅++<<← −−  
 
Scheme 1, the lookup table require the memory of the size m⋅22  bits. For example, the GF(2163) requires 4 LUTs. 

Those tables can be dynamic pre-calculated and can then be stored in memory. The simplest approach is to use a 
pair of ),( wl aa , where la  and wa  are bit value, for evaluating multiplication in LUTs derived from Scheme 1, which 
requires only 80 iterations for evaluating a multiplication. 

If a three-term polynomial xwl axaxa ++2  is designed for computing multiplication, 3  mod  kq ≡ , It can be 

divided into 



 −

3
)3(m  unites into A(x). In equation (1) can be replaced by following a three-term polynomial for 

multiplication. It is called Scheme 2 as follows: 
 
Scheme 2: Multiplication LUT Computation 
 

1) Compute 3  mod  mq ≡ , where m is the element of bit sizes. 
2) Set the initial the value of C  to be zero. 
3) To make reduction ),,( xwl aaaM  table as shown in Table 3 
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4) Computing ),,( xwl aaaL  table as shown in Table 4. 

5) for i = 0 to 

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 −

3
)3(m -1 do  

6) Read elements 13 −− ima , 23 −− ima  and 33 −− ima  

7) ),( 332313 −−−−−− ++← ikimim aaaLCU  
8) ),,()3( 321 −−−+<<← mmm uuuMUC  
9) end for i 
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Table 3: Pre-computing reduction M table 
M[ai, aj] reduction f Result 
M[0, 0, 0] (0f<<1)+0f 0 
M[0, 0, 1] (0f<<1)+1f f 
M[0, 1, 0] (1f<<1)+0f f<<1 
M[0, 1, 1] (1f<<1)+1f M[0, 1, 0]+M[0, 0, 1] 
M[1, 0, 0] (1f<<2)+(0f<<1)+0f f<<2 
M[1, 0, 1] (1f<<2)+(0f<<1)+1f M[1, 0, 0]+M[0, 0, 1] 
M[1, 1, 0] (1f<<2)+(1f<<1)+0f M[1, 0, 0]+M[0, 1, 0] 
M[1, 1, 1] (1f<<2)+(1f<<1)+1f M[1, 0, 0]+M[0, 1, 1] 

 
Table 4: Three term dynamic lookup table 

L[al, aw, ax] alBx2 modF(x)+awBx modF(x)+axB 
L[0, 0, 0] 0 
L[0, 0, 1] B 
L[0, 1, 0] (B<<1)+M[0,0, am-1] 
L[0, 1, 1] L[0, 1, 0]+L[0, 0, 1] 
L[1, 0, 0] (B<<2)+M[0, am-1, am-2] 
L[1, 0, 1] L[1, 0, 0]+L[0,0,1] 
L[1, 1, 0] L[1, 0, 0]+L[0,1,0] 
L[1, 1, 1] L[1, 0, 0]+L[0,1,1] 

 
Scheme 2, the lookup table require the memory of the size m⋅32  bits. For example, the GF (2163) requires 8 data 

in lookup table. Those tables can be dynamic pre-calculated data to store in memory. The simplest approach is to 
use three for ),,( xwl aaa , where la , wa , and xa  are bit value, for precomputing data in Table 3 and in Table 4. 
Scheme 2 used Table 3 and Table 4 operation, which requires only 53 iterations for evaluating a multiplication, 
however, they would be increased time to make dynamic lookup table. Characteristic two in this is case due to work 
described in (Gaudry authors, 2000) m to be prime. According to Scheme 1 (i.e., using Table 1 and Table 2) and 
Scheme 2 (i.e., using Table 3 and Table 4), If the value of m is odd number, the multiplications can be designed as 
Algorithm 1. 
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So, Algorithm 1 can use reducing polynomial f(x) in Table 5 and wd-term polynomial A(x) in Table 6. These 
precomputing the table of the size is 2wd, where wd is the number of terms polynomial (i.e., 

0
2

2
1

1 axaxa wd
wd

wd
wd +++ −

−
−

−  ). The flowchart is as shown in Figure 1. 
 

