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ABSTRACT 
Evaluating clean energy alternatives in hybrid power systems (HPS) is critical within 
sustainable development and zero-carbon policies. Considering the synchronization 
issues between energy generation and consumption, determining the optimal operating 
performance of battery energy storage systems (BESS) will likely increase support and 
interest in HPS investments. In this study, HPSs using shared BESSs for prosumers in a 
common bus distribution network are optimally sized with a minimum cost objective in 
a multi-year sensitivity analysis. Most importantly, the optimal C-rate and maximum 
depth of discharge (DODmax) operation are determined to match the supply-demand 
balance and maximize the HPS benefit at lower end-of-life (EOL) limits. The impact of 
increases in EOL limits on the technical, economic, and environmental feasibility of HPS 
and BESS aging is also evaluated. At the same time, all operations are performed 
considering four different sub-degradation models using the Arrhenius strategy and 
Rainflow Counting algorithm. The results show that increasing the C-rate reduces CO2 by 
up to 19% while increasing BESS equivalent cycles and cycling degradation by 28.26% 
and 10%, respectively. HPS performance is maximized based on optimum BESS operating 
at 80% DODmax. Based on the obtained results, it is also emphasized that the impact of 
BESS operating performance on HPS feasibility and aging analysis will be valuable for 
many stakeholders. 
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1. INTRODUCTION 
Integrating battery energy storage systems (BESS) is critical to fulfill 

intermittent renewable energy generation profiles and prevent excessive 
renewable penetration so that the supply-demand balance performs as desired. 
Evaluating the potential for integration, especially in hybrid power systems (HPS), 
in sustainable zero-carbon-based development plans offers many benefits. If the 
appropriate incentives are provided for higher battery investment costs, cost of 
energy (COE) Qi et al. (2022) , Zieba Falama et al. (2022), carbon emissions Jacobus 
et al. (2011), and grid dependency Üçtuğ and Azapagic (2018) can be reduced, and 
load coverage and self-consumption rates can be increased Liu et al. (2020). 
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Appropriate determination of battery degradation characteristics and extra 
costs due to degradation for optimal sizing of HPSs is essential for many 
stakeholders to partner in reliable investments Bordin et al. (2017) , Jung et al. 
(2020). Accordingly, the demand profile and the desired C-rate are the main factors 
determining the battery degradation characteristics. In addition, other reasons are 
anode plating thickness/particle size, state of health (SOH), and the shape of the 
capacity decay curve Kucinskis et al. (2022). Overall, state of charge (SOC) and 
operating time are highly influential parameters for calendar aging. At the same 
time, the number of cycles and depth of discharge (DOD) are highly significant 
parameters for cycling aging. At lower DODs, a lower C-rate increases the number 
of cycles until the BESS replacements. In comparison, at higher DODs, the effect of 
possible C-rate on the cycle gradually decreases De La Torre et al. (2019). Obtaining 
proper information on SOC, power state, and battery efficiency and considering 
battery current-voltage characteristics under various operating conditions verifies 
the high estimation of SOC during discharge while eliminating SOC underestimation 
during charging at each time step (Shabani et al., 2021). Determining the optimal 
average SOC for each day and the optimal DOD for each cycle guarantees reliable 
planning of grid operating costs Fallahifar and Kalantar (2023). Moreover, 
determining the optimum operating conditions for rated capacity and current rate 
minimizes the annual BESS cost by reducing calendar and cycling aging Dulout et al. 
(2017). However, the economics of degradation effects versus cost should not be 
neglected. Higher C-rates may be needed to provide additional grid revenues Sarker 
et al. (2017). However, for long-term operations, focusing on battery life and 
considering degradation functions results in 32.2% higher lifecycle costs due to the 
larger BESS capacity (5.34%) Wu et al. (2022). 

