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1. INTRODUCTION

In 1922, Banach (1922) introced his result, known as Banach’s Fixed Point
Theorem. After that several mathematicians worked on this result and made some
successful attemps to generalize his idea in other ways. Recently in 2012, as a
generalization of Banach’s Contraction Condition, Wardowski (2012) introduced a
new type of contraction condition, called an F-contraction. After this introduction,
several mathemticians have widely used this idea to introduce some interesting
results of fixed point. Beside these generalizations, some other mathematicians tried
to generalize the notion of a Metric Space. Partial Metric Space Matthews (1994),
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On the Existence of Unique Common Fixed Point of Two Mappings in a Metric-Like Space

Metric-Like Space Amini-Harandi (2012)are some notable generalizatons of the
idea of a Metric Space. During these years several results on fixed point have been
introduced on these spaces.

In our paper we’ll consider the Metric-Like Space and the F-contraction to
investigate the existence of a unique common fixed point for a pair of mapping. Foe
that we’ll mention some definitions and results firts.

The idea of a Metric Space was introduced by M. Fréchet in the year 1906.
Through this idea of Metric Space, he tried to define the distance between two points
of an arbitrary set in an abstract manner as follows,

Definition 1.1 (Metric Space) Suppose X # @ and d: X? — [0, ) be a mapping
such that

1) d(x,¥y) =0; Vx,y€eX.

2) dx,y) =0 x=y.

3) d(x,y) =d(y,x); Vx,y€EX.

4) d(x,y) <d(x,z)+d(z,y); Vx,y,z€X.

then the mapping d will be called a Metric or a Distance Function on X and the
ordered pair (X, d) will be called a Metric Space.

Example 1.2 The set R of all real numbers forms metric space with respect to
metric d,,, defined by d,,(x,y) = |x — y|,Vx,y € R.

Example 1.3 The set C of all complex numbers forms metric space with respect
to metric dy,defined by d,,(z,w) = |z —w| = +/(a— )2 + (b — d)?, where z = a +
ibw=c+id €C

In 1994, S.G. Matthew introduced a generalization of metric space and referred
it as a Partial Metric Space.

Definition 1.4 (Partial Metric Space) Matthews (1994) Suppose X # @ and
p: X? - [0, ) be a mapping such that
1) p(xx) =pxy) =p(,y) =>x=y;Vx,y €X.
2) p(x,x) <p(x,y);Vx,y € X.
3) p(xy) =p(y,x);Vx,y €X.
4) p(xy) <p( 2) +p(,2) —p(z2);Vx,y,z € X.

then the mapping p will be called a partial metric on X and the ordered pair
(X, p) will be called a Partial Metric Space.

Example 1.5 In the set R of real numbers forms a partial metric space with
respect to the mapping p(x,y) = |x — y|;Vx,y € R.

Example 1.6 In the set R of real numbers forms a partial metric space with
respect to the mapping p(x,y) = max{|x|, |y|}; Vx,y € R.
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In 2012, A.A. Harandi introduced a new generalization of metric space called a
Metric-Like space

Definition 1.7 (Metric-Like Space) Amini-Harandi (2012) Suppose X + @ and
d': X% - [0, ) be a mapping such that

1) d'(x,y)=0; Vx,y€eX.

2) d(x,y)=0=> x=y.

3) d'(x,y) =d(y,x); Vx,y€X.

4) d'(x,y) <d(x,z)+d(zy); Vxvy,z€X.

then the ordered pair (X, d) will be called a Metric-Like Space or a Dislocated
Metric Space.

Example 1.8 In the set R of real numbers forms a metric-like space with respect
to the mapping d'(x,y) = max{|x|,|y|}; Vx,y € R.

Example 1.9 In the set R of real numbers forms a metric-like space with respect
to the mapping d'(x,y) = |x| + |y|; Vx,y € R.

Example 1.10 The set C[a, b] of all real-valued continuous functions defined on
a compact interval [a,b] forms a metric-like space with respect to te mapping

d'(f,9) = supeefap (If (O] + 19(O)D; Vf, g € Cla, b].