Table 5: Pre-computing wd2  reduction table 

M[ 021 ,,, aaa wdwd −− ] reduction f Result 

M[0,…,0, 0, 0] 0++(0f<<1)+0f 0 
M[0,…,0, 0, 1] 0++ (0f<<1)+1f f 
M[0,…,0, 1, 0] 0++ (1f<<1)+0f f<<1 
M[0,…,0, 1, 1] 0++ (1f<<1)+1f M[0,…,0, 1, 0]+M[0,…,0, 0, 1] 
M[0,…,1, 0, 0] 0++ (1f<<2)+ (0f<<1)+0f f<<2 
M[0,…,1, 0, 1] 0++ (1f<<2)+ (0f<<1)+1f M[0,…,1, 0, 0]+M[0,…,0, 0, 1] 
M[0,…,1, 1, 0] 0++ (1f<<2)+ (1f<<1)+0f M[0,…,1, 0, 0]+M[0,…,0, 1, 0] 
      
M[1,…,0, 0, 0] (1f<<wd-1)++0f f<<wd-1 
      
M[1,…,1, 0, 1] (1f<<wd-1)++(0f<<1)+1f M[1,…,0, 0, 0]+M[0,…,1, 0, 1] 
M[1,…,1, 1, 0] (1f<<wd-1)++(1f<<1)+0f M[1,…,0, 0, 0]+M[0,...,1, 1, 0] 
M[1,…,1, 1, 1] (1f<<wd-1)++(1f<<1)+1f M[1,…,0, 0, 0]+M[0,…,1, 1, 1] 

 
Table 6: wd2 -term polynomial for dynamic lookup table 

L[ 0121
,,,, kkkk aaaa

wd


− ] )(mod1
1

xFBxa wd
kwd

−
− + + )(mod

1
xFBxak + Bak0  

L[0,…,0, 0, 0] 0 
L[0,…,0, 0, 1] B 
L[0,…,0, 1, 0] (B<<1)+M[0,…,0, 0, bm-1] 
L[0,…,0, 1, 1] L[0,…,0, 1, 0]+L[0,…,0, 0, 1] 
L[0,…,1, 0, 0] (B<<2)+M[0, am-1, am-2] 
L[0,…,1, 0, 1] L[0,…,1, 0, 0]+L[0,…,0, 0, 1] 
L[0,…,1, 1, 0] L[0,…,1, 0, 0]+L[0,…,0, 1, 0] 
    
L[1,…,0, 0, 0] (B<<wd-1)+M[0, bm-1, bm-2,…, bm-wd] 
    
L[1,…,1, 0, 1] L[1,…,0, 0, 0]+L[0,…,1, 0, 1] 
L[1,…,1, 1, 0] L[1,…,0, 0, 0]+L[0,…,1, 1, 0] 
L[1,…,1, 1, 1] L[1,…,0, 0, 0]+L[0,…,1, 1, 1] 

 
Algorithm 1: Multiplication dynamic Lookup table computation 

GFM (A, B): 

1) Compute wdmq   mod  ≡  
2) Set the initial the value of C  to be zero 
3) To make reduction ),,,(

110 −wdkkk aaaM  table as shown in Table 5 

4) To make dynamic lookup table ),,,(
110 −wdkkk aaaL   as shown in Table 6 

5) for i = 0 to 



 −

wd
wdm )( -1 do  

6) Read elements 13 −− ima , 23 −− ima ,…, and wdima −−3  
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7) ),( 32313 wdikimim aaaLCU −−−−−− +++←   
8) ),,,()( 21 wdmmm uuuMwdUC −−−+<<←   
9) end for i 

10) ),,,( 21 qwtqwtq aaaLCU −+−++←  

11) 
)(mod)(),,,,0,..,0(

1

0
21 xFBxauuuMqUC

q

j

j
jqmmm ∑

−

=
−−− ++<<← 

 
12) Return C 

 

 
Figure 1: the flowchart is large size multiplication operation in GF(2m) 