On the other hand, the impact of calendar degradation on battery aging is less 
than the cycling effect. In parallel with the energy variation in supply and demand, 
C-rates and operational choices in DOD deeply affect planning and optimization 
objectives Qiu et al. (2022). The inability of most electrochemical models to 
accurately predict lithium-ion battery behavior, especially at rates higher than 2 C, 
is one of the main problems limiting their use Li et al. (2019). Higher C-rates result 
in reduced battery voltage due to higher internal resistance, while discharge rates 
lower than 0.1 C help maintain BESS health in simplified equivalent circuit models 
Kebede et al. (2021). Accelerated degradation models assume accurate prediction 
of battery capacity degradation, especially at lower discharge rates Saxena et al. 
(2019). Battery capacity degradation accelerated by higher average temperature 
and SOC in the 0°C to 55°C operating range is detected with the proposed model 
with an RMS error of 1.4% and battery internal resistance growth with an RMS error 
of 15% Smith et al. (2017). Considering other main battery degradation factors 
besides C rates in neural networks enabling the day-ahead market-based data-
driven operation can reduce the daily BESS degradation and battery degradation 
cost by 0.0155% and 78.6% Zhao and Li (2023). Executing the predictions in peak 
shaving and UPS applications can reduce calendar degradation by 2.9% and 5.6% 
due to the lower operating times of the BESS and the higher C-rates Kraenzl et al. 
(2019). However, the reverse power flow effect must be minimized due to high peak 
generation penetration during certain generation hours Gupta et al. (2022a). 
Efficient grid support is achieved, especially at a C-rate of 0.33, and a diversity of 
reliable grid load power demand is ensured Gupta et al. (2022b). 

In contrast to the C-rate, at optimum BESS capacity and DOD, self-consumption 
and feed-in rate can be maximized while maintaining BESS health by synchronizing 
generation and consumption Tsioumas et al. (2021), Wang et al. (2020). Especially 
in hybrid plants considering hydrogen production, lowering the DOD will positively 
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impact BESS health but will slow down hydrogen production and reduce system 
efficiency Tebibel et al. (2015). Therefore, the load demand must be met with 
minimum cost and high reliability for optimal energy operation during BESS 
charging and discharging. It is also emphasized that 70% of DOD can realize the 
desired planning  Hlal et al. (2019). Considering the objective of achieving an 
internal rate of return of 8%, considered the minimum hurdle rate, the optimal DOD 
should operate at 90%, provided that the battery cost falls below 125-150 £/kWh 
Rayit et al. (2021). In contrast, in off-grid microgrids, grid extension costs will be 
similar at a BESS lifetime of 10 years or a DOD higher than 80% Alsaidan et al. 
(2016). 

Finally, many studies have comprehensively evaluated the impacts of DOD and 
C-rate in terms of calendar and cycling aging. However, no study evaluates the 
effects of operational operations (DODmax and C-rate) of a shared BESS to be 
proposed for prosumers in the distribution grid on optimal HPS feasibility outputs 
at minimum cost. This study fills this gap and determines the optimal DODmax and C-
rate at lower end-of-life (EOL) limits. It also evaluates the impact of increasing 
replacement limits, foreseen as EOL, on the technical, economic, and environmental 
performance of HPSs and the aging analysis of the BESS. All these processes are 
performed in four different Arrhenius-based sub-aging models: functional, 
temperature versus relative capacity curve, DOD curve versus number of cycles 
until replacement, and temperature versus lifetime curve. These simultaneously 
operated aging models, which also consider the degradation cost, are built in 
HOMER Pro, and the Rainflow Counting algorithm is also included to determine the 
calendar and cycle aging characteristics according to the simultaneous change in the 
degradation parameters.  

 
2. MATERIALS AND METHODS 

2.1. HPS MODEL 
The HPS model in Figure 1  determines the optimal DODmax and C-rate operation 

for lower or higher EOL. The electricity demand of 30 prosumer households 
connected to the common distribution line is primarily met by PV. The excess 
electricity generated first charges the BESS, and when fully charged, the excess 
energy is sold to the grid. However, optimizing the excess electricity that cannot be 
used after grid sale is essential. On the contrary, if the energy generated from PV 
cannot meet the electricity demand and the BESS occupancy rate is insufficient, 
energy is purchased from the grid, and carbon emissions cannot be prevented. 
Converters are used for AC and DC energy conversion, while the BESS is prevented 
from charging from or discharging to the grid. On the other hand, the optimization 
of HPSs based on shared BESS for a common distribution grid with a minimum cost 
objective was performed in HOMER Pro. The impact of the optimal DODmax and C-
rate on the technical, economic, and environmental feasibility outputs of the BESS 
operation, considering the cumulative increase in electricity demand over the years, 
grid tariff, and PV degradation, has been evaluated in-depth in multi-year sensitivity 
analyses. For this purpose, four different sub-aging models were created in HOMER 
Pro using Arrhenius and Rainflow Counting algorithms. Initially, the optimum 
capacity sizes selected for minimum-cost HPS configurations after optimizations are 
kept constant to examine the effect of BESS technical parameters. Accordingly, PV, 
BESS, and converter capacities are considered 300 kW, 250 kWh, and 200 kW. All 
these studies were conducted in Fatih, Istanbul (41° 0.5' N and 28° 58.7' E). The 
average daily solar irradiation, clearness index, and temperature for Fatih from the 
NASA database are 3.94 kWh/m2/day, 0.481, and 14.46°C. 
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Three parameters are used to model PV in HPS configuration: PV array output 
power, cell temperature, and panel efficiency at nominal test conditions. The 
relevant parameters are calculated in Equations (1), Equation (2), and Equation (3) 
respectively Terkes et al. (2023). 