Remark 1.11 Clearly every Metric Space is a Partial Metric Space as well as a
Metric-Like Space. But 1.6, 1.8 shows that the converse is not true.

Remark 1.12 Every Partial Metric Space is a Metric-Like Space but 1.9 shows
that the converse is not true.

Definition 1.13 (Convergence of a Sequence) Amini-Harandi (2012) In a metric-
like space (X,d") suppose {x,} be a sequence. Then {x,} is said to converge to some
limit x if lim, o d' (X, x) = d'(x, x)

Definition 1.14 (Cauchy Sequence and Completeness) Amini-Harandi (2012)
1. In a metric-like space (X,d") a sequence {x,} is said to be a Cauchy
Sequence if lim,,; 0 d' (X, X, ) exists finitely.

2. A metric-like space (X, d") is said to be a complete metric like space if for
every Cauchy Sequence {x,,} in X there exists x € X such that lim,, ,,cod’ (X, X,) =
lim, o d' (x5, x) = d'(x, x).

Remark 1.15 In a metric-like space the limit of a sequence may not be unique.
For example in the space (R, d") where d'(x,y) = ma{|x|, |y|} consider the sequence

X, = % Then for any real number x = 1, d'(x,, x) = max{%,x} = x = max{x, x}.
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Remark 1.16 In a metric-like space a convergent sequence may not be a Cauchy
sequence.

Remark 1.17 In a complete metric like space if a sequence {x,} is a Cauchy
sequence such that limy, ,0d' (X, x,) = 0 then its limit will be unique. For this,
suppose on the contrary that the limit of the sequence is not unique. Then there will
exist x, x' with the following properties

limd'(x,,x) =d'(x,x) = lim d'(x,,x,) =0,

n—oo mn—oo

limd'(x,,x)=d'(x',x") = lim d'(x;,,x,) =0,

n—-oo m,n—-oo

d'(x,x") # 0.
Then 0 < d'(x,x") < d'(xy, x) + d'(xp,x") » 0 — a contradiction
The above fact leads to the following definition,

Definition 1.18 (0-Cauchy Sequence and 0-Complete Space) Shukla et al. (2013)

* In a metric like space (X,d") a sequence {x,} will be called a 0-Cauchy
sequence if lim, ;60 d’ (X, X,) = 0.

A metricclike space (X,d") is said to be a 0-Complete metric like space if

every 0-Cauchy sequence in X converges to some point x € X such thatd'(x,x) = 0.

Clearly every 0-Cauchy sequence ia a Cauchy sequence and a complete metric
like space is a 0-complete metric like space.

Definition 1.19 (Coincidence Point and Point of Coincidence) Jungck (1996)
Suppose X # @ and f, g: X — X be two functions. A pointw € X is said to be a point of
coincidence of f and g if there exists x € X such that

fx=gx=w
The point x € X is called a coincidence point of f and g.

Definition 1.20 (Weakly Compatible Mapping) Jungck (1996) Suppose X # @
and f,g: X — X be two functions. Then f and g are said to be weakly compatible if
they commutes at their coincidence points i.e. if f(x) = g(x), for some x € X then
f9(x) = gf ().

In 2012, D. Wardowski introduced the idea of F-contraction in the following
manner;

Definition 1.21 (F-Contraction) Wardowski (2012) Suppose, F:(0,00) —
(—o0, ) be a mapping such that

1. F is strictly increasing.
2. lim,_y+F(x) = —oo.
3. 3m € (0,1) such that lim,_,,+x™F(x) = 0.

The followings are some examples of such functions
Example 1.22 F(t) = logt

Example 1.23 F(t) = tlogt

Example 1.24 F(t) = — %
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e Now suppose (X, d") be a metric-like space and T: X — X be a mapping such
that whenever d'(Tx, Ty) > 0, 3t > 0 such that

T+ F(d'(Tx, Ty)) < F(d'(x,y))
then T is said to be an F-contraction defined on X.
Notations:
In our paper we’ll commonly use the folloing notations

1) F ={F:(0,00) = (—o0,): F satisfies the three conditons mentioned in
Definition 1.21}