 
4. RESULTS AND DISCUSSIONS  
 
Regarding the efficiency of the proposed algorithm for encryption and decryption evaluation for EEC, a software 

simulation is performed on an Intel® Core™ i5 at 3.07 GHz Windows 7 PC using C++ program. The element in 
)2( mGF  is implemented using an unsigned character data type. For any two elements in the finite field, the 

multiplication is described in (Genser et al. 2009), and the addition operation is implemented directly by using the 
bitwise C++ XOR. The multiplications size of m evaluating time of the 163, 233, 283, 409, and 571 listed in Table 7. 
The computational time of these methods over 100,000 times of message computations is listed in Table 8. 
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Table 7: The multiplication of the making table time with different finite filed 
m wd-term polynomial, time (ns) 

1 2 3 4 5 6 7 
163 0 1.5 1.6 1.5 6.3 10.9 20.3 
233 0 1.5 1.6 3.1 6.2 12.5 23.4 
283 0 1.5 1.6 4.7 7.8 15.6 31.2 
409 0 1.5 3.1 4.7 10.9 20.3 39.0 
571 0 1.6 3.1 6.2 12.5 25.0 49.9 

 
Table 8: The multiplication of the looping time with different finite filed 

m wd-term polynomial, time (ns) 
1 2 3 4 5 6 7 

163 71.7 34.4 23.3 20.6 13.9 11 10.9 
233 143.5 72 48.3 35.9 29.7 24.9 21.8 
283 201.0 8.3 65.4 48.3 40.6 32.7 24.9 
409 449.2 232.5 148.3 113.9 89.0 74.8 62.4 
571 703.5 348.1 235.2 174.8 138.8 115 101.4 

 
Table 9: The computing time of the multiplication with different finite field 

m Russian Peasant method Diversity look table method 
wd-term polynomial, time (ns) 

1 2 3 4 5 6 7 
163 69.5 71.7 35.9 24.9 22.1 20.2 21.9 31.2 
233 139.2 143.5 73.5 49.9 39.0 35.9 37.4 45.2 
283 194.9 201.0 99.80 67.0 53.0 48.4 48.3 56.1 
409 435.7 449.2 234.0 151.4 118.6 99.9 95.1 101.4 
571 682.4 703.5 349.7 235.5 181.0 151.3 140.0 151.3 

 
Table 10: The memory usage 

m Russian Peasant method 
needs memory size (bytes) 

Diversity look table method 
wd-term polynomial needs memory size (bytes) 
1 2 3 4 5 6 7 

163 0 0 163 326 652 1304 2608 5216 

233 0 0 223 446 892 1784 3568 7136 

283 0 0 283 566 1132 2264 4528 9056 

409 0 0 409 818 1636 3272 6544 13088 

571 0 0 571 1142 2284 4568 9136 18272 

 
Algorithm 1, the multiplication compute with m=163 and wd=5 that can be approximately 70% faster than 

Russian Peasant method. For some field, the computations for the multiplication had been executed over 100,000 
data for testing. The large field m = 163 and wd=2 the proposed is used to compute multiplication, which requires 
4+83=87 Left Shift (i.e., <<) operand and 1+83*2=164 XOR (i.e., ^) operand. The inverse computing process is 
required the number of multiplications and square are the number of m. The multiplication can be applying 
Algorithm 1 to evaluate scalar multiplication in Elliptic Curve. Algorithm 1 reducing time performance is better than 
Russian Peasant method that shown in Figure 2. 
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Figure 2: The multiplication of m bits operation in finite field 

 
5. CONCLUSIONS AND RECOMMENDATIONS  
 
In this paper, dynamic lookup table method using encryption and decryption in the ECC is presented. In Figure 

2, Algorithm 1 is actually faster than Russian Peasant method, where wd > 1 in all instances m bits. The proposed 
multiplication method also can perform quickly inverse operation. If memory consumption in embedded systems is 
an acceptable range, the proposed method can be readily adaptable for speeding up and memory used the point 
multiplication in ECC. Thus, Algorithm 1 can use in different the value of wd to divide the polynomial A(x) for 
encryption and decryption that can save a lot of the memory in Table 10 when the value of wd is small. It is evident 
that Algorithm 1 is really suitable for software applications in embedded system. 
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