 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑌𝑌𝑃𝑃𝑃𝑃𝑓𝑓𝑃𝑃𝑃𝑃 �
𝐺𝐺𝑇𝑇(𝑡𝑡)
𝐺𝐺𝑇𝑇,𝑆𝑆𝑆𝑆𝑆𝑆

� �1 + 𝛼𝛼𝑃𝑃�𝑇𝑇𝐶𝐶(𝑡𝑡) − 𝑇𝑇𝐶𝐶,𝑆𝑆𝑆𝑆𝑆𝑆��                                        (1) 

 

𝑇𝑇𝐶𝐶(𝑡𝑡) = 𝑇𝑇𝑎𝑎(𝑡𝑡) + 𝐺𝐺𝑇𝑇(𝑡𝑡)
𝐺𝐺𝑇𝑇,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑡𝑡) �𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�                         (2) 

 

𝜂𝜂𝑚𝑚𝑚𝑚,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑌𝑌𝑃𝑃𝑃𝑃
𝐴𝐴𝑃𝑃𝑃𝑃 𝐺𝐺𝑇𝑇,𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                                   (3) 

 
Figure 1 

                                                                        
Figure 1 HPS Model (Terkes & Demirci, 2023) 

 
HOMER Pro considers a two-tank model depending on three different 

parameters: chemically bound energy for the batteries and available energy for 
energy conversion. The total energy the two tanks can store in the relevant tank 
model determines the maximum storage capacity. In contrast, the ratio of the 
available energy size to the composite size of both tanks provides the capacity rate. 
The rate constant indicates the bidirectional energy conversion rate from bound to 
available energy. Based on these three parameters, the tank's maximum charging 
and discharging power is calculated from Equations (4) and Equation (5). If the 
discharge efficiency is considered, Equation (5) is revised as Equation (6). In 
addition to the maximum limits determining the input and output energy range, two 
different limits are set on the maximum charging power. The first one is related to 
the charging power corresponding to the maximum charging rate and is calculated 
by Equation (7). The second one is associated with the maximum charging current 
and is determined by Equation (8). For the three limitations related to charging 
power and efficiency, the calculation of the maximum charging power is based on 
the minimum in Equation (9). After determining the charging and discharging 
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power at each time step, the bound and available energy are calculated in Equations 
(10) and Equation (11). Moreover, depending on the maximum capacity and voltage 
of the storage, the number of cycles until the replacement, and the DOD, the lifetime 
energy throughput of the battery pack is determined in Equation (12) Terkes and 
Demirci (2023). 

 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑄𝑄1𝑒𝑒−𝑘𝑘∆𝑡𝑡+𝑄𝑄𝑄𝑄𝑄𝑄�1−𝑒𝑒−𝑘𝑘∆𝑡𝑡�
1−𝑒𝑒−𝑘𝑘∆𝑡𝑡+𝑐𝑐�𝑘𝑘∆𝑡𝑡−1+𝑒𝑒−𝑘𝑘∆𝑡𝑡�

                                                            (4) 

 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑘𝑘𝑘𝑘𝑘𝑘 = −𝑘𝑘𝑘𝑘𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚+𝑘𝑘𝑄𝑄1𝑒𝑒−𝑘𝑘∆𝑡𝑡+𝑄𝑄𝑄𝑄𝑄𝑄�1−𝑒𝑒−𝑘𝑘∆𝑡𝑡�
1−𝑒𝑒−𝑘𝑘∆𝑡𝑡+𝑐𝑐�𝑘𝑘∆𝑡𝑡−1+𝑒𝑒−𝑘𝑘∆𝑡𝑡�

                                                  (5) 

 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑘𝑘𝑘𝑘𝑘𝑘𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑                                                                        (6) 
 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = �1−𝑒𝑒−𝛼𝛼𝑐𝑐∆𝑡𝑡�(𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄)
Δ𝑡𝑡

                                                                          (7) 

 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛

1000
                                                                                         (8) 

 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘𝑘𝑘 , 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 �
𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐

                                 (9) 

 

𝑄𝑄1,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑄𝑄1𝑒𝑒−𝑘𝑘∆𝑡𝑡 + (𝑘𝑘𝑘𝑘𝑘𝑘−𝑃𝑃)�1−𝑒𝑒−𝑘𝑘∆𝑡𝑡�
𝑘𝑘