2) For amapping f: (X,d") - (X,d"),
M(x,y) = max{d'(x,y),d'(x,Tx),d'(y, Ty),d'(x, Ty),d'(y, Tx),d'(x, x),d" (v, y)}
3) For mappings f, g: (X,d") - (X,d"),
NZ (x; y) =
max{d'(gx, gy),d'(fx, gx),d'(fy, gy),d'(gx, fy),d'(fx, gy),d'(gx, gx),d'(gy, g¥)}
4) For mappings f, g: (X,d") - (X,d"),

M;(x,y) = max {d’(x, y),d'(x, fx),d' (v, gy),

d'(fx,y) +d'(x, gy)}
4

2. SOME RESULTS

Lemma 2.1 Karapinar and Salimi (2013) In a metric-like space (X,d") the
following results hold

1) x+y>d(x,y)>0.

2) d'(x,y)=0=d'(x,x) =d'(y,y) =0.

3) Ifasequence {x,} converges to x € X such that d’'(x, x) = 0, then for all
y € X d'(x,,y) converges to {d'(x,, y)}.

4) If {x,} be a sequence in X such that d'(x,, x,4+1) = 0 as n - oo, then
d’(xnvxn)' d,(xn+1v xn+1) - 0asn — oo.

5) Suppose {x,} be a sequence in X such that lim,_,d'(x,, Xp+1) = 0. If
lim,, 0@’ (X, X)) # O then there exists € > 0 and two subsequences
{xn,} and {xp,, } of {x,,} such that the following sequences

{d,(xnk' xmk}v {d,(xnk_lt xmk)}v {d,(xnk' xmk—l)}t {d,(xnk+1' xmk)}: {d’(xnkr xmk+1)}

will converge to € as k — o

Theorem 2.2 Amini-Harandi (2012) Suppose (X, d") be a complete metric-like
spaceand T: X — X be a map such thatVx,y € X

d'(Tx,Ty) < p(M(x,y))
where y: [0, ) — [0, ) is a non-decreasing function such that
1) Y(t) < t;vt > 0.
2) limg+yY(s) <t vVt > 0.
3) limo(t —3(8)) = oo.
Then T has a fixed point.

Theorem 2.3 Amini-Harandi (2012) Suppose (X, d") be a complete metric-like
spaceand T: X — X be a map such thatVx,y € X
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d'(Tx,Ty) < d'(x,y)p(d'(x,y))
where ¢:[0,0) — [0, ) is a non-decreasing continuous function such that
¢(t) =0 © t = 0. Then T has a unique fixed point.

Theorem 2.4 Karapinar and Salimi (2013) Suppose (X, d") be a complete metric-
like space and f, g: X — X be a map such thatVx,y € X

d'(fx, fy) < (N (x, y))
where : [0, ) — [0, ) is a non-decreasing function such that
1) Y(t) < t;vt > 0.
2) limg+y(s) <t VvVt > 0.
3) limo(t —3(8)) = oo.
If the range of g contains the range of f and f(X) or g(X) is a closed subset of
X, then f and g will have a unique point of coincidence in X. Moreover if the

mappings are weakly compatible, then they will have a unique common fixed point
z € X such thatd’'(z,z) = 0.

For more fixed point results in a metric-like space we refer Amini-Harandi
(2012), Karapinar and Salimi (2013), Shukla et al. (2013), Fabijano et al.(2020).

3. MAIN RESULT

We now introduce our main result;

Theorem 3.1 Suppose (X,d") be a 0-complete metric like space and f,g: X - X
be two functions such that whenever d'(fx, gy) > 0 there exists T > 0 such that

T+ F(d'(fx, gy)) < F(Mz(x, y)) Equation 1
for some F € F. Then f and g will have a unique common fixed point in X.