+ 𝑃𝑃𝑃𝑃�𝑘𝑘∆𝑡𝑡−1+𝑒𝑒−𝑘𝑘∆𝑡𝑡�
𝑘𝑘

                                         (10) 

 

𝑄𝑄2,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑄𝑄2𝑒𝑒−𝑘𝑘∆𝑡𝑡 + 𝑄𝑄(1 − 𝑐𝑐)(1− 𝑒𝑒−𝑘𝑘∆𝑡𝑡) + 𝑃𝑃(1−𝑐𝑐)�𝑘𝑘∆𝑡𝑡−1+𝑒𝑒−𝑘𝑘∆𝑡𝑡�
𝑘𝑘

                 (11) 

 

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝑖𝑖𝑑𝑑𝑖𝑖 �
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛
1000 𝑊𝑊/𝑘𝑘𝑘𝑘

�                                                                                         (12) 

 
In addition to the battery model, four sub-aging curves must be determined. 

The first sub-model uses the functional approach, i.e., the output power calculated 
in Equation (13), considering the losses related to the battery's internal resistance. 
The functional expression is known as capacity decay and growth series resistance. 
Considering the circuit behavior, the output power decreases with the square of the 
current flowing through the circuit. Suppose the derivative of the output power 
concerning the circuit current is equal to zero. In that case, the maximum current 
limitation corresponding to the maximum output power is found in Equation (14) 
Terkes and Demirci (2023). 

 
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉0𝐼𝐼 − 𝑅𝑅0𝐼𝐼2                                                                                                    (13) 
 

𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉0
2𝑅𝑅0

                                                                                                                 (14) 
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Another sub-aging model involves characterizing the temperature as the bulk 
thermal capacity. The energy dissipated in the active series resistor is either 
converted into heat or increases the bulk temperature in the storage bank. The heat 
transferred to or removed from the environment is calculated according to the 
convection equation (q=hΔt), while the thermal energy ultimately lost is determined 
by Equation (15). Considering the energy balance in Equation (16), the differential 
solution in Equation (17) is used to calculate the rate of change in the battery's 
internal temperature. Depending on the available temperature of the battery pack, 
HOMER Pro effectively adjusts the SOCmin Terkes and Demirci (2023). 

 
𝑄̇𝑄 = 𝐼𝐼2𝑅𝑅                                                                                                                           (15) 
 
𝑚𝑚𝑚𝑚𝑇̇𝑇 = 𝑄̇𝑄 − (𝑇𝑇 − 𝑇𝑇𝑎𝑎)ℎ                                                                                                   (16) 
 

𝑇𝑇𝑖𝑖+1 = �𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑎𝑎 −
𝑄̇𝑄
ℎ
� 𝑒𝑒−

ℎ
𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 + 𝑄̇𝑄

ℎ
+ 𝑇𝑇𝑎𝑎                                                                              (17) 

 
The relative capacity about temperature represents another sub-curve, and the 

corresponding curve is fitted to Equation (18) based on the parameters d0, d1, and 
d2 promised by battery manufacturers Terkes and Demirci (2023). 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇) = 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛.𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑0 + 𝑑𝑑1𝑇𝑇 + 𝑑𝑑2𝑇𝑇2)                                                  (18) 
 
The last sub-aging models address how to calculate calendar and cycling aging. 

The increasing degradation rates at each time step, whether in use or idle, is known 
as calendar aging and depends only on temperature, as in Equation (19). In contrast, 
in the case of cycling aging, which refers to cycle fatigue, the cycle count curve, which 
will vary depending on the DOD, is determined by Equation (20). When the Rain 
flow Counting algorithm adjusts the SOC-dependent time series for discrete cycles 
about DOD, the cumulative cycling degradation is calculated by Equation (21) , 
Terkes and Demirci (2023). 

𝑘𝑘𝑘𝑘 = 𝐵𝐵𝑒𝑒−
𝑑𝑑
𝑇𝑇                                                                                                                       (19) 

 
1/𝑁𝑁 = 𝐴𝐴𝐷𝐷𝛽𝛽                                                                                                             (20) 
 

𝐷𝐷 = ∑ 𝐴𝐴𝐷𝐷𝑖𝑖
𝛽𝛽𝑁𝑁

𝑖𝑖=0                                                                                                                     (21) 
 
In contrast to BESS, the converters used in this study operate in two modes: 

inverter and rectifier. The inverter and rectifier output power and converter 
efficiency are calculated in Equations (22), Equation (23), and Equation (24) Terkes 
et al. (2023). 

 
2.2. MATERIAL 

The technical and economic inputs and assumptions considered in the 
optimization are summarized in Table 1 . The investment, replacement, and O&M 
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costs are average prices selected from the literature and the technical data for HPS 
components except BESS are related to the average assumptions in the HOMER 
tutorials. For households connected to the common distribution bus, each 
consuming 10 kWh/day, the peak demand is 61.76 kW, and the load factor is 20%. 
Daily and hourly demand variability is based on the HOMER assumption and is 
assumed to be 10% and 20%, respectively. Since the technical performance of BESS 
is analyzed considering the current residential tariffs in Turkey, electricity sales to 
the grid are assumed to be 0.02 $/kWh. Although inflation and discount rates vary 
daily, last year's data is used, and the carbon emission of the unit of electricity 
purchased from the grid is 426.1 g/kWh. The project horizon is 20 years, while 20 
$/ton is considered a carbon tax. Regarding BESS technical parameters, only data 
for 50% EOL is shared in Table 1 . Based on historical average data, the cumulative 
increase in electricity tariff over the years is considered as 3.5% and electricity 
demand as 2.3%, while the PV degradation of 0.5% considered in HOMER tutorials 
is included in the optimization. On the other hand, the carbon tax is 20 $/ton, while 
the interest rate in Turkey is 23.3%, and the inflation rate is 14%, based on last 
year's average data. 

 
2.3. SCENARIOS 

This study evaluates the impact of DODmax and C-rate operating plans of BESSs 
on the technical, economic, and environmental feasibility of HPS and BESS aging 
analysis for lower EOL limits. Based on the optimal DODmax and C-rate to be 
determined in the first step, which effectively manages HPS feasibility, the EOL 
limits are changed in the second step.  
Table 1 

Table 1 Optimization Inputs of the Study 

                                 HPS                                          Parameter description  
PV Manufacturer Generic 

 
 

Panel type Flat plate 
 

 
Rated capacity 1 kW  

Lifetime 25 years  
Derating factor 80 %  

Efficiency 20 %  
Capital cost 1500 $/kW  

Replacement cost 1250 $/kW  
O&M cost 10 $/kW/yr 

Converter Manufacturer Generic 
 

 
Rated capacity 1 kW  

Lifetime 15 years  
Inverter efficiency 95 %  
Rectifier efficiency 95 %  

Capital cost 300 $/kW  
Replacement cost 300 $/kW  

O&M cost 0 $/kW/yr 
BESS Manufacturer Generic 

 
 

Initial SOC 100 %  
Minimum SOC 50 %  

Replacement degradation limit 20-50 %  
Maximum C-rate 0.2-3 C A/Ah 
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Other round-trip losses 8 %  

Maximum charge current 270 A  
Maximum discharge current 810 A  

Maximum capacity 271.81 Ah  
Capacity ratio 1 

 
 

Rate constant 74.29 1/hr  
Effective series resistance 0.00036181 Ω  

Nominal cell voltage 3.7 V  
Maximum operating temperature 60 ◦C  
Minimum operating temperature 0 ◦C  

Mass 9.08 kg  
Fixed bulk temperature 20 ◦C  

d0 0.923 
 

 
d1 0.00345 

 
 

d2 -0.0000375 
 

 
A 0.00036059 

 
 

β 1.7945 
 

 
B 12.9366 

 
 

d 4238.854 
 

 
Capital cost 300 $/kWh  

Replacement cost 250 $/kWh  
O&M cost 5 $/kWh/yr 

Grid Flat tariff (06.00-17.00) 0.0822 $/kWh  
Peak tariff (17.00-22.00) 0.1199 $/kWh  

Valley tariff (22.00-06.00) 0.052 $/kWh  
Grid sell-back price 0.02 $/kWh 

 
The objective is to examine beneficial changes in technical, economic, and 

environmental feasibility outcomes and BESS aging by increasing the degradation 
limits at which BESS replacement will occur. Although the optimum DODmax and C-
rate are determined in the first step, the possible DODmax and C-rate benefits are 
comparatively evaluated in the second step. All these scenarios are realized at the 
optimal beneficial PV, BESS, and converter capacities (300 kW, 250 kWh, and 200 
kW) previously specified in the multi-year sensitivity analyses, as shown in Table 2  
while increasing stakeholder investment reliability. 
Table 2 