Proof. Suppose x, € X and define a sequence {x,} as follows

fxo = x1;
gx1 = X3;
fxy = x3;

gXy .= Xs;
i.e. in general

fXon = Xons1 IXon41 = Xon42; YN 2= 0.
Further let us denote by

d'y = d' (%) Xns1)-

Now let us consider the following cases

International Journal of Engineering Technologies and Management Research 16



Mainak Mitra, Jigmi Dorjee Bhutia, and Kalishankar Tiwary

Case 1: Suppose d',, = 0 for some n, then d'(x,, x,+1) = 0.
If n = 2m then,
d'(xam, Xams1) = 0
=  Xam = X2m+1
= gXom-1 = fXom = fGXom-1

Therefore x5, = gxom—_1 is a fixed point of f.
Now if d'(gxam, X2m) > 0, then we have Equation 1 we have

T+ F(d'(fxom, 9%om)) < F(My(X2m, X2m)) Equation 2
Where,

My (Xom, Xom) =
! ’ I d,(x gX )+d,(fx X2m)
max {d (2ms Xom),» A" (am, fX2m), A" (Xam, GX2m), =2 2 = Zm}

d' (xamgxam)+d (x Xom)
! ! ! 21, 2m 2m+142m
max {d (2ms Xom+1), A" (X2m, Xama1), A (Xam, GXom), 2 }

= d’(me, 9%2m)
Therefore from Equation 2 we have

T+ F(d' (X2m) 9%2m)) = T + F(d' (f Xam, 9%2m)) < F(d' (X2m, 9X2m))
— a contradiction.

Hence d'(gxm, X2m) = 0 i.e. X5, is the fixed point of g and consequently the
common fixed point of f and g. If n = 2m + 1, then proceeding in the similar way
we can prove that f and g will have a common fixed point.

Therefore if d';, = 0 for some n then f and g will have a common fixed point.

Case 2: Now let us assume thatd’,, # 0,vn = 0.
Then for x = x,, and y = x,,,.1 we have from Equation 1

T+ F(d'(fX2n, 9%2n+1)) < F(Ma(X2n, X2n+41)) Equation 3
Where,

My (X2n, X2n+1)

d' (xapx )+d' (x X )
12 I ! nA2n+2 2n+142n+1
max{d (X2ms X2n41), A" (X2ns Xon41), A" (X2ns1, Xons2), 2

! ! !
A’ (X2, Xon+1), A’ (X2m Xon41), ' (Kons1s Xons2),
maxy a'(xonxent)+d Cont1X2ns2)+d anXons)+d’ anXans1)
4

IA

’ ’ ' 3d' (xanXant1)+d (Kent1.X2nt2)
max{d (X2n X2ne1)s A" (Xon, X2na1), A (Kona1, Xane2), 2

= max {d' (X2, Xon+1), A’ (X2n41, X2n42)}

International Journal of Engineering Technologies and Management Research
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If My (X, Xons1) = A" (Xon+1) X2n+2), then Equation 3 will imply

T+ F(d' (fX2n, 9Xan+1)) = T+ F(d' (X2n41, X2n42)) < F(d' (X2n41, X2n42))
Equation 4

—a contradiction.

Thus
M3 (x2n Xan+1) = d'(X2n X2n+1)
= d'(n+1 Xone2) < d' (Xon, X2n41)
= d'yp <d'pp

Similarly, condsidering x = x,,,, and y = x,,,1 in Equation 1 we can prove
that

d'ons2 < d'opsr
Therefore
d'ons2 < d'pper <d'zp

Thus {d',} is a monotonic decreasing sequence. Since it is bounded below by 0,
it is convergent. Suppose the

Now if [ > 0, then taking limit as n — oo on both sides of (??) we have
T+ F()<F)
— a contracdiction. Therefore

l=limd', = limd'x,, xp4q) =0

n—-oo n—-oo

Now we claim that {x, } is a 0-Cauchy Sequence i.e. lim,, ,, 0 d'(xp, X;,) = 0.For
this on the contrary, let us assume that {x,,} is not a 0-Cauchy Sequence. Then from
Lemma 2.1 we have, 3¢ > 0 and two subsequences {x, }, {Xn, } of {x, } such that the

following sequences
{d’(xnk' xmk)}' {dl(xnk—l' xmk)}' {d’(xnk' xmk—l)}' {d’(xnk+1' xmk)}' {d’(xnk' xmk+1)}

converges to €.
Now if n, and m,, are both even then taking x = x,, and y = xp,, 41 we have

T+ F(d,(fxnk' gxmk+1)) = F(MZ (xnk'xmk+1))
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Where,