Table 2 Scenarios of the Study 

Scenarios DODmax (%) C-rate EOL (%) Sub-scenarios 
A 50, 60, 70, 80 0.2 C 20 A.1.1, A.1.2, A.1.3, A.1.4 
    0.5 C   A.2.1, A.2.2, A.2.3, A.2.4 
    1 C   A.3.1, A.3.2, A.3.3, A.3.4 
    2 C   A.4.1, A.4.2, A.4.3, A.4.4 
    3 C   A.5.1, A.5.2, A.5.3, A.5.4 
B   0.2, 0.5, 1, 2, and 3 C 30 B.1.1, B.1.2, … , B.5.3, B.5.4 
C     40 C.1.1, C.1.2, … , C.5.3, C.5.4 
D     45 D.1.1, D.1.2, … , D.5.3, D.5.4 
E     50 E.1.1, E.1.2, … , E.5.3, E.5.4 
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2.4. OBJECTIVE FUNCTIONS AND DECISION CRITERIA 

Minimizing the net present cost (NPC) is the objective for determining optimal 
HPS configurations. Simultaneously with the NPC, a lower levelized cost of energy 
(LCOE) is also desirable. The capital recovery factor (CRF) used for the calculations 
required for NPC and LCOE is determined by Equation (25). The difference between 
revenues and expenses at the end of each year, discounted to the present and 
summed over the years, is used to calculate the NPC with Equation (26), while the 
LCOE related to the CRF and NPC is determined with Equation (27). Another 
financial parameter, operating cost, is considered in Equation (28) Terkes and 
Demirci (2023). 

 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖,𝑁𝑁) = 𝑖𝑖(1+𝑖𝑖)𝑛𝑛

𝑖𝑖(1+𝑖𝑖)−1
                                                                                            (25) 

 

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻

𝐶𝐶𝐶𝐶𝐶𝐶
𝑖𝑖(1+𝑖𝑖)𝑁𝑁

(1+𝑖𝑖)𝑁𝑁−1

                                                                                        (26) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑖𝑖,𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑁𝑁𝑁𝑁𝑁𝑁
𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                                  (27) 

 
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑖𝑖,𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐𝑐𝑐                                                       (28) 
 
On the path to carbon neutrality and the economic objective, it is desired to 

increase the renewable share (RF) in meeting the electricity demand and thus 
reduce the carbon emissions from the electricity purchased from the grid. 
Therefore, the total carbon emission is calculated by Equation (30) considering the 
emission factor in the grid mix while determining the RF in Equation (29) , Terkes 
et al. (2023). 

 

𝑅𝑅𝑅𝑅 = �1 − 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝑟𝑟𝑟𝑟𝑟𝑟.
𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�100                                                                                             (29) 

 
𝑇𝑇𝐶𝐶𝐶𝐶2 = ∑ (𝐶𝐶𝑂𝑂2)𝑡𝑡�𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑡𝑡

𝑁𝑁
𝑡𝑡=1                                                                                    (30) 

 
Other essential parameters of concern for BESS are battery wear cost and 

autonomy. The storage wear cost in $/kWh, which represents the energy cycle cost, 
is calculated in Equation (31). In contrast, the autonomy, defined as the size of the 
storage bank about the electrical load, is evaluated in Equation (32) Terkes and 
Demirci (2023). 

  

𝐶𝐶𝑏𝑏𝑏𝑏 = 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜂𝜂𝑟𝑟𝑟𝑟
                                                                                               (31) 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛�1−

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
100 �(24 ℎ/𝑑𝑑)

𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎(1000 𝑊𝑊ℎ/𝑘𝑘𝑘𝑘ℎ)                                                             (32) 

 
3. OPTIMIZATION RESULTS 

3.1. SCENARIO A 
Optimal C-rate and DODmax are the main objectives due to the lower BESS 

lifetime at lower EOL limits. Therefore, the comparative impact of different C-rate 
and DODmax on HPS feasibility for a 20% EOL limit is shown in Figure 2 . At higher 
DODmax and increasing C-rate, LCOE, and NPC increase by 4.48% and 2.06% due to 
the increase in degradation and related operating costs. Despite rising expenses, a 
more favorable supply-demand balance increases the RF by 1.5%. With the rise in 
renewable potential, CO2 can be reduced by up to 19% on the path to carbon 
neutrality. As it is only related to temperature, while the total calendar degradation 
does not change depending on the C-rate and DODmax, with increasing DODmax and 
C-rate, the cycling degradation increases by 10%, and the total number of equivalent 
cycles increases by 683.58 (28.26%). Higher degradation rates increase the 
operating cost by up to 91.4%. 

On the contrary, with increasing C-rate at lower DODmax, cycling degradation, 
and total equivalent cycle are reduced by 4% and 266.89 cycles, compared to higher 
DODmax due to the decreased matching in the supply-demand balance. This positive 
acceleration in aging reduces LCOE and NPC by up to 3.71% and 5.3%. However, RF 
and CO2 benefits are reduced by 0.4% and 7.65%. Higher operating costs are also 
avoided. 

On the other hand, charge-discharge rates above 1 C-rate do not change the 
feasibility of HPS much, while lower DODmax is not very favorable to the supply-
demand balance. Therefore, 80% DODmax and 1 C-rate offer optimal HPS feasibility. 
In detail, it is emphasized that in the case of a 1 C-rate, increasing DODmax can reduce 
LCOE and NPC by up to 1% and 5.4% while increasing RF by up to 3.5%. Calendar 
degradation does not change much, but cycling degradation and total equivalent 
cycles increase by 22% and 1522.54 cycles (96.83%). Although the negative impact 
on degradation is expected to increase operating costs, the dominant advantages of 
higher DODmax reduce the operating cost by up to 58%. It is emphasized that CO2 
reduction in carbon neutral policies would benefit up to 34.81%. On the contrary, 
when analyzing the aging characteristics by years (Figure 2 (d)), the cycling 
degradation increases by up to 16% from the first to the last year, reaching 17.91%. 
Due to the significant impact of the C-rate on cycling degradation, increasing the C-
rate raises the degradation rates to 2.76% and 3.06% at the first replacement of 
BESS (between years 10-11) and the end of the project horizon. Following the same 
logic, the total number of equivalent cycles increases by 191.59 and 211.65 (32.63% 
and 39.17%). 
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Figure 2 

                                                                        
Figure 2 Evaluation of HPS Feasibility Considering DOD and C-Rate 

 
3.2. SCENARIOS B, C, D, AND E 

For the 20% EOL limit, a C-rate of 1 C and a DODmax of 80% were determined to 
be the optimal BESS technical operating parameters. However, the comparative 
effects of C-rate and DODmax on the feasibility of BESS and HPS at different EOL limits 
are also evaluated in Figure 3 . Where (a) and (c) are for 80% DODmax, (b) and (d) 
are for 50% DODmax. Suppose the EOL limit is increased by 30%. In that case, it is 
valuable to evaluate the impact on HPS feasibility of increasing the C-rate at 80% 
DODmax or increasing DODmax by 1 C by comparing the same logic. For 80% DODmax, 
the negatives of the increase in LCOE and NPC at increasing C-rates further increase 
up to 1.55% after a 30% increase in EOL. However, with a 98.73% increase in the 
total number of equivalent cycles, the negativity in operating costs decreases up to 
48.6%.  
Figure 3 

                                                                       
Figure 3 Evaluation of HPS Feasibility Considering EOL Limits and C-Rate:  
                  (a) - (c) 80% Dodmax, (b) - (d) 50% Dodmax 
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Another motivation is comparing the impact on HPS feasibility of increasing 

DODmax for a 1 C-rate compared to a 30% increase in EOL. A further positive effect 
of up to 1.74% is achieved on the previous beneficial downward trend in LCOE and 
NPC. In comparison, an additional contribution of up to 2.87% is made to 
environmental policies towards carbon neutrality. The total number of equivalent 
cycles increased by 243.27, and operating costs decreased by up to 32.11%. 
Figure 4 

 
Figure 4 Battery Performance Assessment Considering End of Life, C-Rate & Dodmax 

 
On the other hand, considering the optimal DODmax and C-rate, the higher EOL 

limits increased the operating costs, NPC, and LCOE by up to 921 thousand $, 7.6% 
and 6.1% despite reducing the number of BESS replacements and extending the 
lifetime. Although negative financial performance, CO2 can be reduced by up to 
16.56% due to the 276.4 (8.93%) increase in the BESS total equivalent cycle. It can 
be noted that after the last BESS replacement, the calendar and cycling degradation 
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increased up to 13.13% and 17%. Before the in-depth analysis of the BESS aging 
performance of the EOL limits, Figure 4  summarizes the number and range of years 
in which BESS replacement occurs for the EOL limits at different C-rate and DODmax.  
Figure 5 

                                                                       
Figure 5 Comparison of BESS Aging Performance Considering C-Rate for EOL Limits: 
                  (a) - (c) 80% Dodmax , (b) - (d) 50% Dodmax 

 
The cases where cycling and calendar degradation dominate the BESS 

replacement are indicated by coloring in the table. As the EOL limit increases, the 
interval of years of replacement shortens by one year for 80% DODmax. For a 0.2 C-
rate, it can be said that calendar degradation is the main cause of BESS replacement. 
For a charge-discharge rate above 0.2 C, cycling degradation can be shown as the 
cause of BESS replacement. At 70% DODmax, the number of replacements increases 
at higher EOL limits. In some sub-scenarios, the coloring area (green) is dominated 
by calendar degradation until the first BESS replacement and cycling degradation 
until the project horizon. At lower DODmax, the number of replacements is one since 
the BESS is less utilized in the supply-demand balance, and the dominant cause of 
replacements is calendar degradation. 