MZ (xnk! xmk+1)

! (xnktgxmk+1)+d’(fxnk-xmk+1)}
4

d
= max {d’(xnk: xmk+1)’ d’(xnk’ fxnk): d’(xmk+1' gxmk+1)'

d,(xnk' xmk+2) + d,(xnk+1' xmk+1)}

= maXx {d,(xnk' xmk+1)' d,(xnk' xnk+1)' d,(x‘mk+1' xmk+2)' 4

d’ (xTLk' xmk+1)' d’(xnk: xnk+1)' d’(xmk+1: xmk+2):
< max d’(xnk: xmk+1) + d’(xmk+1' xmk+2) + d,(xnk+1' xnk) + d’(xnk’ xmk+1)
4

- € as k- oo
Taking k — oo in the above inequality we have
T+ F(e) <F(e)

— a contradiction as € > 0.

If n,, and m;, are both odd or one is even and other is odd then choosing suitable
terms as x and y as above we will arrive at a contradiction.

This proves that {x,} is a 0-Cauchy Sequence. Since X is a 0-complete metric
like space, thus {x, } is converges to x" € X with d'(x’,x") = 0.

Now if d'(fx',x") > 0 then fx' # x'.

Since {x,} is a 0-Cauchy sequence, thus uniqueness of limit implies that {x,}
does not converge to fx'. Taking x = x" and y = x,,,44 in Equation 1 we have

T+ F(d'(fx', gx2n+1)) < F(Mp(x', X2141))
Where,

My (x', X3n41)

dl(x’! gx2n+1) + d’(x2n+1'fx,)}
4

= max {d'(x', Xons1),d' (x', £x),d' (Xon41, 9X2n41),

- d'(x,fx) as n->w
Thus taking n — oo in the above inequality we have

T+ F(d'(fx',x)) < F(d'(x, fx))
— a contradiction.
Therefore

d'(fx',x)=0= fx' =x.
Thus x' is a fixed point of f.
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Now if d'(fx', gx") > 0 then taking x = y = x" in Equation 1 we have,
T+ F(d'(fx', gx")) < F(M,(x',x"))

where
d'(x',gx") +d'(x', fx'
My(x',x) = max{d'(x',x'),d'(x',fx'),d'(x',gx'), Cg) + A0 )}

— d,(x’,gx,)
Therefore from the above inequality we have

T+ F(d'(x,gx")) =1+ F(d'(fx',gx")) < F(d'(x', gx"))

— a contradiction. Therefore
d'(gx',x)=0>gx'=x.

Thus x’ is a fixed point of g.
Therefore f and g has a common fixed point.

Uniqueness: To prove the uniqueness let us assume on the contrary that there
exists two common fixed points x’ and x” of f and g. Then d'(x’, x'") > 0. Then taking

x =x"andy = x" in Equation 1 we have

T+ Fd'(x,x'") =1+ F(d'(fx', gx"")) < F(My(x',x"))

Where,

max {d’(x’. X", d' (¢, fx"), d' (x', g, 9% )Id (el f )}

— d’(x’, xll)
Therefore from the above inequality we have

Mz(x" xll)

T+ F(d'(X,x")) < F(d'(X',x"))

— a contradiction.

Thus
d'(x',x")y=0

4. APPLICATIONS

The following results are the direct applications of the above theorem;
Theorem 4.1 Suppose (X,d") be a 0-complete metric like space and f,g: X —» X
be two functions such that whenever d'(fx, gy) > 0 there exists T > 0 such that

T+ log(d'(fx, gy)) < log(M;(x,y)) Equation 5

Then f and g will have a unique common fixed point in X.
20
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Proof. Considering F(t) = logt € F in Equation 1 we can have the following
results.

Theorem 4.2 Suppose (X,d") be a 0-complete metric like space and f,g: X - X
be two functions such that whenever d'(fx, gy) > 0 there exists T > 0 such that

T+ d'(fx,gy) +log(d' (fx,gy)) < My(x,y) +log(M,(x,y)) Equation 6

Then f and g will have a unique common fixed point in X.

Proof. Considering F(t) =t + logt € F in equation Equation 1 we can have the
following results.
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