On the other hand, the BESS aging performance is analyzed in Figure 5  for 
different EOL limits considering the C-rate and DODmax. Where (a) and (c) are given 
for 80% DODmax, (b) and (d) for 50% DODmax, comparing the degradation after the 
last BESS replacement due to the degradation limit and other parameters.   
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Figure 6 

                                                                        
 

                                                                       
Figure 6 (a) Annual Comparison of BESS Technical Performance Considering the C-Rate for EOL 
Limits 
(b) Annual Comparison of BESS Technical Performance Considering the C-Rate for EOL Limits 

 
Therefore, for higher DODmax and 1 C-rate, the EOL increased by 276.4 

equivalent BESS cycles (8.93%), raising the operating costs up to 921 thousand $. In 
addition, calendar and cycling degradation rises up to 13.13% and 17%. On the 
contrary, for lower DODmax and 1 C-rate, EOL increases by 33.11 equivalent BESS 
cycles (2.11%), and operating costs rise up to 725.92 thousand $. 

Moreover, an in-depth analysis of the BESS aging performance by year, 
depending on the EOL limits and considering the C-rate and DODmax, is evaluated in 
Figure 6. Where (a) and (c) are considered for 80% DODmax and (b) and (d) for 50% 
DODmax. 

Increasing C-rates for an EOL limit of 20%: cycling degradation rises up to 
2.76% during the first BESS replacement and up to 3.06% at the project horizon; 
total equivalent cycles increase by 191.59 (32.63%) and 211.65 cycles (39.17%). If 
the EOL limit is increased by 30%, the respective degradation rates rise to 4.55% 
and 4.76%, and the total number of equivalent cycles increases by 11.68 (1.26%) 
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and 5.34 cycles (0.67%). In-depth on a year-by-year basis, as the EOL limit increases 
for the optimal 1 C-rate and 80% DODmax, calendar degradation rises up to 28.44% 
and 26.87% at the time of the first BESS replacement and at the project horizon. In 
a similar logic, cycling degradation and total equivalent cycle increase up to 17.6% 
and 16.5% and 23.2 and 8.59 cycles (3% and 1.15%), respectively. However, 
increasing C-rates has little effect on calendar degradation since calendar 
degradation is temperature-related. 

In addition to degradation parameters, throughput, and BESS wear cost are also 
valuable for BESS performance. For increasing C-rates, regardless of DODmax, BESS 
wear cost decreases between 17.67-33.83%, while lifetime throughput increases 
between 21.86-73.05% at increasing C-rates, lifetime throughput increases by 145 
MWh (19.29%) for 80% DODmax. The same parameter increases by 307.52 MWh 
(52.22%) at increasing DODmax for 1 C-rate. It can be emphasized that the effect of 
DODmax on lifetime throughput is higher. 

 
4. CONCLUSION 

This study optimizes the sizing of HPSs using a shared BESS for prosumers in a 
common bus distribution network by considering BESS operation with a minimum 
cost objective. DODmax and C-rate are initially determined for prosumers, providing 
optimal HPS feasibility at lower EOL limits. The beneficial impact of possible 
increases in EOL limits on technical, economic, and environmental HPS feasibility 
and BESS aging characteristics was also evaluated. The effect of DODmax, C-rate, and 
EOL on HPS feasibility was examined in depth at each step, and all results were 
analyzed in multi-year sensitivity analyses considering the cumulative increase in 
electricity demand over the years, grid tariff, and PV degradation. The results show 
that increasing the C-rate reduces CO2 by up to 19% and increases the total number 
of equivalent BESS cycles by 683.58 (28.26%) but increases cycling degradation by 
up to 10%. Moreover, regarding the HPS benefit, the effect of increasing DODmax is 
proven to be higher than the C-rate. In addition, the higher EOL limit can increase 
costs by up to 7.6% and raise the calendar and cycling degradation from the last 
BESS replacement to the project lifetime by up to 17%. These drawbacks can be 
reduced by increasing the total BESS equivalent cycle to 276.4 (8.93%). Finally, the 
optimal operating point that maximizes the HPS feasibility benefit while ensuring 
investment reliability for many stakeholders is 80% DODmax. The outputs of this 
study can be extended in the future using different BESS technologies and 
considering individual BESS instead of shared BESS.  
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